Анализ облучения на ядрах ⁷Ве₄ при энергии 1,23 ГэВ/N в ядерной фотоэмульсии.

В.Г. Ларионова, Н.Г. Пересадько, С.П. Харламов

Просмотр пластинок.

Облучение – ⁷Ве, Е_{кин}. = 1,23 ГэВ, р = 1,9546 ГэВ/с, pbc = 1,75 ГэВ/с Пучок – смешанный, примесь – ⁷Li Облучение – параллельно плоскости пластинки. Стопок – 3 Кол- во пластинок в стопках – 21 Просмотр: 1 стопка – ОФВЭ ФИАН 2 стопка – ЛВЭ ОИЯИ + ОФВЭ ФИАН

3 стопка - ЛВЭ ОИЯИ + ОФВЭ ФИАН

Результаты просмотра по 1 стопке (ОФВЭ): Всего найдено звезд: 617 Общая длина протянутых следов: 8737 см

Определение λ_{Ве}.

Для определения λ_{Be} . просмотрено L= 41,223 м, N зв. = 294 Измерение Z _{перв}. следов подряд (ст. 1, пл. 18, 6)

№ пласт.	Измерено треков	Z = 4	Z = 3
18	87	70	17
7	54	47	7
Всего:	141	117	24

Таблица 1. Измерение зарядов частиц первичного пучка.

Примесь следов с Z = 3 в первичном пучке – 17 %

 $\begin{array}{l} \lambda_{Li\text{-}7} \; = \; (14.3 \pm 0.4) \; \text{cm} \\ \lambda_{Be\text{-}7} \; = \; (14.0 \pm 0.8) \; \text{cm} \end{array}$

Измерение событий, статистика.

При просмотре фиксировались все события неупругого взаимодействия. Для измерений отбирались события по критерию:

$$S Z_{fi} = 4$$

- 1. $Be^{7} \otimes He + He$ 2. $Be^{7} \otimes He + 2 H$ 3. $Be^{7} \otimes Li^{6} + p$
- 4. $Be^7 \otimes 4H$
- 1) Nh + Ns = 0,
- 2) Nh £ 5 (короткие черные следы)
- **3**) Nh+Ns = любое

Для всех событий 3. класса измеряли заряды первичного следа и серого фрагмента для отсеивания событий Li [®] He + H. (всего - 32 события, из них (Li [®] He + H) - 20 соб.

Формат измерений.

В событиях указанного типа измерялись углы всех частиц и импульсы фрагментов для восстановления масс фрагментов. Конус фрагментации £ 15[°]. При импульсе 1.7 Гэв/с угол испускания 15[°] соответствует поперечному импульсу нуклона 450 Мэв/с. Далее среди найденных отбирались события, в которых полный заряд вторичных частиц в этом растворе углов равняется четырем.

Измерены угловые характеристики , всего – 256 событий Из них отобрано для измерения pbc 208 соб. Измерено pbc – 592 следа

Рис. 1 Распределение по углу teta однозарядных фрагментов (268 част.)

Рис. 2 Распределение по углам teta двухарядных фрагментов Be-7 - Em

На рис. 1 и 2 приведены распределения по углам Teta однозарядных и двухзарядных фрагментов.

Для иллюстрации качества измерений углов (по глубине) на рис. 3 приводится распределение по углам Psi Не-фрагментов.

Рис. 3 Распределение по углам Psi Не-фрагментов Be-7 - EM

Однородность распределения по углам Psi и отсутствие выделенных направлений указывает на то, что измерения углов проведены с хорошей точностью. Определение масс фрагментов

Для оценки масс распадных частиц проводится измерение многократного кулоновского рассеяния частиц в эмульсии.

На рис. 4 приведено распределение двухзарядных частиц по величине pb, где p – импульс, а b - скорость частицы. В этом распределении трехнуклонные фрагменты должны распределяться вокруг значения pb = 4,6 Гэв/с, четырехнуклонные – вокруг значения 6,3 Гэв/с, граница между ними должна располагаться примерно при 5,6 Гэв/с.

На рис. 5 в виде гистограммы приведено распределение однозарядных частиц по величине pb. В этом распределении однонуклонные фрагменты должны распределяться вокруг значения pb = 1,5 Гэв/с, двухнуклонные – вокруг значения 3,2 Гэв/с, за границу между ними принимается значение при 2,2 Гэв/с.

На рис. 6 двухчастичные события представлены точками, координатами которых служат измеренные значения pb - гелиевых фрагментов. Максимальное значение pb в событии служит координатой по оси P₁, а минимальное значение pb служит координатой по вертикальной оси P₂. Всего указано 35 событий, среди них – 11 событий можно отнести к каналу когерентной диссоциации (³He + ³He + n) а 24 события – к каналу без испускания нейтрона (⁴He + ³He).

