Multiparticle He Fragmentation of ${ }^{22} \mathrm{Ne},{ }^{24} \mathrm{Mg}$ and ${ }^{28} \mathrm{Si}$ in Emulsion at 4.1-4.5 A GeV/c.

G.Orlova

Lebedev Physical Institute, Moscow

BECQUEREL Collaboration

I. Experimental details.

粒NIKFI BR-2 stacks of nuclear emulsions, $600 \mu \mathrm{~m}$ thick, have been exposed horizontally to the a conjugate nuclei ${ }^{22} \mathrm{Ne},{ }^{24} \mathrm{Mg}$ and ${ }^{28} \mathrm{Si}$ at the DUBNA synchrophasotron. Only the collisions with three and more He fragments in the final state $-\mathbb{N}_{\mathrm{He}} \geq 3$ have been used for the analysis.
Only the collisions with the sum charge in the narrow forward cone, been approximately equal to that of projectile one $-\Sigma Z_{f r}=Z_{0} \pm 1$, have been analyzed. Limitation $\Sigma Z_{f r}=Z_{0} \pm 1$ means that extra peripheral collisions have been selected for analyses only. Peripheral collisions usually have very limited number of target fragments and produced particles.

An example of ${ }^{28} \mathrm{Si}$ interaction with 6 He fragments.
The sum charge in the narrow forward cone ($\Theta^{\circ}<2.55^{\circ}$) is equal to $\Sigma Z f r=2 \times 6+1=13$

\mathbf{N}	\mathbf{Z}	\mathbf{A}	$\boldsymbol{\theta}^{\circ}$	Ψ°	φ^{0}	α°	P,GeV/c
1.	2.	4.	0.13	224.80	-0.09	-0.09	19.4 ± 5.0
2.	2.	4.	0.48	16.80	0.46	0.14	22.1 ± 7.0
3.	2.	3.	0.52	35.66	0.42	0.31	13.1 ± 3.5
4.	2.	4.	0.60	80.32	0.10	0.60	17.0 ± 2.0
5.	2.	4.	0.74	129.49	-0.47	0.57	19.1 ± 3.1
6.	2.	3.	1.77	75.86	0.43	1.72	12.1 ± 2.9
7.	1.		0.30	119.27	-0.15	0.26	
8.	1.		6.48	174.58	-6.45	0.61	
9.	1.		20.85	236.59	-11.85	-17.28	

So it looks like in photoemulsion.

300 mkm from collision center.

II. The statistics of collisions used for analyses.

	It isn't minimum bias data set.				
A_{0}	$\mathrm{P}_{0}, \mathrm{GeV} / \mathrm{c}$	$\left(\mathrm{N}_{\mathrm{He}}=3\right)$	$\left(\mathrm{N}_{\mathrm{He}}=4\right)$	$\left(\mathrm{N}_{\mathrm{He}}=5\right)$	$\left(\mathrm{N}_{\mathrm{He}}=6\right)$
${ }^{22} \mathrm{Ne}$	4.1	238	79	10	
${ }^{24} \mathrm{Mg}$	4.5	28	45	8	1
${ }^{28} \mathrm{Si}$	4.5	107	40	21	13

III. The multiplicities of He fragments

The multiplicity distributions of He fragments

Integral multiplicity distribution of He fragments has a break at $\mathrm{N}_{\mathrm{He}}=2$.

Dependence of average number of projectile fragments

 with $\mathrm{Zfr}=2$ and $\mathrm{Zfr} \geq 3$ on the projectile charge Z_{0}.

IV. The angles of He fragments

Angles of He fragments decreases with

 increasing of He fragment multiplicity in collision.

Integral angular spectrum of He fragments may be fitted by a line.

V. Distributions of the excitation energy

The reconstructed excitation energy spectrum for decays ${ }^{8} \mathrm{Be} \rightarrow 2 \mathrm{He}$ and ${ }^{12} \mathrm{C} \rightarrow 3 \mathrm{He}$ with respects to the ground state of the nuclei ${ }^{8} \mathrm{Be}$ and ${ }^{12} \mathrm{C}$ have been analyzed.
The comparison with the exited levels of the nuclei ${ }^{8} \mathrm{Be}$ and ${ }^{12} \mathrm{C}$ have been done.

Excitation energy spectrum for decay ${ }^{8} \mathrm{Be} \rightarrow \mathbf{2 H e}$. Sum of cannels with $\geq 3 \alpha$ in final state.

Excitation energy spectrum for decay ${ }^{8} \mathrm{Be} \rightarrow \mathbf{2 H e}$. Cannels with 5α in final state.

Excitation energy spectrum for decay ${ }^{8} \mathrm{Be} \rightarrow \mathbf{2 H e}$. Interaction of ${ }^{22} \mathrm{Ne}$ at 4.1 A GeV/c.

Excitation energy spectrum for decay ${ }^{12} \mathrm{C} \rightarrow 3 \mathrm{He}$. Sum of cannels with $\geq 3 \alpha$ in final state.

Excitation energy spectrum for decay ${ }^{12} \mathrm{C} \rightarrow 3 \mathrm{He}$. Cannels with 4α in final state.

Excitation energy spectrum for decay ${ }^{12} \mathrm{C} \rightarrow 3 \mathrm{He}$. Interaction of ${ }^{28} \mathrm{Si}$ at $4.5 \mathrm{~A} \mathrm{GeV} / \mathrm{c}$.

VI. Conclusions.

Projectile He fragments from peripheral ${ }^{22} \mathrm{Ne},{ }^{24} \mathrm{Mg}$ and ${ }^{28} \mathrm{Si}$
collisions with $N_{H e} \geq 3$ in final state have the next properties:
Integral multiplicity distribution of He fragments may be fitted by a line with a break at $\mathrm{N}_{\mathrm{He}}=2$.
In the region under investigation average number of He fragments increases with increasing of projectile charge Z_{0} as $\mathrm{N}_{\mathrm{He}}=0.28+0.07 \cdot \mathrm{ZO}$, average number of projectile fragments with $\mathrm{Z}_{\mathrm{fr}} \geq 3$ decreases slowly as $\mathrm{N}_{\mathrm{Z} \geq 3}=1.11-0.02 \cdot \mathrm{Z}_{0}$;
Average emission angle of He fragments decrease with increasing of He fragment number in collision. Integral angular spectrum of He fragments may be fitted by a line.
Integral $\mathrm{P}_{\perp}{ }^{2}$ spectrum of He fragments may be fitted by a line with a break at $\mathrm{P}_{\perp}{ }^{2} \approx 0.2(\mathrm{GeV} / \mathrm{c})^{2}$.

VI. Conclusions.
 Excitation energy.

For ${ }^{8} \mathrm{Be} \rightarrow \mathbf{2 H e}$ decays in the excitation energy region Ex<15 MeV there are more then 80% of events.

For ${ }^{12} \mathrm{C} \rightarrow 3 \mathrm{He}$ decays maximum of excitation energy spectra is in the region $E x \approx 10-15 \mathrm{MeV}$.

For ${ }^{12} \mathrm{C} \rightarrow 3 \mathrm{He}$ decays the excitation energy spectrum shifts to the bigger meanings with increasing of projectile mass; for example, in the region Ex $\geq 15 \mathrm{MeV}$ there are 53,60 and 66% of events for ${ }^{22} \mathrm{Ne},{ }^{24} \mathrm{Mg}$ and ${ }^{28} \mathrm{Si}$ collisions, correspondently.

