ПОЛНОЕ РАЗРУШЕНИЕ ЛЕГКИХ И ТЯЖЕЛЫХ ЯДЕР ПРИ ЭНЕРГИЯХ (3,7 – 158) А ГЭВ

Введение

Процесс полного разрушения ядер (распад на одно- и двухзарядные фрагменты) при высоких энергиях в адрон-ядерных и ядро-ядерных взаимодействиях давно привлекает к себе внимание [1-9]. Интерес к этому экстремальному процессу связан с тем, что он позволяет получить ценную информацию для изучения механизма взаимодействия, связанного со структурой сталкивающихся ядер. Полученные при этом результаты являются критичными к различным модельным представлениям.

Большинство работ проводилось с помощью метода ядерных фотоэмульсий, причем изучался распад тяжелых ядер мишеней (*Ag, Br*). При этом заряд и энергия фрагментов, на которые распадается ядро, не определялись. Ситуация существенно изменилась, когда появилась возможность изучать распад ядра-снаряда, так как при этом достаточно надежно определяется заряд фрагментов, а энергию, приходящуюся на один нуклон, для фрагмента и налетающего ядра можно считать одинаковой.

Для изучения событий полного разрушения (ПР) мы воспользовались полученными нами в сотрудничестве с участниками из других стран экспериментальными данными [7, 10-12] при облучении стопок ядерной фотоэмульсии легкими ядрами на ускорителях ОИЯИ (Дубна), БНЛ (США) и ЦЕРН (Женева). Рассмотрим ядро-ядерное взаимодействие как процесс, состоящий из двух стадий: быстрой, когда взаимодействуют нуклоны ядра-снаряда с нуклонами ядра-мишени, что приводит к образованию новых частиц в перекрытой части объемов сталкивающихся ядер, и медленной, когда оставшаяся часть ядра распадается на фрагменты.

Заряд фрагментов определялся по ионизации (подсчет числа разрывов между блобами зерен в эмульсии) или по числу δ-электронов на пути многозарядных фрагментов. Знание зарядов каждого

фрагмента позволяет определить суммарный заряд образовавшихся фрагментов $Q = \sum_{i=1}^{n_f} z_f$, т.е. заряд остаточного ядра. Тогда число провзаимодействовавших нуклонов можно определить по формуле $n = A - \frac{A}{n_p}Q$, где A и n_p – соответственно атомный вес и число протонов ядра.

Полное разрушение легких ядер при энергии 3,7 ГэВ на нуклон

Рассмотрим теперь последовательно характеристики полного разрушения изучаемых ядер. Вероятность W (доля в %) полного разрушения остаточного ядра с определенным зарядом Q представлена в таблице 1. Из данных этой таблицы видно, что для данного ядра-снаряда с увеличением значения заряда остаточного ядра Q доля событий ПР, например, для ${}_{6}C^{12}$ при изменении Q=3+6 падает на 41%, тогда как для ${}_{14}Si^{28}$ только на 14%, т.е. в сильной степени зависит от атомного веса исходного ядра. Эта *А*-зависимость иллюстрируется на рисунке 1.

Q	Α	6C ¹²	80 ¹⁶	$_{10}Ne^{22}$	$_{14}Si^{28}$
3	W	94 ± 8	97 ± 9	97 ± 6	97 ± 12
3	$< n_f >$	$2,4 \pm 0,3$	$2,5 \pm 0,2$	$2,5 \pm 0,2$	$2,7 \pm 0,4$
4	W	84 ± 8	92 ± 9	92 ± 6	98 ± 10
4	$< n_f >$	$2,8 \pm 0,3$	$3,2 \pm 0,3$	$3,0 \pm 0,2$	$3,4 \pm 0,1$
5	W	62 ± 6	81 ± 8	82 ± 6	87 ± 11
5	$< n_f >$	$3,4 \pm 0,4$	$3,7 \pm 0,3$	$3,4 \pm 0,3$	$4,0 \pm 0,5$
6	W	53 ± 6	59 ± 6	68 ± 5	83 ± 9
0	$< n_f >$	$3,8 \pm 0,5$	$4,2 \pm 0,4$	$4,3 \pm 0,3$	$4,8 \pm 0,6$
7	W		40 ± 4	48 ± 3	72 ± 8
	$< n_f >$		$4,7 \pm 0,4$	$4,9 \pm 0,4$	$5,3 \pm 0,5$
0	W		23 ± 4	26 ± 3	66 ± 10
0	$< n_f >$		$5,0 \pm 0,8$	$5,2 \pm 0,5$	$5,9 \pm 0,8$
0	W			16 ± 2	47 ± 8
9	$< n_f >$			$6,0 \pm 0,7$	6,6±1,0
10	W			6 ± 1	37 ± 6
10	$< n_f >$			$6,4 \pm 1,0$	$7,2 \pm 1,0$

