Исследование релятивистской фрагментации ядер ¹⁴N методом ядерной фотографической эмульсии

Работа выполнена в Лаборатории физики высоких энергий им. В.И. Векслера и А.М. Балдина

Щедрина Татьяна Викторовна

Научный руководитель: кандидат физ.-мат. наук Зарубин П.И.

Постановка задачи экспериментального исследования

Альфа - дейтронная кластеризация ядер

⁶Li, ¹⁰B, ¹⁴N

$$^{6}Li \rightarrow \frac{He+p}{He+d} \cong 1$$

⁶Li → $\Re\Phi$ 62, №8, c. 1461 - 1471, (1999) ¹⁰B → $\Re\Phi$ 66, №9, c. 1694 - 1698, (2003)

Постановка задачи экспериментального исследования

Альфа - кластеризация в диссоциации релятивистских ядер ^{12}C , ^{14}N и ^{16}O

$$^{12}C \rightarrow 3\alpha$$

$$^{14}N \rightarrow 3\alpha + X$$

$$^{16}O \rightarrow 4\alpha$$

H.Heckman, D.E.Greiner, P.J.Lindstrom, and Shwe *Fragmentation of ⁴He*, ¹²C, ¹⁴N and ¹⁶O nuclei in nuclear emulsion at 2.1 GeV/nucleon Phys.Rev. C 17, №5 1735 (1978).

Двухчастичные каналы фрагментации $^{14}N
ightarrow C + H, \ ^{14}N
ightarrow B + He$

Полностью идентифицированные моды диссоциации $^{14}N \rightarrow 3He + H$

Процессы неупругой перезарядки $^{14}N \to 3He, \ ^{14}N \to 2He + 2H, \ ^{14}N \to 3He + 2H$

Структура диссертации

ВВЕДЕНИЕ

- $\Gamma \Pi ABAI$. Анализ периферических взаимодействий ядер ^{14}N при поиске взаимодействий по первичным следам
- *ГЛАВА II.* Исследование событий фрагментации $^{14}N \to 3\alpha + X$ при ускоренном поиске
- $\Gamma \Pi ABA~III.$ Наблюдение полностью идентифицированных и редких каналов диссоциации ядра ^{14}N

ЗАКЛЮЧЕНИЕ

СПИСОК ПУБЛИКАЦИЙ

ЛИТЕРАТУРА

ПРИЛОЖЕНИЕ

Облучение эмульсии, первичный поиск и отбор событий, определение среднего пробега

$$P_0 = 2.86 A \Gamma_2 B/c,$$

$$E = 2.1 A \Gamma_2 B$$

Суммарная длина при просмотре по следу *123.71 м*

 $N_{\Sigma} = 951$ неупругое взаимодействие

$$\lambda = 13.0 \pm 0.4 \text{ cm}$$

Облучение эмульсии в пучке ¹⁴N на Нуклотроне ОИЯИ, 2003 г.

Средняя величина свободного пробега λ для неупругих взаимодействий в ядерной фотоэмульсии в зависимости от массы налетающего ядра A.

Определение зарядов ядер пучка и релятивистских фрагментов

$$N_{\delta} = a Z^2 + b$$

 $a = 0.55, b = 4.82 u \chi^2 = 0.05$

Распределение по числу δ -электронов a) - для следов пучковых частиц, давших изучаемые взаимодействия (53 следа); b) - следов фрагментов ядра ^{14}N с зарядами $Z_{fr} > 2$ (83 следа). Сплошная линия соответствует аппроксимации суммой функций Гаусса.

Зарядовая топология каналов фрагментации ядра ¹⁴N

Z_{fr}	6	5	5	4	3	3	-	-	-
N_{z1}	1	-	2	1	4	2	3	1	5
N_{z2}	-	1	-	1	-	1	2	3	1
N_{ws}									
N_{tf}									
N_{in}									

Распределение периферических взаимодействий ядер ^{14}N с импульсом $2.86\ A\ \Gamma ^{3}B/c\ (N_{in})$ по зарядовым модам с $\Sigma_{Zfr}=7\ (161\ {\rm coбытие})$, в том числе $61\ {\rm «белая} > {\rm звезда}\ (N_{\rm ws})$, и $100\ {\rm coбытий}\ {\rm c}\ {\rm фрагментами}\ {\rm мишени}\ (N_{tf})$ и без заряженных мезонов $(n_{s}=0)$. $N_{Z1},\ N_{Z2},\ -$ число одно- и двухзарядных частиц соответственно. В процентах указаны доли от событий данного типа.

