Multiparticle He Fragmentation of ²²Ne, ²⁴Mg and ²⁸Si in Emulsion at 4.1- 4.5 A GeV/c.

G.Orlova

Lebedev Physical Institute, Moscow

BECQUEREL Collaboration

I. Experimental details.

NIKFI BR-2 stacks of nuclear emulsions, 600μm thick, have been exposed horizontally to the α conjugate nuclei ²²Ne, ²⁴Mg and ²⁸Si at the DUBNA synchrophasotron.

Only the collisions with three and more He fragments in the final state – N_{He} ³ have been used for the analysis.

***** Only the collisions with the sum charge in the narrow forward cone, been approximately equal to that of projectile one $-\Sigma Z_{fr} = Z_0 \pm 1$, have been analyzed.

Limitation $\Sigma Z_{fr} = Z_0 \pm 1$ means that extra peripheral collisions have been selected for analyses only.

Peripheral collisions usually have very limited number of target fragments and produced particles.

An example of ²⁸Si interaction with 6 He fragments.

The sum charge in the narrow forward cone (Θ° <2.55°)

is equal to $\Sigma Z fr = 2x6+1 = 13$

	N	Ζ	Α	θ°	ψ٥	φ°	α°	P,GeV/c
	1. 2. 3. 4. 5. 6. 7. 8.	2. 2. 2. 2. 2. 2. 1.	4. 4. 3. 4. 3.	0.13 0.48 0.52 0.60 0.74 1.77 0.30 6.48	224.80 16.80 35.66 80.32 129.49 75.86 119.27 174.58	-0.09 0.46 0.42 0.10 -0.47 0.43 -0.15 -6.45	-0.09 0.14 0.31 0.60 0.57 1.72 0.26 0.61	$ \begin{array}{c} 19.4\pm5.0\\ 22.1\pm7.0\\ 13.1\pm3.5\\ 17.0\pm2.0\\ 19.1\pm3.1\\ 12.1\pm2.9\\ \end{array} $
T	9.	1.		20.85	236.59	-11.85	-17.28	

So it looks like in photoemulsion.

300 mkm from collision center.

10

II. The statistics of collisions used for analyses.

It isn't minimum bias data set.

A ₀	P ₀ , GeV/c	(N _{He} =3)	(N _{He} =4)	(N _{He} =5)	(N _{He} =6)
²² Ne	4.1	238	79	10	
²⁴ Mg	4.5	28	45	8	1
²⁸ Si	4.5	107	40	21	13

The multiplicity distributions of He fragments

V. Distributions of the excitation energy The reconstructed excitation energy spectrum for decays ⁸Be \rightarrow 2He and ¹²C \rightarrow 3He with respects to the ground state of the nuclei ⁸Be and ¹²C have been analyzed. The comparison with the exited levels of the nuclei ⁸Be and ¹²C have been done.

Excitation energy spectrum for decay ⁸Be \rightarrow 2He. Sum of cannels with ³3 α in final state.

Excitation energy spectrum for decay ⁸Be \rightarrow 2He. Cannels with 5 α in final state.

VI. Conclusions.

Projectile He fragments from peripheral ²²Ne, ²⁴Mg and ²⁸Si

collisions with N_{He} ³ 3 in final state have the next properties:

- Integral multiplicity distribution of He fragments may be fitted by a line with a break at N_{He} = 2.
- In the region under investigation average number of He fragments increases with increasing of projectile charge Z_0 as $N_{He}=0.28+0.07$ •Z0, average number of projectile fragments with Z_{fr} ³ 3 decreases slowly as $N_{Z^{3}3} = 1.11-0.02$ • Z_0 ;
- Average emission angle of He fragments decrease with increasing of He fragment number in collision.
- Integral angular spectrum of He fragments may be fitted by a line.
- Integral P_{\perp}^2 spectrum of He fragments may be fitted by a line with a break at $P_{\perp}^2 \approx 0.2$ (GeV/c)².

VI. Conclusions. *Excitation energy.*

- For ⁸Be \rightarrow 2He decays in the excitation energy region Ex<15 MeV there are more then 80% of events.
- For ¹²C→3He decays maximum of excitation energy spectra is in the region Ex≈10-15 MeV.
- For ¹²C→3He decays the excitation energy spectrum shifts to the bigger meanings with increasing of projectile mass; for example, in the region Ex³15MeV there are 53, 60 and 66% of events for ²²Ne, ²⁴Mg and ²⁸Si collisions, correspondently.