В таблице 2 приведена общая статистика измеренных событий.

Фрагменты (fb+Fg+fs)	Широкий конус	Число событий
	0+0+0	41
0 2 0	1+0+0	10
0+2+0	n _b +0+0	8
	$n_b+n_g+n_s$	33
Всего:		92
	0+0+0	42
0 1 2	1+0+0	17
0+1+2	n _b +0+0	16
	$n_b+n_g+n_s$	49 (измеряются)
Всего:		124
0.0.4	0+0+0	2
0+0+4	1+0+0	1
Всего:		3
I; U	0+0+0	9
	n _b +0+0	3
Всего:		12
Всего измерено:		182+49=231

Таблица 2. Общая статистика измеренных событий с Q = 4.

Каналы		0 + 2 + 0		0 +	1 + 2	0 + 0	0 + 4	0 + 2	1 + 1	Сумма:
фрагментаци и	0+0+0	1+0+0	b+0+0	0+0+0	b+0+0	0+0+0	1+0+0	0+0+0	b+0+0	
4 He + 3 He	30	13	14							57
3 He + 3 He	11	5	19							35
⁴ He + p + p				13	9					22
⁴ He + d + p				10	5					15
3 He + p + p				9	9					18
3 He + d + p				8	10					18
3 He + d +d, 3 He + t +p				2						2
p + p + p + d						2				2
$\mathbf{p} + \mathbf{p} + \mathbf{d} + \mathbf{d}$							1			1
⁶ Li + p								9	3	12
										182

В таблице 3 приведены зарегистрированные	е каналы распада и	число событий в
них.		

Таблица 3. Каналы фрагментации ядер ⁷Ве₄

Следует отметить, что впервые среди двухзарядных фрагментов наблюдается преобладание доли ³He над ⁴He, которая составляет 64 % для данной выборки событий.

Итак, можно констатировать, что в распадах ядра ⁷Ве наблюдается проявление второго заряженного трехнуклонного кластера ³Не.

На рис. 7 представлено распределение событий по E_t^* , где E_t^* - это оценка энергии возбуждения ядра ⁷Ве в канале диссоциации на ⁴Не + ³Не.

Et* это сумма кинетических поперечных энергий Не-частиц в их собственной системе + дефект масс ⁷Be и (⁴He+³He).

Для сравнения на графике стрелками указаны известные уровни возбуждения ядра ⁷Ве. Экспериментальные значения находятся в области этих уровней. Четкой структуры мы не видим. Увеличение статистики поможет определить, есть ли корреляция между уровнями возбуждения ядра и такими оценками энергии возбуждения ядра ⁷Ве.

На рис.8 приведено интегральное распределение событий по квадрату переданого импульса фрагментирующему ядру p₁².

Р_t есть векторная сумма иммпульсов ³Не и ⁴Не.

Это распределение как правило рассматривается во всех работах, исследующих механизмы фрагментации и диссоциации ядер.

Наиболее чисто выполненной работой можно назвать работу "Фрагментация ядра углерода на три α-частицы в пропановой пузырьковой камере при импульсе 4.2 Гэв/с на нуклон", В.В. Белага, Е.Н. Кладницкая, и др., получившие экспериментальные данные по диссоциации релятивистских ядер углерода на

экспериментальные данные по диссоциации релятивистских яд углеродной мишени.

Рассматриваемое распределение событий по p_t^2 в случае дифракционной диссоциации должно описываться экспонентой по p_t^2 . В приведенной выше работе экспериментальное распределение хорошо описывается одной экспонентой со значением коэффициента B = 9.

Мы не имеем аналогичных данных этого эксперимента для диссоциации углерода на протонной мишени.

Эти данные авторы сравнивали с эмульсионными данными. ¹⁶О — и альфа. Это распределение описывается двумя экспонентами, с коэффициентами 19 и 4.2. В этой работе авторы интерпретировали эти компоненты как дифракцию на ядрах, как целом, и на нуклоне (свободном и квазисвободном).

Работа с эмульсией + свинец (Белаго, Русакова, Чернов). К сожалению, в этой работе не анализируется подобное распределение.

Но указывается, что в эмульсиях, наполненных свинцом, среднее значение переданного импульса снижается с 380 до 290 Мэв, что объясняется вкладом кулоновского взаимодействия в процесс диссоциации.

На аналогичном графике для диссоциации ⁷Ве экспериментальные данные апроксимируются двумя компонентами со значениями порядка 50 и 5-7. Экспонента с коэффициентом 5 достаточно близко коррелирует со значением, полученным Кладницкой для диссоциации углерода на углеродной мишени, что предполагает, что эта компонента описывает дифракционный процесс на легких ядрах.

Что касается компоненты с большим значением коэффициента, то ясно, что он обязан вкладу тяжелых ядер.

Значение 20 - 50 связаны с радиусами взаимодействующих ядер.