РОССИЙСКАЯ АКАДЕМИЯ НАУК ФИЗИЧЕСКИЙ ИНСТИТУТ имени П.Н. ЛЕБЕДЕВА

на правах рукописи УДК 539.172.17

ЩЕДРИНА

Татьяна Викторовна

Исследование фрагментации релятивистских ядер ¹⁴N методом ядерной фотографической эмульсии

специальность 01.04.16 – Физика атомного ядра и элементарных частиц

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Москва, 2008 г.

Работа выполнена в Лаборатории физики высоких энергий им. В.И.Векслера и А.М.Балдина Объединенного института ядерных исследований

Научный руководитель

кандидат физико-математических наук

ЗАРУБИН Павел Игоревич

Официальные оппоненты:

доктор физико-математических наук, профессор

СМИРНОВА Лидия Николаевна

кандидат физико-математических наук, старший научный сотрудник ГОРНУШКИН Юрий Алексеевич

Ведущее научно-исследовательское учреждение: ГНЦ РФ Институт теоретической и экспериментальной физики, г. Москва.

Защита состоится « » 2008 г. в « » часов на заседании диссертационного совета Д 002.023.04 в Физическом институте им. П.Н. Лебедева РАН (119991, г. Москва, Ленинский пр. 53, гл. здание)

С диссертацией можно ознакомиться в библиотеке Физического института им. П.Н.Лебедева РАН по вышеуказанному адресу.

Автореферат разослан « » 2008 г.

Ученый секретарь диссертационного совета доктор физико-математических наук, старший научный сотрудник

А.В. Серов

2

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Диссертационная работа посвящена систематическому исследованию фрагментации ядер ¹⁴N с энергией 2.1 А ГэВ методом ядерной фотографической эмульсии. Формирование пучка релятивистских ядер азота и облучение эмульсии было осуществлено на нуклотроне ОИЯИ в 2003 г. Работа выполнена в рамках сотрудничества БЕККЕРЕЛЬ, экспериментальная программа которого ориентирована на изучение кластерных степеней свободы в возбужденных ядрах, в которых отдельные группы нуклонов проявляют себя как составляющие кластеры. Основными объектами кластеризации ядер рассматриваются малонуклонные системы, не имеющие возбужденных состояний, т.е. дейтроны, тритоны, ядра ³He и ⁴He.

Проблеме кластерных степеней свободы посвящены многочисленные исследования, начинающиеся с открытия расщепления легких ядер. В области релятивистских энергий выполнены циклы исследований ряда легких ядер эмульсионным методом и методикой пузырьковых пропановых и водородных камер. Однако, данные по ядру азота - одного из ключевых стабильных ядер - в условиях полного наблюдения и измерения характеристик заряженных фрагментов до настоящего момента отсутствовали.

Первоначальная цель настоящего исследования состояла в выявлении роли дейтронной кластеризации во взаимодействиях ядер ¹⁴N, протекающих с наименьшей передачей возбуждения. Такой тип ядерной кластеризации был установлен при изучении диссоциации более легких ядер ⁶Li и ¹⁰B, которые также как и ¹⁴N принадлежат к малочисленному классу нечетно-нечетных стабильных ядер. В процессе нашего изучения ¹⁴N выявилась яркая роль *3а*-частичной кластеризации, изучение которой позволило развить выводы более ранних исследований ядер ¹²C и ¹⁶O.

Значительная статистика, накопленная на предыдущих этапах, позволила отобрать интересующие нас редкие моды диссоциации, в которых произведена полная идентификация фрагментов, что составило третий этап данного исследования. Наблюдение достаточно редких событий может стать экспериментальным основанием для понимания перехода ядра ^{14}N в многочастичные состояния, что даст дополнительные аргументы в пользу развития исследований структуры ядер методами релятивистской ядерной физики.

<u>Актуальность диссертационной работы</u> состоит в изучении картины релятивистской фрагментации ядра ¹⁴N как одной из принципиальных задач эмульсионного сотрудничества БЕККЕРЕЛЬ по исследованию легких ядер. Решение этой задачи имеет самостоятельную ценность для понимания кластерных степеней свободы в ядре ¹⁴N и его роли в проблеме синтеза ядер. Новые данные по ядру ¹⁴N расширяют физическую основу для понимания кластерных степеней свободы в соседних ядрах, в том числе радиоактивных.

<u>Цель диссертационной работы</u> состояла в получении экспериментальных сведений по кластерным особенностям диссоциации ядра ¹⁴N во всем многообразии каналов фрагментации, доступных в ядерной фотографической эмульсии - измерение зарядов, плоских углов и углов погружения, определение импульсов релятивистских фрагментов.

Научная новизна и значимость диссертационной работы. Предшествующие работы по исследованию фрагментации ядра ¹⁴N были выполнены с рядом принципиальных ограничений, как в угловых измерениях, так и классификации следов релятивистских фрагментов. В настоящей работе представлено исследование структурных особенностей ядра ¹⁴N с максимально полным применением возможностей метода ядерной фотографической эмульсии.

<u>Научно-практическая ценность работы</u>. Исследования структурных особенностей релятивистских ядер ¹⁴N выполнены с максимальной полнотой наблюдения заряженных фрагментов, высокой степенью детальности их идентификации и рекордным угловым разрешением. Такой подход создает экспериментальную основу для развития модельных представлений о механизмах взаимодействий ядер при высоких энергиях. Изучение фрагментации ¹⁴N в удобных условиях, обеспечиваемых в обратной кинематике, может иметь приложения для решения проблемы распространенности изотопов.