Таблица 1 – Вероятность полного разрушения (W,%) и среднее число фрагментов (<n_f>) для различного заряда Q остаточного ядра

Из рисунка видно, что чем больше масса исходного ядра, тем слабее падает доля событий ПР. Эта закономерность, очевидно, связана с тем, что с ростом А увеличивается число провзаимодействовавших нуклонов, т.е. увеличивается передача энергии остаточному ядру с фиксированным зарядом Q.

В таблице 1 представлено также среднее число образовавшихся одно- и двухзарядных фрагментов $\langle n_f \rangle$ в результате распада остаточного ядра для различных первичных ядер. Из этих данных видно, что для данного ядра с увеличением заряда (массы) остаточного ядра $\langle n_f \rangle$ возрастает, что естественно, причем практически линейно (в соответствии с рисунком 2). Для фиксированного значения Q эта величина ($\langle n_f \rangle$) увеличивается медленно (увеличивается наклон прямой на рисунке 2) с возрастанием атомного веса *A* рассматриваемых ядер, хотя при этом существенно увеличивается число провзаимодействовавших нуклонов v. Так, например (см. таблицу 1), при Q=5 для ядра C^{12} v = 2, тогда как для Si^{28} v = 18. Из этого результата следует, что нет прямой пропорциональности в передаче энергии остаточному ядру от значения величины v.

Рисунок 1 – Зависимость вероятности полного разрушения остаточного ядра легких ядер от величины его заряда Q (массы) (х – $_6C^{12}$, \Box – $_8O^{16}$, \bigcirc – $_{10}Ne^{22}$, Δ – $_{14}Si^{28}$).

Рисунок 2 – Зависимость среднего числа фрагментов остаточного ядра $\langle n_f \rangle$ от Q для различных ядер (х – $_6C^{12}$, \Box – $_8O^{16}$, \bigcirc – $_{10}Ne^{22}$, Δ – $_{14}Si^{28}$).

Рассмотрим характеристику остаточного ядра, отражающую степень его разрушения при распаде на фрагменты. Такой величиной может служить отношение среднего числа фрагментов с зарядом два ($z_f = 2$) к числу фрагментов с зарядом один ($z_f = 1$) – $\langle n_{z=2} \rangle / \langle n_{z=1} \rangle$. Чем больше «дробление» (чем больше число фрагментов с зарядом z = 1), тем меньше это отношение.

Рассмотрим, как зависит $\langle n_{z=2} \rangle / \langle n_{z=1} \rangle$ для данного ядра от Q. Из рисунка 3 видно, что с увеличением Q значение $\langle n_{z=2} \rangle / \langle n_{z=1} \rangle$ существенно возрастает. Это указывает на то, что с увеличением Q значение v уменьшается, т.е. уменьшается передаваемая энергия, идущая на развал остаточного ядра. Для фиксированного значения Q отношение $\langle n_{z=2} \rangle / \langle n_{z=1} \rangle$ существенно уменьшается с увеличением массы исходного ядра, т.е. дробление остаточного ядра возрастает.

Рассмотрим более подробно вероятность реализации различных каналов распада на фрагменты остаточного ядра в зависимости от его заряда Q и атомного веса первичного ядра A. Из таблицы 2, где представлены полученные данные для событий с Q=3÷6, можно сделать следующие выводы:

- вероятность каналов распада, в которых наблюдаются только однозарядные фрагменты, для данного ядра с увеличением заряда Q падает, что, очевидно, связано с уменьшением числа v, а следовательно, как уже отмечалось выше, с уменьшением передачи энергии. При фиксированном значении Q с увеличением A вероятность реализации этих каналов, наоборот, возрастает по той же причине (увеличение v) за исключением для Ne при Q = 4;
- вероятность распада только на двухзарядные фрагменты уменьшается как с увеличением Q
 при фиксированном A, так и при фиксированном значении Q с возрастанием A.

