Исследование релятивистской фрагментации ядер ¹⁴N методом ядерной фотографической эмульсии

Работа выполнена в Лаборатории физики высоких энергий им. В.И. Векслера и А.М. Балдина

Щедрина Татьяна Викторовна

Научный руководитель: кандидат физ.-мат. наук Зарубин П.И.

Дубна 2008

Постановка задачи экспериментального исследования

Альфа - дейтронная $^{14}N \rightarrow \frac{3He+p}{3He+d} ?$ кластеризация ядер ${}^{6}Li, {}^{10}B, {}^{14}N$ $\overset{{}_{10}}{\textcircled{\ }} B \rightarrow \frac{2He+p}{2He+d} \cong 1$ ${}^{6}Li \to \frac{He+p}{He+d} \cong 1$

> ⁶Li → $\Pi \Phi$ 62, №8, c. 1461 - 1471, (1999) ¹⁰B → $\Pi \Phi$ 66, №9, c. 1694 - 1698, (2003)

Постановка задачи экспериментального исследования

H.Heckman, D.E.Greiner, P.J.Lindstrom, and Shwe *Fragmentation of ⁴He*, ¹²C, ¹⁴N and ¹⁶O nuclei in nuclear emulsion at 2.1 GeV/nucleon Phys.Rev. C 17, №5 1735 (1978).

Двухчастичные каналы фрагментации ${}^{14}N \rightarrow C + H, \; {}^{14}N \rightarrow B + He$

Полностью идентифицированные моды диссоциации $^{14}N \rightarrow 3He + H$

Процессы неупругой перезарядки ${}^{14}N \rightarrow 3He, \; {}^{14}N \rightarrow 2He + 2H, \; {}^{14}N \rightarrow 3He + 2H$

Структура диссертации

ВВЕДЕНИЕ

- ГЛАВА І. Анализ периферических взаимодействий ядер ¹⁴N при поиске взаимодействий по первичным следам
- ГЛАВА II. Исследование событий фрагментации ¹⁴N → 3α + X при ускоренном поиске
- ГЛАВА III. Наблюдение полностью идентифицированных и редких каналов диссоциации ядра ¹⁴N

ЗАКЛЮЧЕНИЕ

СПИСОК ПУБЛИКАЦИЙ

ЛИТЕРАТУРА

ПРИЛОЖЕНИЕ

Облучение эмульсии, первичный поиск и отбор событий, определение среднего пробега

 $P_0 = 2.86 \ A \ \Gamma$ эB/c, $E = 2.1 \ A \ \Gamma$ эB

Суммарная длина при просмотре по следу *123.71 м*

 $N_{\Sigma} = 951$ неупругое взаимодействие

 $\lambda = 13.0 \pm 0.4$ см

Облучение эмульсии в пучке ¹⁴N на Нуклотроне ОИЯИ, 2003 г.

Средняя величина свободного пробега λ для неупругих взаимодействий в ядерной фотоэмульсии в зависимости от массы налетающего ядра А.

Распределение по числу б-электронов а) - для следов пучковых частиц, давших изучаемые взаимодействия (53 следа); b) - следов фрагментов ядра ${}^{14}N$ с зарядами $Z_{fr} > 2$ (83 следа). Сплошная линия соответствует аппроксимации суммой функций Гаусса.

Зарядовая топология каналов фрагментации ядра ¹⁴N

Распределение периферических взаимодействий ядер ¹⁴N с импульсом 2.86 А ГэВ/с (N_{in}) по зарядовым модам с $\Sigma_{Zfr} = 7$ (161 событие), в том числе 61 «белая» звезда (N_{ws}), и 100 событий с фрагментами мишени (N_{tf}) и без заряженных мезонов ($n_s = 0$). N_{Z1} , N_{Z2} , – число одно- и двухзарядных частиц соответственно. В процентах указаны доли от событий данного типа.

Зарядовая топология каналов фрагментации ядра ¹⁴N

Z_{fr}	6	5	5	4	3	3	-	-	-
N _{z1}	1	-	2	1	4	2	3	1	5
N_{z^2}	-	1	-	1	-	1	2	3	1
N_{ws}	16	5	5	2	1	-	6	21	5
N_{tf}	24	4	3	5	2	3	21	35	3
N _{in}	40	9	8	7	3	3	27	56	8

Распределение периферических взаимодействий ядер ¹⁴N с импульсом 2.86 А ГэВ/с (N_{in}) по зарядовым модам с $\Sigma_{Zfr} = 7$ (161 событие), в том числе 61 «белая» звезда (N_{ws}), и 100 событий с фрагментами мишени (N_{tf}) и без заряженных мезонов ($n_s = 0$). N_{Z1} , N_{Z2} , – число одно- и двухзарядных частиц соответственно. В процентах указаны доли от событий данного типа.