Основные положения, выносимые автором на защиту, состоят в следующем.

1. Впервые получена детальная картина релятивистской диссоциации ядер ^{14}N в ядерной фотографической эмульсии, облученной на Нуклотроне ОИЯИ. Уникальные возможности эмульсионного метода позволили систематически представить зарядовую топологию, угловые распределения и изотопический состав релятивистских фрагментов ядер ^{14}N как в наиболее периферических взаимодействиях ("белых" звездах), так и в событиях с образованием фрагментов ядер мишени и мезонов.

2. Выявлен лидирующий вклад канала диссоциации ¹⁴N @ 3He + H. Результаты анализа импульсных и азимутальных корреляций *а*-частиц из данного канала фрагментации свидетельствуют о том, что порядка 20% событий фрагментируют через образование промежуточного состояния ⁸Be (0⁺) @ 2a.

3. Исследована роль дейтронов как кластеров в канале ¹⁴N @ 3He + H, приведено сравнение с ранее изученными случаями релятивистской фрагментации ⁶Li @ He + H и ¹⁰B @ 2He + H.

4. Впервые для ядра ¹⁴N идентифицированы процессы релятивистской диссоциации ¹⁴N \otimes ¹¹C + ³H, ¹⁴N \otimes ⁶He + ⁴He + ³He + p, ¹⁴N \otimes ⁴He + 2 ³He + d, для которых характерны глубокая перегруппировка *а*-частичной структуры ядра ¹⁴N и преодоление высоких энергетических порогов.

Апробация работы. Результаты исследования, вошедшие в данную диссертационную работу, представлялись автором на следующих научных мероприятиях: 8-th International Workshop "Relativistic nuclear physics from hundreds of MeV to TeV", Dubna, Russia, May 23-28, 2005; Рабочее совещание "Исследование процессов фрагментации релятивистских ядер на Нуклотроне методом ядерных фотоэмульсий. Сотрудничество БЕККЕРЕЛЬ", 4-5 октября, 2005; Юбилейная научная сессия-конференция секции ЯФ ОФН РАН "Физика фундаментальных взаимодействий", ИТЭФ, Москва, 5-9 декабря 2005; Совместный семинар ЛВЭ и ЛФЧ, Дубна, 20 января, 2006; International A.M. Baldin Seminar of High Energy Physics Problems "Relativistic Nuclear Physics & Quantum Chromodynamics", Dubna, Russia, September 25-30, 2006; Fourth European Summer School on Experimental Nuclear Astrophysics, Santa Tecla, Sicily, Italy, 26 September - 3 October, 2007; Сессия-конференция Секции ядерной физики ОФН РАН "Физика фундаментальных взаимодействий", ИТЭФ, Москва, 26-30 ноября, 2007; Специализированный научный семинар по релятивистской ядерной физике, 14 мая 2008; The 2-nd International Conference "Current Problems in Nuclear Physics and Atomic Energy", NPAE, Kyiv, UKRAINE, June 9-15, 2008.

Публикации. По материалам диссертации опубликовано 8 печатных работ, приведенных в списке литературы (в том числе, в реферируемых научных журналах). <u>Структура и объем работы.</u> Диссертация состоит из введения, трех глав, заключения, приложения и списка литературы, содержащего 49 наименований. Работа изложена на 99 страницах машинописного текста, включающих 28 рисунков, 6 таблиц и 25 микрофотографий взаимодействий легких релятивистских ядер с ядрами фотоэмульсии.

КРАТКОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во Введении представлен краткий обзор работ, посвященный изучению кластерных степеней свободы в периферических процессах при фрагментации легких релятивистских ядер в ядерных фотоэмульсиях в условиях полного наблюдения и измерения характеристик заряженных фрагментов; сформулирована задача экспериментального исследования, приведено краткое содержание диссертации по главам.

В параграфе В.1 подробно представлены результаты работ по изучению структуры ядер ${}^{6}Li$ и ${}^{10}B$, принадлежащих, как и ${}^{14}N$, к редкому классу легких нечетно-нечетных ядер. Особое внимание уделяется вопросам, связанным с проявлением *а*-дейтронной кластеризации в данных ядрах.

В параграфе В.2 приводится обзор работ по изучению альфа – частичной кластеризации в диссоциации релятивистских ядер ${}^{9}Be \ \ 2a + n$ как источника простейшей *а*-частичной системы; рассматриваются некоторые кинематические особенности процессов фрагментации ${}^{12}C \ \ 3a$ и ${}^{16}O \ \ 4a$.

Параграф В.3 посвящен предшествующим исследованиям ядра ¹⁴N и актуальным вопросам по изучению фрагментации этого ядра.

В <u>Главе I</u> представлен анализ периферических взаимодействий ядер ${}^{14}N$, найденных при поиске взаимодействий по первичным следам.

Параграф I.1 посвящен вопросам облучения эмульсии, первичному поиску и отбору событий, определению среднего пробега. Стопка, состоящая из 20 слоев ядерной фотоэмульсии типа БР-2 была облучена пучком ядер ¹⁴N с импульсом 2.86 $A \ \Gamma \Rightarrow B/c$ на нуклотороне ЛВЭ ОИЯИ. Эмульсионные слои толщиной около 600 мкм имели размер $10 \times 20 \ cm^2$. При облучении пучок был направлен параллельно плоскости эмульсии вдоль ее длинной стороны. Поиск событий осуществлялся просмотром по "следу", что позволило зарегистрировать все типы взаимодействий без выборки и получить длину свободного пробега для разного типа взаимодействия с высокой точностью.