Рисунок 3 – Зависимость отношения $\langle n_{z=2} \rangle / \langle n_{z=1} \rangle$ от заряда остаточного ядра Q для различных ядер (х – $_6C^{12}$, \Box – $_8O^{16}$, \bigcirc – $_{10}Ne^{22}$, Δ – $_{14}Si^{28}$).

Каналы распада	Q	₆ C ¹²	₈ O ¹⁶	$_{10}Ne^{22}$	$_{14}Si^{28}$	
111	3	44 ± 6	50 ± 6	46 ± 4	73 ± 10	
12		56 ± 6	50 ± 6	54 ± 5	27 ± 6	
1111		15 ± 3	32 ± 4	20 ± 3	51 ± 7	
112	4	52 ± 6	53 ± 6	58 ± 5	42 ± 6	
22		33 ± 4	15 ± 4	22 ± 3	7 ± 3	
11111		8 ± 2	11 ± 3	16 ± 2	36 ± 6	
1112	5	30 ± 3	46 ± 5	46 ± 4	46 ± 7	
122		62 ± 5	43 ± 5	38 ± 3	18 ± 5	
111111		$2 \pm 0,5$	3 ± 1	7 ± 1	19 ± 4	
11112	6	6 ± 1	24 ± 3	29 ± 3	48 ± 6	
1122		60 ± 6	54 ± 4	45 ± 3	30 ± 5	
222		32 ± 3	19 ± 3	19 ± 2	3 ± 1	

Таблица 2 – Вероятность полного разрушения остаточного ядра (в %) по различным типам каналов в зависимости от Q и *A* (атомный вес исходного ядра)

В случаях, когда в каналах распада наблюдается сочетание одно- и двухзарядных фрагментов, нет указанных выше более или менее простых закономерностей (распады только на однозарядные или только на двухзарядные фрагменты). По-видимому, зависимости вероятности каналов распада фрагментов от Q и *A* можно будет получить, исходя из модельных представлений, учитывающих кластерную структуру [10, 11] легких ядер, вероятности образования и распада двухзарядных частиц в остаточных ядрах.

Характеристики полного разрушения тяжелых ядер

События полного разрушения нами были выделены во взаимодействиях, близких по массе и заряду, но существенно разных по энергии ядер – $_{79}Au^{197}$ (10,6 А·ГэВ) и $_{82}Pb^{208}$ (158 А·ГэВ) с различными ядрами атомов, входящих в состав фотоэмульсии: водород (N_h = 0; 1), C,N,O (N_h = 2 \div 7) и Ag,Br (N_h \ge 8).

Общее число отобранных неупругих взаимодействий, когда первичным ядром является *Au*, составило 1104 событий, а для *Pb* – 406. События ПР происходят при малых параметрах удара, когда количество нуклонов ядра на пути снаряда значительно. В этих событиях, например, для *Pb*, в «горячей зоне» – перекрытая часть сталкивающихся ядер, может образоваться более 1000 частиц. В неперекрытую же часть ядра (остаточное ядро) передается достаточно большая энергия, приводящая к взрывному образованию одно- и двухзарядных фрагментов [12]. Полученные данные центральных взаимодействий для различных мишеней представлены в таблице 3.

Ядро-снаряд	$Au (\Pi P) - N_{B3} = 89$				$Pb (\Pi P) - N_{B3} = 30$			
N_h	0,1	2÷7	≥ 8	≥ 0	0,1	2÷7	≥8	≥ 0
Число событий (%)	7	18	75		10	20	70	
$< n_f(z=1) >$	15,3	9,8	9,2	$9,7\pm0,4$	16,7	10,2	9,6	$10,4 \pm 1,1$
<n<sub>f(z=2)></n<sub>	7,7	2,9	2,6	$3,0 \pm 0,3$	7,7	1,8	3,3	$3,5\pm0,5$
$R{=}{<}n_f(z{=}1){>}/{<}n_f(z{=}2){>}$	2,0	3,4	3,6	3,2	2,2	5,5	2,9	3,0
$Q = \Sigma \ z_f$	31	16	14	16	32	14	16	17
<n<sub>s></n<sub>	107	265	268	257 ± 7	245	822	796	746 ± 45
$< n_g >$	0,5	13	13	$10,8\pm0,6$	0,3	4,8	11,0	8,8 ± 1,0
<n<sub>b></n<sub>	0	2,5	2,5	2,0 ± 0,3	0,3	1,2	3,4	2,7 ± 0,4

Таблица 3 – Характеристики ПР для ядер Аи и Рb.