Зарядовая топология каналов фрагментации ядра ¹⁴N

$oldsymbol{Z_{fr}}$	6	5	5	4	3	3	-	-	-
N_{z1}	1	-	2	1	4	2	3	1	5
N_{z2}	-	1	-	1	-	1	2	3	1
N_{ws}	16	5	5	2	1	-	6	21	5
N_{tf}	24	4	3	5	2	3	21	35	3
N _{in}	40	9	8	7	3	3	27	56	8

Распределение периферических взаимодействий ядер ^{14}N с импульсом $2.86~A~\Gamma_{2}B/c~(N_{in})$ по зарядовым модам с $\Sigma_{Zfr}=7~(161~{\rm coбытие})$, в том числе $61~{\rm cofin}$ звезда (N_{ws}) , и $100~{\rm cofin}$ событий с фрагментами мишени (N_{tf}) и без заряженных мезонов $(n_{s}=0)$. $N_{Z1},~N_{Z2},~-$ число одно- и двухзарядных частиц соответственно. В процентах указаны доли от событий данного типа.

Зарядовая топология каналов фрагментации ядра ¹⁴N

Z_{fr}	6	5	5	4	3	3	-	-	-
N_{z1}	1	-	2	1	4	2	3	1	5
N_{z2}	-	1	-	1	-	1	2	3	1
N_{ws}	16	5	5	2	1	_	6	21	5
	26%	8%	<i>8%</i>	3%	2%	-	10%	<i>35%</i>	8%
N_{tf}	24	4	3	5	2	3	21	35	3
	24%	4%	3%	<i>5%</i>	2%	3%	21%	35%	3%
N_{in}	40	9	8	7	3	3	27	56	8
	25%	<i>5%</i>	<i>5%</i>	<i>4%</i>	2%	2%	17%	35%	<i>5%</i>

Распределение периферических взаимодействий ядер ^{14}N с импульсом $2.86\ A\ \Gamma \ni B/c\ (N_{in})$ по зарядовым модам с $\Sigma_{Zfr}=7\ (161\ {\rm coбытие})$, в том числе $61\ {\rm «белая} \gg$ звезда $({\rm N_{ws}})$, и $100\ {\rm coбытий}$ с фрагментами мишени (N_{tf}) и без заряженных мезонов $(n_s=0)$. $N_{Z1},\ N_{Z2},\ -$ число одно- и двухзарядных частиц соответственно. В процентах указаны доли от событий данного типа.

Исследование событий фрагментации $^{14}N \rightarrow 3\alpha + X$ при ускоренном поиске

$$N_{in}(^{14}N \rightarrow 3\alpha + X) = 132$$

$$N_{ws}(^{14}N \rightarrow 3\alpha + X) = 41$$

$$\sin\theta_{fr}(^{14}N) = \frac{0.2 \quad \Gamma \ni B/c}{2.86 \quad \Gamma \ni B/c} = 0.07 \Rightarrow \theta_{fr} \cong 4^{\circ}$$

Роль 8Be в диссоциации $^{14}N \rightarrow 3He + X$

25% $^{14}N \rightarrow {}^{8}Be + He + X$

ГЛАВА II ...

Идентификация одно- и двухзарядных фрагментов $^{14}N_{ws} \rightarrow 3He + H$ методом многократного кулоновского рассеяния

$${}^{3}\text{He}: {}^{4}\text{He}: {}^{6}\text{He} = 3:8:1$$

$$^{6}Li \rightarrow \frac{He+p}{He+d} \cong 1$$

$$^{10}B \rightarrow \frac{2He+p}{2He+d} \cong 1$$

$$^{14}N \rightarrow \frac{3He+p}{3He+d} \cong 2$$

 ^{6}Li → $\mathcal{A}\Phi$ 62, \mathcal{N}_{2} 8, c. 1461-1471, (1999).

 $^{10}B \rightarrow \mathcal{A}\Phi \ 66, \, \mathcal{N}_{2}9, \, c. \, 1694\text{-}1698, \, (2003).$

 $^{14}N \rightarrow \mathcal{A}\Phi 70, \mathcal{N}_{2}7, c. 1271-1275, (2007).$

ГЛАВА II ...

Суммарный поперечный импульс системы 3α-частиц для "белых" звезд и событий с образованием фрагментов мишени

$$< p_t (3\alpha) >_{ws} = 216 \pm 21 \text{ M}_2 \text{B/c}$$
 $< p_t (3\alpha) >_{tf} = 334 \pm 27 \text{ M}_2 \text{B/c}$ $>_{tf} = 334 \pm 27 \text{ M}_2 \text$

Распределение событий фрагментации $^{14}N \rightarrow 3He + X$ по суммарному поперечному импульсу системы из 3α -частиц $P_t(3\alpha)$ для а) – "белых" звезд $^{14}N \rightarrow 3He + H$, $\langle P_t (3\alpha) \rangle = 216 \pm 21 \ MəB/c$; b) – полупериферических взаимодействий с образованием фрагментов ядер мишени $\langle P_t(3\alpha) \rangle = 334 \pm 27 \ MəB/c$.