Рис. 1. Средняя величина свободного пробега λ для неупругих взаимодействий в ядерной фотоэмульсии в зависимости от массы налетающего ядра A. Квадратами обозначены значения λ_{th} , вычисленные по формуле Брадта-Питерса, кружками – экспериментально полученные величины λ_{exp} . Стрелкой указано значение λ (¹⁴N). Кривая – аппроксимация по геометрической модели.

Определенный таким образом средний свободный пробег ядра ¹⁴N в фотоэмульсии составил $I_N = (13.0 \pm 0.4) \, cm$ на полной статистике 951 взаимодействие ядра ¹⁴N с ядрами фотоэмульсии. Эта величина и полученные ранее значения I_A для ряда других ядер-снарядов в фотоэмульсии, представлены на рис.1. На рисунке 1 представлены как экспериментально полученные величины λ_{exp} , так и значения I_{th} , вычисленные по формуле Брадта-Питерса. Из рисунка видно, что аппроксимация по данной модели удовлетворительно описывает экспериментальные данные для A = 14.

В параграфе I.2 описан зарядовый состав ядер пучка и релятивистских фрагментов. Определение заряда двух- и однозарядных частиц производилось визуально с высокой степенью достоверности, т.к. однократная ионизация (25 - 30 зерен на 100 мкм) однозарядных частиц надежно отличается от 4-х кратной ионизации (100 – 120 зерен на 100 мкм) двухзарядных частиц.

Для определения зарядов ядер пучка и релятивистских фрагментов с $Z \ge 3$, образующихся при развале ядра-снаряда ¹⁴N использовался метод счета *d*-электронов (N_{δ}) на единице длины исследуемого трека. Результаты определения зарядов на следах пучковых частиц дают следующий состав пучка - доля ядер ¹⁴N составила 81%, остальные 15% и 4% приходятся на изотопы углерода и бора, соответственно.

Рис. 2. Распределение по числу δ-электронов следов фрагментовспектаторов ядра¹⁴N с зарядами Z > 2 (83 следа). Сплошная линия соответствует аппроксимации суммой функций Гаусса.

Результаты определения зарядов $Z_{fr} = 3 \div 7$ методом счета *d*-электронов иллюстрируют его высокую надежность (см. рис.2). Измерения зарядов частиц первичного пучка и фрагментов ядер-снарядов позволяют проследить корреляцию между Z_{pr} и SZ_{fr} , т.е. выделить события с сохранением заряда в конусе фрагментации. Таким образом, найдены события, удовлетворяющие условию $Z_{pr} = SZ_{fr} = 7$.

В параграфе I.3 анализируются особенности зарядовой топологии найденных при просмотре по "следу" взаимодействий, см. таблицу 1. В верхней строке указан заряд фрагмента с Z > 2, во второй – число однозарядных фрагментов, в третьей - число двухзарядных, в четвертой, пятой и шестой строках – число найденных событий с данной топологией для "белых" звезд, событий с возбуждением ядра-мишени и суммарное число взаимодействий для каждого канала соответственно. Величины в последних трех строках приведены как в абсолютных величинах, так и в процентном соотношении.

Из данных, приведенных в таблице 1 видно, что при фрагментации ядер ¹⁴N реализуются 9 каналов с разной зарядовой конфигурацией, начиная от канала C+H (25 %) до почти полного расщепления He + 5H (5%). Основной вклад вносят каналы 3He + H (35%), C + H (25 %) и 2He + 3H (17%), которые в сумме составляют 77 %. Для каждого канала фрагментации в Приложении представлена соответствующая микрофотография. Данные, приведенные в таблице 1, указывают на лидирующую роль канала с зарядовой конфигурацией 2+2+2+1, детальному анализу которого посвящена Глава II настоящей работы.

Табл. 1. Распределение периферических взаимодействий ядер¹⁴N с импульсом 2.86 А ГэВ/с (N_{in}) по зарядовым модам с $SZ_{fr} = 7$ (161 событие), в том числе 61 "белая" звезда (N_{ws}), и 100 событий с фрагментами мишени (N_{tf}) и без заряженных мезонов ($n_s = 0$). N_{z1} , N_{z2} , – число одно- и двухзарядных частиц соответственно. В процентах указаны доли событий данного типа.

Z_{fr}	6	5	5	4	3	3	-	-	-
N _{z1}	1	-	2	1	4	2	3	1	5
<i>N</i> _{z2}	-	1	-	1	-	1	2	3	1
N _{ws}	16 26%	5 8%	5 8%	2 3%	1 2%	-	6 10%	21 35%	5 8%
N _{ws}	16 26% 24 24%	5 8% 4 4%	5 8% 3 3%	2 3% 5 5%	1 2% 2 2%	- - 3 3%	6 10% 21 21%	21 35% 35 35%	5 8% 3 3%

Методика и контроль качества угловых измерений в эмульсиях, облученных ядрами ¹⁴N, подробно представлены в параграфе I.4. Стоит отметить, что в данном исследовании измерялись и анализировались как плоские углы f, так и глубинные углы a на основе которых рассчитывались полярные углы J и азимутальные углы y. В отличие от этого, в предшествующих работах по выполнялись измерения только проекций углов соответствующих фрагментов на плоскость эмульсии, что недостаточно для анализа внутренних характеристик многочастичных систем. Среднеквадратичные отклонения при измерении углов J и y вторичных двухзарядных фрагментов ядер ¹⁴N в данном эксперименте составили $s_J = 0.10^0 \pm 0.02^0$, $s_y = 0.50^0 \pm 0.06^0$.