Зарядовая топология каналов фрагментации ядра ¹⁴N

Z _{fr}	6	5	5	4	3	3	-	-	-
N _{z1}	1	-	2	1	4	2	3	1	5
N_{z^2}	-	1	-	1	-	1	2	3	1
N_{ws}	16	5	5	2	1	-	6	21	5
115	26%	8%	8%	3%	2%	-	10%	35%	8%
N_{tf}	24	4	3	5	2	3	21	35	3
5	24%	4%	3%	5%	2%	3%	21%	35%	3%
N _{in}	40	9	8	7	3	3	27	56	8
	25%	5%	5%	4%	2%	2%	17%	35%	5%

Распределение периферических взаимодействий ядер ¹⁴N с импульсом 2.86 А ГэВ/с (N_{in}) по зарядовым модам с $\Sigma_{Zfr} = 7$ (161 событие), в том числе 61 «белая» звезда (N_{ws}), и 100 событий с фрагментами мишени (N_{tf}) и без заряженных мезонов ($n_s = 0$). N_{Z1} , N_{Z2} , – число одно- и двухзарядных частиц соответственно. В процентах указаны доли от событий данного типа.

Исследование событий фрагментации ${}^{14}N \rightarrow 3\alpha + X$ при ускоренном поиске

ГЛАВА II ...

Роль ⁸*Be* в диссоциации ${}^{14}N \rightarrow 3He + X$

 $25\%^{14}N \rightarrow {}^8Be + He + X$

ГЛАВА II...

Идентификация одно- и двухзарядных фрагментов ${}^{14}N_{ws} \rightarrow 3He + H$ методом многократного кулоновского рассеяния

ГЛАВА II ...

Распределение событий фрагментации ${}^{14}N \rightarrow 3He + X$ по суммарному поперечному импульсу системы из 3α -частиц $P_t(3\alpha)$ для а) – "белых" звезд ${}^{14}N \rightarrow 3He + H$, $\langle P_t(3\alpha) \rangle = 216 \pm 21 M \beta B/c$; b) – полупериферических взаимодействий с образованием фрагментов ядер мишени $\langle P_t(3\alpha) \rangle = 334 \pm 27 M \beta B/c$.

ГЛАВА II ...

Двухчастичные каналы фрагментации

Полностью идентифицированные моды диссоциации ${}^{14}N_{ws} \rightarrow 3He + H$

ГЛАВА III ...

Наблюдение процессов неупругой перезарядки

ГЛАВА III ...

Основные выводы выполненного исследования состоят в следующем:

- 1. Установлено, что множественный канал диссоциации ${}^{14}N \rightarrow 3He + H$ лидирует в распределении по зарядовой топологии. Он дает вклад примерно 50%, как для "белых" звезд, так и для событий с образованием фрагментов мишени и мезонов. Значение среднего свободного пробега для этого канала в фотоэмульсии равно 2.5 м, в то время как для ядра ${}^{12}C$ равно 10.3 м. Такое возрастание сечения объясняется эффективным взаимодействием внешних слабосвязанных нуклонов ядра ${}^{14}N$ с ядрами мишени. Таким образом, ядро ${}^{14}N$ оказывается наиболее эффективным источником образования 3α -частичных систем.
- 2. Получена значительная статистика для канала диссоциации ¹⁴N→ 3He +H, позволившая оценить по угловым измерениям энергетический масштаб образующихся в периферической фрагментации 3α-частичных систем. Установлено, что 80% взаимодействий соответствуют кластерным возбуждениям ядра ¹²C с энергиями от порога диссоциации до 14 МэВ.
- 3. Идентификация методом многократного кулоновского рассеяния релятивистских ядер *H* в канале ¹⁴*N* → 3*He* + *H* указывает на заметное снижение доли дейтронов по отношению к протонам по сравнению с ранее изученными случаями релятивистской фрагментации ⁶Li и ¹⁰B.

4. Впервые изучены спектры по суммарному поперечному импульсу α фрагментов в событиях ${}^{14}N \rightarrow 3He + X$. Среднее значение величины суммарного переданного системе из 3α -частиц поперечного импульса для "белых" звезд существенно меньше, чем для полупериферических взаимодействий, сопровождающихся образованием одного или нескольких фрагментов ядра-мишени.

5. Впервые для ядра ¹⁴N были идентифицированы процессы релятивистской диссоциации ¹¹C + ³H, ⁶He + ⁴He + ³He + p, ⁴He + 2 ³He + d, для которых характерны глубокая перегруппировка α -частичной структуры этого ядра и преодоление высоких энергетических порогов. Кроме того, обнаружены процессы неупругой перезарядки ¹⁴N \rightarrow 3He + 2H, ¹⁴N \rightarrow 3He, ¹⁴N \rightarrow 2He + 2H.