Из этих данных следует:

а) доля событий ПР как для *Au*, так и для *Pb* оказалась одного порядка (7-8%), т.е. она не зависит от энергии первичных ядер, близких по массе;

б) существенная доля ПР приходится на взаимодействия с тяжелыми ядрами мишени (Ag,Br) – 70-75 %;

в) выход одно- и двухзарядных фрагментов, а следовательно, и Q не зависят от энергии первичного ядра, это означает, что передаваемая энергия на возбуждение остаточного ядра Au и Pb одинакова;

г) с ростом энергии столкновения от 10,6 А·ГэВ до 158 А·ГэВ (~ 15 раз) значительно возрастает число генерированных s-частиц (~ 3 раза), тогда как средние множественности частиц мишени <ng> (протоны отдачи) и <nb> (фрагменты мишени) – в пределах ошибок остаются одинаковыми.

Представляет большой интерес получить и проанализировать характеристики событий ПР в зависимости от параметров удара при существенно разных энергиях первичного ядра – 10,6 А·ГэВ и 158 А·ГэВ, но близких по массе: A(Au) = 197 и A(Pb) = 208, т.е. отличающихся на 10 %.

Величиной, характеризующей параметр удара, был взят суммарный заряд фрагментов ядра снаряда $Q = \sum z_f$, так как эта величина характеризует степень перекрытия сталкивающихся ядер: чем больше Q, тем больше параметр удара, и наоборот. Учитывая статистический материал, весь набор Q был разделен на три интервала: 0 – 15; 16 – 30; 31 – 50. Полученные данные представлены в таблицах 4 и 5.

Из этих данных следует:

а) доля событий ПР уменьшается с увеличением параметра удара и не зависит от энергии налетающего ядра;

б) отношения среднего числа ливневых частиц $\langle n_s \rangle$ (*Pb*) / $\langle n_s \rangle$ (*Au*) практически не зависят от параметра удара – остаются в пределах значений 3,2 ÷ 3,5, т.е. определяющим фактором является число провзаимодействовавших нуклонов и первичная энергия;

в) средние множественности g-частиц ($\langle n_g \rangle$) и b-частиц ($\langle n_b \rangle$) ядра мишени, а также средние значения фрагментов с зарядом Z = 1 ($\langle n_{z=1} \rangle$) и с зарядом Z = 2 ($\langle n_{z=2} \rangle$) для одинаковых параметров удара не зависят от энергии налетающих ядер.

Q	Число событий	< <i>n</i> _s >	< <i>n</i> g>	< <i>n</i> _b >	$< n_h >$	$< n_{z=1}>$	$< n_{z=2}>$
0 – 15	17 (52±15%)	924±235	8.0±2.1	1.4±0.5	9.4±2.5	5.3±0.7	1.1±0.4
16 – 30	12 (36±12%)	772±241	11.3±3.9	4.0±1.4	15.3±5.2	12.8±1.2	2.9±0.4
31 – 50	4 (12±6%)	376±232	4.5±4.2	2.0±1.6	6.5±5.8	19.0±3.5	7.8±3.5
0 – 50	33	802±148	8.9±1.8	2.4±0.6	11.2±2.3	9.8±1.1	3.1±0.5

Таблица 4 – Характеристики событий ПР ядер Рb от параметра удара.

Таблица 5 – Характеристики событий ПР ядер Аи от параметра удара.

Q	Число событий	< <i>n</i> _s >	< <i>n</i> g>	< <i>n</i> _b >	< <i>n</i> _{<i>h</i>} >	$< n_{z=1}>$	$< n_{z=2}>$
0 – 15	52 (58±10%)	290±41	11.3±1.7	1.7±0.4	13.0±2.0	7.6±0.3	1.3±0.2
16 – 30	31 (35±7%)	230±43	10.9±2.3	2.3±0.6	13.2±2.8	11.9±0.6	4.4±0.4
31 - 50	6 (7±3%)	108±50	5.7±3.9	2.5±2.3	8.2±5.9	16.7±1.7	10.3±1.2
0 – 50	89	257±28	10.8±1.3	2.0±0.3	12.8±1.6	9.7±0.4	3.0±0.3

Далее рассмотрим поперечные импульсы двухзарядных фрагментов в событиях ПР и периферических взаимодействиях тяжелых ядер в зависимости от прицельного параметра.