Параграф I.5 посвящен вопросам использования метода многократного кулоновского рассеяния для идентификации фрагментов. Результаты разделения одно- и двухзарядных фрагментов по массовому числу $A_{fr} = p\beta c / p_0\beta$ (где $p\beta c$ - экспериментально полученное значение, $p_0 = 2.86 A \Gamma \beta B/c$, $\beta = 0.9$), иллюстрирующие точность метода, приведены на рис. 3.

Рис. 3. Зависимость средней величины $< p\beta c > dля релятивистских фраг$ $ментов с <math>Z_{fr} = 1$ и $Z_{fr} = 2$ от идентифицированного (приписанного, предполагаемого) массового числа фрагмента A_{fr} для "белых" звезд ¹⁴N ® 3He + H и ¹⁴N ® C + H; линия – результат линейной аппроксимации.

В распределении наблюдается достаточно отчетливая группировка фрагментов по массе A_{fr} . Средние значения величины $p\beta c$ для различных изотопов водорода и гелия равны соответственно: $\langle p\beta c \ (A_{fr} = 1) \rangle = 2.6 \ \Gamma \ni B$, $\langle p\beta c \ (A_{fr} = 2) \rangle = 5.8 \ \Gamma \ni B$, $\langle p\beta c \ (A_{fr} = 3) \rangle = 8.2 \ \Gamma \ni B$, $\langle p\beta c \ (A_{fr} = 4) \rangle = 11.4 \ \Gamma \ni B$, $\langle p\beta c \ (A_{fr} = 6) \rangle = 15.6 \ \Gamma \ni B$. На рисунке 3 приведены также ошибки измерения величины $p\beta c$ для различных фрагментов с 1 $\pounds A_{fr} \pounds 6$.

<u>Глава II</u> посвящена исследованию событий лидирующего канала фрагментации ¹⁴N® 3a + X. Для увеличения статистики событий данного класса проводился специальный ускоренный просмотр по площади. Таким методом было найдено 132 события с тремя релятивистскими фрагментами с Z = 2, которые и составили предмет изучения второй главы.

При анализе основных кинематических характеристик релятивистских *а*-частиц – фрагментов ядра-снаряда из реакции ${}^{14}N \rightarrow 3He + X$ делалось два допущения. Во-первых, предполагалось, что все двухзарядные фрагменты являются ${}^{4}He$. Во-вторых, анализ делался только на основе данных He фрагментов. Двухзарядные фрагменты из реакции диссоциации ${}^{14}N \rightarrow 3He + X$ вылетают в пределах узкого переднего конуса, средний угол раствора которого меньше 1^{0} (параграф II.1). При анализе поперечных импульсов *He* фрагментов, как уже было упомянуто выше, принималось предположение, что все двухзарядные фрагменты являются ⁴*He*. Однако, как известно из экспериментальных данных, примесь ³*He* среди двухзарядных фрагментов при фрагментации $^{14}N \rightarrow 3He + X$ составила 30%. Анализ p_t -распределений (параграф II.2) для событий, в которых было проведено разделение двухзарядных фрагментов на ³*He* и ⁴*He*, отдельно для каждой группы, а также для сравнения всех *He* вместе в предположении, что они являются ⁴*He* показал, что влияние замены ³*He* на ⁴*He* приводит к несущественному изменению вида спектра.

Анализ дифференциальных распределений поперечных импульсов *He* фрагментов из реакции ${}^{14}N \rightarrow 3He + X$ проводился как в лабораторной системе - p_r , так и в системе 3-х *a*-частиц - p_r^* . При описании импульсного распределения в системе 3-х *a*-частиц наибольшее согласие теории и эксперимента достигалось при аппроксимации экспериментальных данных суммой двух функций Рэлея. Подобная ситуация имела место и ранее при исследовании фрагментации ядер ${}^{12}C \otimes 3a$ и ${}^{16}O \otimes 4a$.

Ожидаемое значение параметра распределения Рэлея для поперечных импульсов, испускаемых из ядра ¹⁴N *а*-частиц, равно $s(p_t) = 160 \text{ МэВ/c}$, что находится в удовлетворительном согласии с экспериментальным значением $\langle p_t \rangle = 151 \text{ МэВ/c}$, в предположении, что все двухзарядные фрагменты в инклюзивном распределении по величине p_t в л.с. являются ⁴He.

Одной из возможных причин возникновения двух функций Рэлея для описания распределения по величине p_t^* , может быть наличие последовательных распадов ядра азота на три *a*-частицы, т.е. образование нестабильного ядра ⁸Be. В частности, на это указывает асимметрия в распределении по парному азимутальному углу e_{ij}^* между векторами поперечных импульсов *a*-частиц. На рис. 4

представлено распределение по парному азимутальному углу $\varepsilon_{ij}^* = \arccos \frac{p_{ii} p_{ij}}{p_{ii}^* p_{ij}^*}$ в системе покоя *3а*-частиц для процесса ¹⁴*N* \rightarrow *3а* + *X*.