6. Для канала фрагментации ${}^{14}N \rightarrow 3He + H$ выполнена оценка образования ядра ${}^{8}Be$ и проведено сравнение с фрагментацией ранее изученных ядер ${}^{12}C \rightarrow 3He$, ${}^{16}O \rightarrow 4He$. Из анализа угловых корреляций следует, что ядра ${}^{12}C$, ${}^{14}N$, ${}^{16}O$ с вероятностью не менее 20 % фрагментируют через образование промежуточного состояния ${}^{8}Be \rightarrow 2\alpha$.

Апробация работы

- 1. 8-th International Workshop «Relativistic nuclear physics from hundreds of MeV to TeV», Dubna, Russia, May 23-28, 2005.
- 2. Рабочее совещание, Сотрудничество БЕККЕРЕЛЬ, 4–5 октября, 2005.
- 3. Юбилейная научная сессия-конференция секции ЯФ ОФН РАН «Физика фундаментальных взаимодействий», ИТЭФ, Москва, 5-9 декабря 2005.
- 4. Совместный семинар ЛВЭ и ЛФЧ «Периферические взаимодействия релятивистских ядер ¹⁴N с ядрами фотоэмульсии», Дубна, 20 января, 2006.
- 5. International A.M. Baldin Seminar of High Energy Physics Problems «Relativistic Nuclear Physics & Quantum Chromodynamics», Dubna, Russia, September 25-30, 2006.
- 6. Fourth European Summer School on Experimental Nuclear Astrophysics, Santa Tecla, Sicily, Italy, 26 September 3 October, 2007.
- 7. Сессия-конференция Секции ядерной физики ОФН РАН «Физика фундаментальных взаимодействий», ИТЭФ, Москва, 26-30 ноября, 2007.
- 8. Специализированный научный семинар по релятивистской ядерной физике, ОИЯИ, Дубна, 14 мая 2008.
- 9. The 2-nd International Conference Current Problems in Nuclear Physics and Atomic Energy, NPAE, Kyiv, UKRAINE, June 9-15, 2008.

Публикации

- D.A. Artemenkov, ... T.V.Shchedrina... et al., *«Invariant analysis of the fragmentation of relativistic nuclei in emulsion»*, In: Proceedings of the 26th International A.M. Baldin seminar on high energy physics problems, 339-346, Dubna, September 27 October 2, (2004) 339-346.
- N.P. Andreeva, ... T.V.Shchedrina et al., *«Light nuclei clustering in fragmentation above 1 A GeV»*, In: Proceedings of the 8th International workshop «Relativistic nuclear physics from hundreds of MeV to TeV», 203-213, Dubna, May 23-28, (2005) 203-213.
- 3. D.A. Artemenkov ... T.V.Shchedrina et al., *«Clustering features of ¹¹B, ⁷Be, ⁸B, ⁹Be, and ¹⁴N nuclei in relativistic fragmentation»*, In: Proceedings of the 9th International workshop *«*Relativistic nuclear physics from hundreds of MeV to TeV», 48-65, Modra-Harmonia, Slovakia, May 22-27, (2006) 48-65.
- 4. D.A. Artemenkov ... T.V.Shchedrina et al., *«Experimental studies of clustering features of some light nuclei in peripheral fragmentation above 1 A GeV»*, In: Proceedings of 25th International workshop «Nuclear theory/25», Rila Mountains, Bulgaria, June 26 July 1, (2006) 139-147.
- 5. N.P. Andreeva, ... T.V.Shchedrina et al., *«Clustering in light nuclei in fragmentation above 1 A GeV»*, Eur.Phys.J. A 27S1 (2006) 295-300.
- D.A. Artemenkov, T.V. Shchedrina, R. Stanoeva and P.I. Zarubin, *«Clustering features of ⁹Be, ¹⁴N, ⁷Be, and 8B nuclei in relativistic fragmentation»*, In Proceedings of the International Symposium on Exotic Nuclei «EXON06», Khanty-Mansiysk, Russia, July 17-22, (2006), AIP conference proceedings vol. 912 (2007) 78-87.
- 7. Т.В. Щедрина и др., «Периферические взаимодействия релятивистских ядер ¹⁴N с ядрами фотоэмульсии», ЯФ 70 (2007) 1271-1275.
- T.V. Shchedrina and P.I. Zarubin, *«Clustering features of ¹⁴N in relativistic multifragmentation process»*, In Proceedings of the 2nd International Conference Current Problems in Nuclear Physics and Atomic Energy *«NPAE08»*, Kyiv, Ukraine, June 9-15, (2008).