Ранее [12] нами были исследованы поперечные импульсы (P_⊥) двухзарядных фрагментов (Z = 2) во взаимодействиях легких ядер ($_{10}Ne^{22}$) с ядрами фотоэмульсии при импульсе 4,1 ГэВ на нуклон. Было показано, что интегральные угловые и, соответственно, распределения по поперечным импульсам P_⊥ релятивистских фрагментов с Z = 2 могут быть описаны двумя экспонентами $N = B \cdot e^{-\frac{q}{q_0}}$ ($N = C \cdot e^{-\frac{P_\perp}{P_{\perp 0}}}$) для взаимодействий этого ядра как с легкими, так и тяжелыми ядрами мишенями. На графике в логарифмическом масштабе ($\lg N = f(P_\perp)$) этим экспонентам соответствуют прямые с разными наклонами (наблюдается излом).

Одна экспонента (до излома) соответствует малым значениям поперечных импульсов двухзарядных частиц, образованных в результате фрагментации возбужденного остаточного ядра снаряда. Что касается другой экспоненты (после излома), она соответствует группе частиц со значительно большими Р_⊥. О возможной причине образования таких частиц будет сказано ниже.

Анализ экспериментальных данных взаимодействия ядер ₇₉Au¹⁹⁷ (10,6 A·ГэВ) и ₈₂Pb²⁰⁸

(158 А·ГэВ) с ядрами фотоэмульсии показал, что интегральные угловые распределения и, соответственно, Р_⊥-распределения как для событий ПР, так и для периферических взаимодействий (как это видно из рисунка 4) также описываются двумя экспонентами.

Для сравнения на рисунке 5 представлены экспериментальные данные также для центральных и периферических взаимодействий ядер ${}_{10}Ne^{22}$ с ядрами фотоэмульсии. Из рисунка видно, что и здесь наблюдаются изломы, т.е. θ и P_⊥ распределения описываются двумя экспонентами. Следует отметить, что точке излома соответствует $\theta \approx 3^{\circ}$ (P_⊥ = 0,85 ГэВ/с), что совпадает для данных, полученных в вышеуказанной работе [12], (ядро ${}_{10}Ne^{22}$ взаимодействует с легкими и тяжелыми ядрами мишенями). Значения величин, характеризующих экспоненциальные зависимости, представлены в таблице 6.

Ядро-	Р	Тип	N_{cod}	Na	< q > ⁰ _a до после		$< P_{\perp} >$	
снаряд	А•ГэВ/с	В3-Й					до	после
					излома	излома	излома	излома
10Ne ²²	4,1	ПР	2236	2361	0,93	6,48	0,27	1,85
102 VE		перифер.	1760	937	0,79	5,43	0,23	1,55
A u ¹⁹⁷	11,6	ПР	89	265	0,68	3,46	0,55	2,80
79Au		перифер.	1035	4590	0,56	2,95	0,45	2,39
p_{h}^{208}	158	ПР	32	101	0,06	0,67	0,66	7,44
821 0	130	перифер.	368	900	0,05	0,66	0,55	7,26

Таблица 6 – Характеристики экспоненциальной зависимости $N = f(q, P_{\perp})$

Из данных таблицы следует, что в широком диапазоне атомных весов ядер снарядов (A = 22 ÷ 208) и их энергии $E_K = (3,3 \div 158)$ A·ГэВ в ПР и периферических взаимодействиях выделяются две группы двухзарядных частиц: с малыми углами вылета (θ) и большими, которым соответствуют малые и большие P_{\perp} . Отметим также особенности, которые при этом наблюдаются: a) во всех случаях значения $<\theta>u < P_{\perp}>$ в событиях ПР выше, чем в периферических; б) чем больше масса и энергия ядра снаряда, тем меньше $<\theta>u$ больше $< P_{\perp}>$.

Рисунок 4. Интегральные угловые и Р₁-распределения двухзарядных частиц в центральных (•) и периферических (**x**) взаимодействиях: а) – для $_{79}Au^{197}$ и б) – для $_{82}Pb^{208}$.