Рис. 4. Распределение по парному азимутальному углу e^{*}_{ij} в системе покоя За-частиц для процесса ${}^{14}N \rightarrow 3a + X$. Кривая – расчет по модели прямого статистического распада ${}^{14}N \rightarrow 3a + X$.

Роль ⁸*Be* ясно проявляется и в распределении событий фрагментации ¹⁴*N* [®] *3He* + *X* по величине энергии Q_{2a} пары *a*-частиц, образующихся в реакции, см. рис. 5. Первый пик распределения на рис. 5 соответствует значению, ожидаемому для продуктов распада нестабильного ядра ⁸*Be* в основном состоянии 0^+ . Эта часть спектра представлена в 20-кратно увеличенном масштабе на вставке рис. 5. На ней видно хорошее совпадение центра распределения с энергией распада основного состояния ⁸*Be* ($Q = 91.8 \ \kappa 3B$). Получено, что доля *a*-частиц, являющихся продуктами распада ⁸*Be* составляет – (25 , 30) %.

Для оценки энергетического масштаба образования 3a-систем в канале ${}^{14}N \rightarrow 3a + X$ представлено распределение по инвариантной энергии возбуждения Q относительно основного состояния ядра ${}^{12}C$ (рис. 6). Основная часть событий на рис. 6 сконцентрирована в области Q от 8 до 14 МэВ, перекрывающей известные уровни ${}^{12}C$. Смягчение условий отбора для событий 3He + H, при котором разрешено образование фрагментов мишени, не ведет к смещению пика 3a-возбуждений. Это обстоятельство указывает на универсальность механизма заселения 3a-состояний.

Рис. 5. Распределение событий фрагментации ${}^{14}N^{\ \ } \mathbb{B}$ 3He + X по величине энергии Q_{2a} пары а-частиц, образующихся в реакции. На вставке: часть распределения в интервале (0 – 500) кэВ.

Рис. 6. Распределение по инвариантной энергии возбуждения Q_{3a} троек а-частиц относительно основного состояния ядра ¹²С для процесса ¹⁴N \rightarrow 3a+ X. Незаштрихованная гистограмма соответствует всем двухзарядным фрагментам, с фрагментацией мишени и без (132 события); заштрихованная гистограмма соответствует "белым" звездам (41 событие).

Рис. 7. Распределение одно- и двухзарядных фрагментов ядра ¹⁴N по измеренным значениям р β с в канале диссоциации 3He + H (37 следов для двухзарядных фрагментов, 25 следов для однозарядных фрагментов). Незаштрихованная часть гистограммы соответствует двухзарядным фрагментам, заштрихованная часть гистограммы - однозарядным фрагментам. Сплошная линия соответствует аппроксимации суммой двух функций Гаусса для однозарядных фрагментов, и трех функций Гаусса для двухзарядных фрагментов. Максимумы аппроксимирующих распределений расположены при значениях pbc, равных 2.6 ГэВ и 5.8 ГэВ; 8.2 ГэВ, 11.2 и 15.0 ГэВ и соответствуют изотопам водорода ¹H, ²H и гелия: ³He, ⁴He, ⁶He.

Разделение изотопов водорода и гелия в канале фрагментации ${}^{14}N \rightarrow 3a + X$ проводилось по результатам измерения их импульсов (*p* βc), в предположении, что спектаторные фрагменты ядра-снаряда сохраняют импульс на нуклон, равный первичному (параграф II.3). На рис. 7 представлены результаты измерения многократного рассеяния для одно- и двухзарядных фрагментов событий типа "белая" звезда для исследуемого канала.

Для группы фрагментов с одинаковой скоростью и одинаковым зарядом, но разными массами распределение по $p\beta c$ должно представлять собой суперпозицию нескольких нормальных распределений. Измеренные значения импульсов для однозарядных фрагментов (заштрихованная часть гистограммы) удовлетворительно аппроксимируются суммой двух гауссианов, максимумы которых

Табл. 2. Распределение статистики из 109 событий $^{14}N \rightarrow 3a + H + X в$ интервале $Q_{3a} < 20 \, M$ эВ для различных множественностей сопровождающих частиц ($n_s = 0$). В скобках указано число событий при $n_s > 0$. SP_t - суммарный поперечный импульс системы из 3a-частиц для "белых" звезд ($n_g = 0, n_b = 0$), фрагментации на водороде ($n_g = 1, n_b = 0$), фрагментации на тяжелых ядрах эмульсии ($n_g = 0, n_b = 1$ и $n_b = 2$).

	$n_{\rm g} = 0, \\ n_{\rm b} = 0$	$n_{g} = 1, n_{b} = 0$	$n_{\rm g} = 0, \\ n_{\rm b} = 1$	$n_{g} = 0,$ $n_{b} = 2$	$n_{g} = 0,$ $n_{b} = 3$	$n_{\rm g} = 0, \\ n_{\rm b} = 4$	$n_{g} = 0,$ $n_{b} = 5$	$n_{\rm g} = 0,$ $n_{\rm b} = 6$	$n_{g} > 0,$ $n_{b} > 0$	$n_{g} > 1, n_{b} = 0$	$n_{g} = 1, n_{b} = 3$
$Q_{3lpha} \leq 20$ M $_{2}B$	41 -	6 -	23 (6)	16 (7)	3 (3)	2 (1)	1 (1)	1 (1)	8 (2)	7 (1)	1 -
SP _t , МэВ	215.7 ± 20.6	166.7 ± 28.1	36) ± 2	0.3 8.5							

расположены при 2.6 ГэВ и 5.8 ГэВ и соответствуют изотопам ¹H и ²H. Полученное таким образом отношение выхода изотопов ¹H к ²H, примерно, равно 2 : 1. Это указывает на заметное снижение в нашем случае доли дейтронов среди однозарядных фрагментов по сравнению со случаями релятивистской фрагментации ядер ⁶Li (канал He + H) и ¹⁰B (канал 2He + H), где выходы протонов и дейтронов примерно равны.