ГЛАВА II ...

Двухчастичные каналы фрагментации

$$^{14}N_{ws} \rightarrow C + H (11 \text{ событий})$$
 $W(^{14}N \rightarrow ^{13}C + ^{1}H) \approx 55\%, \quad Q_{Cp} = 8 \text{ M} \ni B$
 $W(^{14}N \rightarrow ^{12}C + ^{2}H) \approx 35\%, \quad Q_{Cp} = 11 \text{ M} \ni B$
 $W(^{14}N \rightarrow ^{11}C + ^{3}H) \approx 10\%, \quad Q_{Cp} = 23 \text{ M} \ni B$
 $< p_t(C + H)>_{ws} = 160 \pm 20 \text{ M} \ni B/c$
 $^{1}H : ^{2}H : ^{3}H = 6 : 4 : 1$
 3
 $^{1}H : ^{2}H : ^{3}H = 6 : 4 : 1$
 3
 $^{1}H : ^{2}H : ^{3}H = 6 : 4 : 1$

Полностью идентифицированные моды диссоциации

$$^{14}N_{ws} \rightarrow 3He + H$$

a) - 4 события
$$^{14}N \rightarrow 3$$
 $^{4}He + d$, $Q = 18 MэВ$

b) - 3 события
$$^{14}N \rightarrow {}^{6}He + {}^{4}He + {}^{3}He + p$$
, $Q = 39 MэВ$

c) - 2 события
$${}^{14}N \rightarrow {}^{4}He + 2 {}^{3}He + d, \ Q = 59 \ MэВ$$

$$< p_t(^6He + ^4He + ^3He + p) > = 431 \pm 43 \ M_2B/c$$

 $< p_t(^34He + d) > = 182 \pm 90 \ M_2B/c$

ГЛАВА III ...

Наблюдение процессов неупругой перезарядки

	$\Sigma Z_{fr} = 6$	$\Sigma Z_{fr} = 6$	$\Sigma Z_{fr} = 8$
N_{z1}	2	-	2
N_{z2}	2	3	3
N_{ws}	3	5	9
N_{tf}	2	7	1
N_{in}	5	12	10

ГЛАВА III ...

Основные выводы выполненного исследования состоят в следующем:

- 1. Установлено, что множественный канал диссоциации $^{14}N \rightarrow 3He + H$ лидирует в распределении по зарядовой топологии. Он дает вклад примерно 50%, как для "белых" звезд, так и для событий с образованием фрагментов мишени и мезонов. Значение среднего свободного пробега для этого канала в фотоэмульсии равно 2.5~m, в то время как для ядра ^{12}C равно 10.3~m. Такое возрастание сечения объясняется эффективным взаимодействием внешних слабосвязанных нуклонов ядра ^{14}N с ядрами мишени. Таким образом, ядро ^{14}N оказывается наиболее эффективным источником образования 3α -частичных систем.
- 2. Получена значительная статистика для канала диссоциации $^{14}N \rightarrow 3He + H$, позволившая оценить по угловым измерениям энергетический масштаб образующихся в периферической фрагментации 3α -частичных систем. Установлено, что 80% взаимодействий соответствуют кластерным возбуждениям ядра ^{12}C с энергиями от порога диссоциации до 14 $M \ni B$.
- 3. Идентификация методом многократного кулоновского рассеяния релятивистских ядер H в канале $^{14}N \rightarrow 3He + H$ указывает на заметное снижение доли дейтронов по отношению к протонам по сравнению с ранее изученными случаями релятивистской фрагментации 6Li и ^{10}B .

- 4. Впервые изучены спектры по суммарному поперечному импульсу α -фрагментов в событиях $^{14}N \rightarrow 3He + X$. Среднее значение величины суммарного переданного системе из 3α -частиц поперечного импульса для "белых" звезд существенно меньше, чем для полупериферических взаимодействий, сопровождающихся образованием одного или нескольких фрагментов ядра-мишени.
- 5. Впервые для ядра ^{14}N были идентифицированы процессы релятивистской диссоциации $^{11}C + ^3H$, $^6He + ^4He + ^3He + p$, $^4He + 2 ^3He + d$, для которых характерны глубокая перегруппировка α -частичной структуры этого ядра и преодоление высоких энергетических порогов. Кроме того, обнаружены процессы неупругой перезарядки $^{14}N \rightarrow 3He + 2H$, $^{14}N \rightarrow 3He$, $^{14}N \rightarrow 2He + 2H$.
- 6. Для канала фрагментации $^{14}N \rightarrow 3He + H$ выполнена оценка образования ядра 8Be и проведено сравнение с фрагментацией ранее изученных ядер $^{12}C \rightarrow 3He, ^{16}O \rightarrow 4He$. Из анализа угловых корреляций следует, что ядра $^{12}C, ^{14}N, ^{16}O$ с вероятностью не менее 20 % фрагментируют через образование промежуточного состояния $^8Be \rightarrow 2\alpha$.