Рисунок 5. Интегральные угловые и P_{\perp} -распределения двухзарядных частиц в событиях ПР (•) и периферических (**x**) взаимодействиях для ${}_{10}Ne^{22}$.

Группа однозарядных частиц с малыми значениями $\langle P_{\perp} \rangle$, как уже отмечалось ранее, образована в результате фрагментации ядра снаряда, т.е. получен тривиальный результат. Другое дело, группа частиц с большими значениями $\langle P_{\perp} \rangle$. Представляет большой интерес, откуда они взялись (?!). Их появление, возможно, связано с возникновением в процессе взаимодействия ядер короткоживущих двухзарядных кластерных структур и их рассеянием на нуклонах или кластерах ядра мишени.

Основные результаты.

Экспериментальное изучение полного разрушения ядер при высоких энергиях выявило, что:

– характеристики полного разрушения остаточного ядра (развал только на одно- и двухзарядные фрагменты) легких ядер-снарядов (${}_{6}C^{12}$, ${}_{8}O^{16}$, ${}_{10}Ne^{22}$, ${}_{14}Si^{28}$): среднее число фрагментов, отношение среднего числа двухзарядных фрагментов к однозарядным (степень дробления), вероятность реализации каналов распада на фрагменты существенно зависят от заряда остаточного ядра (массы) и атомного веса ядра-мишени, т.е. от числа провзаимодействовавших нуклонов ($n = A - \frac{A}{n_p}Q$), что, в свою очередь, определяет энергию возбуждения остаточного ядра;

– в событиях полного разрушения тяжелых ядер ($_{79}Au^{197}$, $_{82}Pb^{208}$): а) средние множественности частиц ядра-мишени и фрагментов ядра-снаряда с зарядами 1 и 2 для одинаковых параметров удара не зависят от энергии налетающих ядер; б) распределения поперечных импульсов (P_⊥) двухзарядных фрагментов описываются двумя экспонентами, одна из которых соответствует малым значениям < P_⊥> двухзарядных фрагментов, образованных в результате фрагментации остаточного ядра снаряда, другая – возможно, связана с возникновением в процессе взаимодействия ядер короткоживущих двухзарядных кластерных структур и их рассеянием на нуклонах или кластерах ядра мишени;

– вероятность полного разрушения остаточных ядер с одинаковым суммарным зарядом Q (Q ~ m-массе), средние значения числа фрагментов <n_{z=1}>, <n_{z=2}>, протонов отдачи <n_g>, фрагментов ядра-мишени <n_b> не зависят от энергии налетающих ядер ядер ₇₉Au¹⁹⁷ (10,7 A·ГэB) и ₈₂Pb²⁰⁸ (158 A·ГэB), а число генерированных частиц существенно возрастает (~ 3 раза) с увеличением энергии.

Список использованных источников

- 1 Толстов К.Д. Z. Phys., 1981, v. A301, p.339.
- 2 Богданов В.Г. и др. ЯФ, 1983, т.38, с.1493.
- 3 Марин А. и др. ЯФ, 1979, т.29, с.105.
- 4 Антончик В.А. и др. ЯФ, 1980, т.32, с.319.
- 5 Андреева Н.П., Боос Э.Г. и др. ЯФ, 1981, т.34, с.790.
- 6 Андреева Н.П., Бубнов В.И., Гайтинов А.Ш., Часников И.Я. и др., ЕМU01 ЯФ т.55, вып.4, 1992, с.1010 1020.
- 7 Андреева Н.П., Бубнов В.И., Гайтинов А.Ш., Часников И.Я. и др., EMU01 ЯФ т.58, вып.6, 1995, с.1024 1031.
- 8 Андреева Н.П., Гайтинов А.Ш., Филиппова Л.Н., Шайхиева Д.Б. Труды межд. научно-практ. конф. молодых ученых. 2004, с.19-20.
- 9 Бондаренко А.И. и др. ЯФ т. 62, 1999, с.1612.
- 10 Bradnova V., Chernyavsky M.M., Gaitinov A.Sh. et all. Acta physica slovaca. 2004, v.54, No 4, c. 351-365.
- 11 Андреева Н.П. и др. «Ядерная физика», 2005, т.68, №3, с. 484-494.
- 12 Андреева Н.П. и др. «Письма в ЖЭТФ»,, т.47, вып.1, с.20-24.