Выход фрагментов составляет для ³*He* приблизительно (30 - 35)%, для ⁴*He* – (65 - 70)%. Имеется также несколько изотопов гелия в районе *pbc* от 14 до 16 ГэВ, которые были идентифицированы как ⁶*He* (5% от общего числа взаимодействий). Значение *pbc* (⁶*He*) @ 15 ГэВ несколько ниже ожидаемого, что связано с некоторыми методическими вопросами в определении данной величины.

В параграфе II.4 приведена оценка вероятности взаимодействий ядер ¹⁴N на водороде эмульсии и на группе ядер CNO + AgBr. Для оценки сечения взаимодействий ядер ¹⁴N на различных группах ядер, входящих в состав фотоэмульсии, проведен анализ событий ¹⁴N $\rightarrow 3 a + H + X$ для различных множественностей сопровождающих частиц. В табл. 2 представлено распределение для 109 событий исследуемого класса взаимодействий в интервале $Q_{3\alpha} < 20 M_{3}B$ по числу и типу сопровождающих фрагментов ядра мишени. Там же представлено среднее значение суммарного поперечного импульса для системы из 3*а*-частиц для фрагментации на легких и тяжелых ядрах эмульсии.

Из данных, представленных в таблице видно, что среднее значение величины суммарного поперечного импульса системы из 3a-частиц для "белых" звезд ($n_g = 0, n_b = 0$) и взаимодействий на водороде эмульсии ($n_g = 1, n_b = 0$) в

пределах ошибок одинаковы. При образовании более тяжелых фрагментов мишени ($n_g = 0, n_b = 1, 2$) среднее значение суммарного поперечного импульса системы из *За*-частиц существенно увеличивается.

ГЛАВА III посвящена полностью идентифицированным и редким каналам диссоциации ядра ¹⁴N. Несмотря на небольшую статистику представленных в данной главе мод диссоциации, сам факт их наблюдения полезен для понимания динамики релятивистской мультифрагментации. В параграфе III.1 обсуждаются следующие двухчастичные каналы фрагментации ¹⁴N $\rightarrow C + H$, ¹⁴N $\rightarrow B + He$, ¹⁴N $\rightarrow Li + Be$. Вероятность образования последней из выше перечисленных мод диссоциации крайне мала, из 61 взаимодействия типа "белая" звезда зарегистрировано только одно событие с развалом на два примерно равных по массе ядра. Поэтому, остановимся на более детальном представлении результатов для 2-хтельных мод ¹⁴N $\rightarrow C + H$, ¹⁴N $\rightarrow B + He$ с более высокой статистической обеспеченностью.

Можно было бы ожидать, что значения вероятности каналов диссоциации будут снижаться по мере возрастания массового порога Q. Наибольшая вероятность могла бы соответствовать каналам ${}^{14}N \rightarrow {}^{13,12}C + {}^{1,2}H$ со значениями $Q \approx 7.6$ и 10.2 МэВ. Следующим по вероятности мог бы быть канал ${}^{14}N \rightarrow {}^{10}B + {}^{4}He$ ($Q \approx 11.6 \text{ МэВ}$). Действительно, доля событий ${}^{14}N \rightarrow C + H$ оказалась достаточно значительной – 25%. Однако лидирующую роль в данном эксперименте надежно занимает множественный канал ${}^{14}N \otimes 3 {}^{4}He + p$ с массовым порогом $Q \approx 19 M$ эВ. Доля событий ${}^{14}N \rightarrow B + He$, вопреки ожиданиям, оказалась малой - всего 8%.

Результаты идентификации 11 однозарядных фрагментов методом многократного кулоновского рассеяния для событий ${}^{14}N \rightarrow C + H$ указывают на следующее соотношение изотопов p: d: t = 6: 4: 1. Среднее значение величины суммарного переданного системе поперечного импульса не зависит от изотопного состава фрагментов C + H и приблизительно равно $160 \pm 20 M_{2}B/c$. Микрофотография данного канала фрагментации представлена на фото 1.

Фото 1. Фрагментация ядра ${}^{14}N \rightarrow C + H c$ импульсом 2.86 A ГэВ/с в периферическом взаимодействии на ядре эмульсии. На фото отчетливо видна вершина взаимодействия -IV и узкая струя из двух фрагментов. Один из них, после определения заряда методом счета **d**-электронов, идентифицирован как Z = 6 или углерод (C), второй является однозарядным фрагментом. Однозарядный фрагмент идентифицирован по измерениям р β с как протон (p).

Для канала фрагментации ${}^{14}N \rightarrow B + He$ (фото 2) произведена идентификация двухзарядных фрагментов методом многократного кулоновского рассеяния. Все фрагменты с Z = 2 из ${}^{14}N \rightarrow B + He$ оказались ${}^{4}He$.