Апробация работы

- 1. 8-th International Workshop «Relativistic nuclear physics from hundreds of MeV to TeV», Dubna, Russia, May 23-28, 2005.
- 2. Рабочее совещание, Сотрудничество БЕККЕРЕЛЬ, 4–5 октября, 2005.
- 3. Юбилейная научная сессия-конференция секции ЯФ ОФН РАН «Физика фундаментальных взаимодействий», ИТЭФ, Москва, 5-9 декабря 2005.
- 4. Совместный семинар ЛВЭ и ЛФЧ «Периферические взаимодействия релятивистских ядер ^{14}N с ядрами фотоэмульсии», Дубна, 20 января, 2006.
- 5. International A.M. Baldin Seminar of High Energy Physics Problems «Relativistic Nuclear Physics & Quantum Chromodynamics», Dubna, Russia, September 25-30, 2006.
- 6. Fourth European Summer School on Experimental Nuclear Astrophysics, Santa Tecla, Sicily, Italy, 26 September 3 October, 2007.
- 7. Сессия-конференция Секции ядерной физики ОФН РАН «Физика фундаментальных взаимодействий», ИТЭФ, Москва, 26-30 ноября, 2007.
- 8. Специализированный научный семинар по релятивистской ядерной физике, ОИЯИ, Дубна, 14 мая 2008.
- 9. The 2-nd International Conference Current Problems in Nuclear Physics and Atomic Energy, NPAE, Kyiv, UKRAINE, June 9-15, 2008.

Публикации1. D.A. Artemenkov, ... T.V.Shchedrina... et al., «Invariant analysis of the fragmentation of relativistic

Proceedings of the 8th International workshop «Relativistic nuclear physics from hundreds of MeV to TeV», 203-213, Dubna, May 23-28, (2005) 203-213.
D.A. Artemenkov ... T.V.Shchedrina et al., «Clustering features of ¹¹B, ⁷Be, ⁸B, ⁹Be, and ¹⁴N nuclei in relativistic fragmentation», In: Proceedings of the 9th International workshop «Relativistic nuclear physics from hundreds of MeV to TeV», 48-65, Modra-Harmonia, Slovakia, May 22-27, (2006) 48-65.

nuclei in emulsion», In: Proceedings of the 26th International A.M. Baldin seminar on high energy

N.P. Andreeva, ... T.V.Shchedrina et al., «Light nuclei clustering in fragmentation above 1 A GeV», In:

physics problems, 339-346, Dubna, September 27 – October 2, (2004) 339-346.

nuclei in peripheral fragmentation above 1 A GeV», In: Proceedings of 25th International workshop «Nuclear theory/25», Rila Mountains, Bulgaria, June 26 – July 1, (2006) 139-147.
5. N.P. Andreeva, ... T.V.Shchedrina et al., «Clustering in light nuclei in fragmentation above 1 A GeV», Eur.Phys.J. A 27S1 (2006) 295-300.

D.A. Artemenkov ... T.V.Shchedrina et al., «Experimental studies of clustering features of some light

- 6. D.A. Artemenkov, T.V. Shchedrina, R. Stanoeva and P.I. Zarubin, *«Clustering features of ⁹Be, ¹⁴N, ⁷Be, and 8B nuclei in relativistic fragmentation»*, In Proceedings of the International Symposium on Exotic Nuclei «EXON06», Khanty-Mansiysk, Russia, July 17-22, (2006), AIP conference proceedings vol. 912 (2007) 78-87.
- (2007) 78-87.
 Т.В. Щедрина и др., «Периферические взаимодействия релятивистских ядер ¹⁴N с ядрами фотоэмульсии», ЯФ 70 (2007) 1271-1275.
 - T.V. Shchedrina and P.I. Zarubin, «*Clustering features of* ¹⁴N in relativistic multifragmentation process», In Proceedings of the 2nd International Conference Current Problems in Nuclear Physics and Atomic Energy «NPAE08», Kyiv, Ukraine, June 9-15, (2008).