Фото 2. Фрагментация ядра ${}^{14}N \rightarrow B + He c импульсом 2.86 A ГэВ/с в пе$ риферическом взаимодействии на ядре эмульсии. На верхнем фото видна вершина взаимодействия - IV и узкая струя, состоящая из двух фрагментов. Присмещении по направлению движения струи фрагментов (нижнее фото) можноразличить один фрагмент бора и один двухзарядный фрагмент.

Для данной группы событий произведен анализ угловых и импульсных характеристик образующихся фрагментов. Интересной особенностью данной 2-хтельной моды является указание на корреляцию азимутального угла разлета фрагментов e_{Bhe} с суммарным переданным системе фрагментов ${}^{10}B + {}^{4}He$ поперечным импульсом.

Параграф III.2 посвящен полностью идентифицированным модам диссоциации ${}^{14}N \rightarrow 3a + H$, для которых необходима перегруппировка нуклонов за переделы *а*-частичных связей, а, значит, и преодоление высоких энергетических порогов *Q*. Пример одного из таких взаимодействий представлен на фото 3.

Фото 3. Фрагментация ядра ${}^{14}N \rightarrow 3He + H c$ импульсом 2.86 A ГэВ/с в периферическом взаимодействии на ядре эмульсии. На верхней фотографии видна вершина взаимодействия - IV и струя фрагментов. При смещении вдоль струи фрагментов (см. нижнее фото), можно выделить три двухзарядных (He) и один однозарядный фрагмент (H). В результате измерения импульса методом многократного кулоновского рассеяния определены массы всех фрагментов данного взаимодействия, а именно двухзарядные фрагменты в данном событии являются ⁴He, а однозарядный фрагмент – дейтрон.

Всего идентифицировано 36 одно- и двухзарядных фрагментов из множественных каналов фрагментации ¹⁴N ® 3He + H, из них четыре события $3^{4}He + {}^{2}H, Q \approx 18 M \Rightarrow B$; три события ⁶He + ⁴He + ³He + p, $Q \approx 39 M \Rightarrow B$; два события ⁴He + 2 ³He + ²H, $Q \approx 59 M \Rightarrow B$. Для протекания последнего из вышеперечисленных процессов необходимо разрушение двух *а*-кластеров и эмиссия пары нейтронов.

Полнота идентификации позволяет оценить средний поперечный импульс, переданный системе фрагментов. Величина суммарного переданного системе импульса в случае ¹⁴N $\mathbb{B}^{6}He + {}^{4}He + {}^{3}He + {}^{1}H$ равна $\langle Sp_t \rangle = (431 \pm 43) M \Im B/c$.

Аналогичная величина для канала фрагментации ¹⁴N \circledast 3⁴He + ²H составила $\langle Sp_t \rangle = (182 \pm 90) M_{\Im}B/c$. Даже при такой малой статистике отчетливо видна тенденция увеличения суммарного переданного системе импульса в случае разрушения одного из *а*-кластеров.

Параграф III.3 содержит описание процессов неупругой перезарядки, имевших место в данном эксперименте. К событиям неупругой перезарядки относились события, в которых первичный трек имел заряд 7, а суммарный заряд во фрагментационном конусе равнялся 7 ± 1 . Распределение событий неупругой перезарядки по зарядовым модам с $SZ_{fr} = 8$ и $SZ_{fr} = 6$ представлены в таблице 3.

Табл. 3. Распределение событий неупругой перезарядки ядер ^{14}N с импульсом 2.86 A ГэВ/с по зарядовым модам с $SZ_{fr} = 8$ и $SZ_{fr} = 6$. Обозначения как в табл. 1.

	$SZ_{fr}=6$	$SZ_{fr}=6$	$SZ_{fr}=8$
<i>N</i> _{z1}	2	-	2
<i>N</i> _{z2}	2	3	3
N_{ws}	3	5	9
N _{tf}	2	7	1
N _{in}	5	12	10

Доля событий, представленных в таблице 3 не превышает 3% от всех найденных при первичном просмотре взаимодействий. Интересной особенностью событий неупругой перезарядки является тот факт, что во всех случаях распад происходит на фрагменты с зарядами 1 и 2. Неупругой перезарядки ядра ^{14}N с распадами по другим каналам найдено не было.

По аналогии с фрагментацией ¹⁴N \circledast 3He +H была произведена оценка вероятности образования промежуточного нестабильного ядра ⁸Be в процессах неупругой перезарядки ядра ¹⁴N. Из пяти событий ¹⁴N \circledast 3He нет ни одной пары *а*-частиц с указанием на формирование нестабильного ядра ⁸Be. Распределение событий неупругой перезарядки ¹⁴N \circledast 3He + 2H по величине энергии пары *а*-частиц указывает на $\approx 20\%$ вероятность образования ⁸Be из данной конфигурации. Согласно имеющейся статистике, две пары *а*-частиц из девяти фрагментируют через образование ⁸Be (0⁺). В <u>ЗАКЛЮЧЕНИИ</u> сформулированы основные результаты диссертационной работы, которые состоят в следующем

Впервые детально изучена картина релятивистской диссоциации ядер ^{14}N в ядерной фотографической эмульсии, облученной на нуклотроне ОИЯИ. Уникальные возможности эмульсионного метода позволили систематически изучить зарядовую топологию, угловые распределения и изотопический состав релятивистских фрагментов ядер ^{14}N как в наиболее периферических взаимодействиях ("белых" звездах), так и в событиях с образованием фрагментов ядер мишени и мезонов. Основные выводы выполненного исследования состоят в следующем:

- Установлено, что множественный канал диссоциации ¹⁴N ® 3He + H лидирует в распределении по зарядовой топологии фрагментов. Он дает вклад примерно 50%, как для "белых" звезд, так и для событий с образованием фрагментов мишени и мезонов. Таким образом, ядро ¹⁴N оказывается эффективным источником образования 3*а*-частичных систем.
- 2. Получена значительная статистика для канала диссоциации ¹⁴N ® 3He + H, позволившая оценить по угловым измерениям энергетический масштаб образующихся в периферической фрагментации 3a-частичных систем. Установлено, что 80% взаимодействий соответствуют кластерным возбуждениям ядра ¹²C с энергиями от порога диссоциации до 14 МэB.
- 3. Выполнена оценка образования ядра ⁸*Be* для канала фрагментации ¹⁴*N ® 3He* + *H*. Из анализа угловых корреляций следует, что ядро ¹⁴*N* с вероятностью не менее 20% фрагментируют через образование промежуточного состояния ⁸*Be ®* 2*a*.
- 4. Установлено заметное снижение доли дейтронов по отношению к протонам в канале ¹⁴N ® 3He + H по сравнению с ранее изученными случаями релятивистской фрагментации более легких ядер.
- 5. Впервые изучены спектры по суммарному поперечному импульсу а-фрагментов в событиях ¹⁴N ® 3He + X. Среднее значение величины суммарного переданного системе из 3а-частиц поперечного импульса для "белых" звезд существенно меньше, чем для полупериферических взаимодействий, сопровождающихся образованием одного или нескольких фрагментов ядра-мишени.

6. Впервые для ядра ¹⁴N были идентифицированы процессы релятивистской диссоциации ¹¹C + ³H, ⁶He + ⁴He + ³He + p, ⁴He + 2 ³He + d, для которых характерны глубокая перегруппировка *а*-частичной структуры этого ядра и преодоление высоких энергетических порогов. Кроме того, обнаружены процессы неупругой перезарядки ¹⁴N \otimes 3He + 2H, ¹⁴N \otimes 3He, ¹⁴N \otimes 2He + 2H.

Полученные результаты указывают на перспективность дальнейших исследований многочастичных систем легчайших ядер методом релятивистской фрагментации в экспериментах с более высокой статистической обеспеченностью.

Диссертацию дополняет ПРИЛОЖЕНИЕ, содержащее микрофотографии взаимодействий релятивистских ядер ¹⁴N с ядрами фотоэмульсии. Задача данного приложения состоит в наглядной демонстрации полноты и доказательного характера наблюдений в эмульсии.

Список работ опубликованных по теме диссертации

- D.A. Artemenkov, ... T.V.Shchedrina et al., *«Invariant analysis of the fragmentation of relativistic nuclei in emulsion»*, In: Proceedings of the 26th International A.M. Baldin seminar on high energy physics problems, 339-346, Dubna, September 27 – October 2, (2004) 339-346.
- N.P. Andreeva, ... T.V.Shchedrina et al., *«Light nuclei clustering in fragmentation above 1 A GeV»*, In: Proceedings of the 8th International workshop «Relativistic nuclear physics from hundreds of MeV to TeV», 203-213, Dubna, May 23-28, (2005) 203-213.
- D.A. Artemenkov ... T.V.Shchedrina et al., «*Clustering features of ¹¹B*, ⁷Be, ⁸B, ⁹Be, and ¹⁴N nuclei in relativistic fragmentation», In: Proceedings of the 9th International workshop «Relativistic nuclear physics from hundreds of MeV to TeV», 48-65, Modra-Harmonia, Slovakia, May 22-27, (2006) 48-65.
- D.A. Artemenkov ... T.V.Shchedrina et al., *«Experimental studies of clustering features of some light nuclei in peripheral fragmentation above 1 A GeV»*, In: Proceedings of 25th International workshop «Nuclear theory²⁵», Rila Mountains, Bulgaria, June 26 July 1, (2006) 139-147.
- 5. N.P. Andreeva, ... T.V.Shchedrina et al., «Clustering in light nuclei in fragmen-

tation above 1 A GeV», Eur.Phys.J. A 27S1 (2006) 295-300.

- D.A. Artemenkov, T.V. Shchedrina, R. Stanoeva and P.I. Zarubin, *«Clustering features of ⁹Be, ¹⁴N, ⁷Be, and ⁸B nuclei in relativistic fragmentation»*, In Proceedings of the International Symposium on Exotic Nuclei «EXON06», Khanty-Mansiysk, Russia, July 17-22, (2006), AIP conference proceedings vol. 912 (2007) 78-87.
- 7. Т.В. Щедрина и др., «Периферические взаимодействия релятивистских ядер¹⁴N с ядрами фотоэмульсии», ЯФ 70 (2007) 1271-1275.
- 8. T.V. Shchedrina and P.I. Zarubin, *«Clustering features of ¹⁴N in relativistic multifragmentation process»*, In Proceedings of the 2nd International Conference Current Problems in Nuclear Physics and Atomic Energy *«NPAE08»*, Kyiv, Ukraine, June 9-15, (2008).