ФРАГМЕНТАЦИЯ РЕЛЯТИВИСТСКИХ ЯДЕР ⁷Li НА ПРОТОНЕ ПО КАНАЛУ ³H + ⁴He

© 2010 г. Н. Г. Пересадько, Ю. А. Александров^{*}, С. Г. Герасимов, В. А. Дронов, В. Г. Ларионова, А. В. Писецкая, Е. И. Тамм, В. Н. Фетисов, С. П. Харламов, Л. Н. Шестеркина

Физический институт им. П. Н. Лебедева РАН, Москва Поступила в редакцию 10.02.2010 г.; после доработки 19.04.2010 г.

В ядерной трековой фотоэмульсии, облученной на синхрофазотроне ОИЯИ (г. Дубна) в пучке ядер ⁷Li с импульсом 3 *А* ГэВ/*c*, среди 3730 неупругих взаимодействий зарегистрировано 13 событий, в которых ядра ⁷Li распадаются на фрагменты ³H и ⁴He при взаимодействии с протонами. Поперечное сечение этого канала фрагментации равно 8 ± 2 мбн. Среднее значение суммарного поперечного импульса фрагментов равно 214 ± 5 МэВ/*c*. Это значение заметно превышает среднее значение переданного поперечного импульса при когерентной диссоциации ядер ⁷Li на ядрах фотоэмульсии, равное 166 ± 5 МэВ/*c*. Значение поперечного импульса протона отдачи в среднем составляет 98% от значения полного импульса протона. Распределение продольных импульсов протонов имеет дисперсию 16 МэВ/*c* и среднее значение 37 ± 2 МэВ/*c*.

ВВЕДЕНИЕ

Неупругие столкновения нуклонов или ядер с ядрами при высоких энергиях (с импульсами в несколько ГэВ/с на нуклон) с выделением отдельного канала реакции значительно менее изучены по сравнению с упругим рассеянием. Теория неупругих реакций при этих энергиях базируется на различных вариантах кулоновского механизма возбуждения ядер [1] и дифракционной теории многократных столкновений Глаубера-Ситенко [2]. В практических приложениях все эти подходы неизбежно используют различные приближения и потому нуждаются в экспериментальной проверке. В подавляющем большинстве теоретических работ, где рассматриваются неупругие столкновения, в качестве налетающего на мишень пробного ядра обычно используется простейшее ядро - дейтрон. Однако наличие нейтрона в конечном состоянии и неопределенность состояний ядра-мишени после столкновения затрудняют экспериментальную проверку таких теоретических подходов.

В предыдущих работах [3, 4] среди неупругих взаимодействий ядер ⁷Li с импульсом 3 A ГэВ/c в ядерной фотоэмульсии были зарегистрированы события кластерной фрагментации ядер ⁷Li по каналу ³H + ⁴He, не сопровождающиеся образованием мезонов и без видимого возбуждения ядермишеней, что свидетельствует о когерентной фраг-

ментации налетающих ядер. Измеряемая в эксперименте векторная сумма поперечных импульсов релятивистских фрагментов в этих событиях представляет собой переданный поперечный импульс реакции **Q**. Анализ [4] измеренной зависимости дифференциального сечения реакции от переданного импульса Q в рамках двухкластерной структуры $({}^{3}\text{H} + {}^{4}\text{He})$ ядра ${}^{7}\text{Li}$ [5, 6] и формализма теории Глаубера-Ситенко с участием ядерных кластеров [7] позволил выявить различие форм зависимости дифференциальных сечений по Q в неупругом и упругом дифракционных процессах. Там же были сделаны выводы о роли электромагнитного и ядерного взаимодействий и обозначены интересные аспекты их дальнейшего изучения, включающие выделенную при малых Q область кулоновского пика и исследование сравнимых по величине осцилляций дифракционных сечений, предсказываемых для неупругого процесса на чистых ядрахмишенях. Одним из важных тестов для проверки теоретической модели, используемой для описания двухкластерной фрагментации легких ядер, а также для проверки метода идентификации исследуемых каналов могут служить экспериментальные данные о фрагментации релятивистских ядер на протонной мишени. В настоящей работе, являющейся продолжением исследований [3, 4], сообщаются результаты поиска и изучения реакции $^{7}\text{Li} + p \rightarrow {}^{3}\text{H} +$ $+ {}^{4}$ Не + p в ядерной трековой фотоэмульсии.

^{*}E-mail: alexandrov@sci.lebedev.ru

МЕТОДИКА ЭКСПЕРИМЕНТА

В ядерной трековой фотоэмульсии БР-2 в объеме 1 см³ содержится 2.97×10^{22} атомов водорода. Поэтому в фотоэмульсии, облученной релятивистскими ядрами ⁷Li, кроме ядро-ядерных столкновений должны наблюдаться также взаимодействия ядер-снарядов со свободными протонами. Процессы фрагментации легких ядер на протонной мишени в ядерной фотоэмульсии изучаются также в работах Сотрудничества BECQUEREL [8]. При взаимодействии ядра-снаряда с протоном должен наблюдаться протон отдачи. Принято считать, что в вершине ядро-ядерного взаимодействия в фотоэмульсии ядро отдачи может быть надежно зарегистрировано, если пробег ядра превышает 2 мкм. Импульс протона с пробегом 2 мкм равен около 20 МэВ/c, а с пробегом 5 мкм — около 30 МэВ/c. Такой низкий энергетический порог регистрации протонов позволяет исследовать процесс фрагментации в фотоэмульсии на протонной мишени во всем интервале переданных импульсов, включая и область малых импульсов. Для сравнения отметим, что в пропановой пузырьковой камере [9] при изучении диссоциации ядра 12 С на три α -частицы на протонной мишени протоны отдачи регистрировались только с импульсами более 150 МэВ/с. Изучение неупругого процесса на протонной мишени в фотоэмульсии представляет интерес также и с методической стороны. При измерении пробега в фотоэмульсии и определении импульса ядрамишени в конечном состоянии известны поперечные импульсы всех частиц, как релятивистских фрагментов, так и ядра-мишени. Восстановление кинематики взаимодействия позволяет проверить надежность идентификации канала фрагментации и правомерность использования применяемой методики для анализа процесса фрагментации релятивистских ядер.

В эксперименте используется эмульсионная камера, составленная из слоев ядерной трековой фотоэмульсии БР-2, чувствительной к минимальной ионизации однозарядных частиц. Слои эмульсии имеют толщину около 600 мкм и линейные размеры 10×20 см. Эмульсионная камера была облучена в пучке ядер ⁷Li с импульсом 3 ГэB/c на нуклон на синхрофазотроне ОИЯИ (г. Дубна). При облучении слои фотоэмульсии были расположены параллельно направлению пучка так, что пучковые частицы входят в торец эмульсионной камеры и проходят в слое фотоэмульсии вдоль ее длинной стороны. Следы релятивистских ядер ⁷Li прослеживаются на микроскопе от места входа ядра 7 Li в слой фотоэмульсии либо до ядро-ядерного взаимодействия, либо до выхода следа из слоя фотоэмульсии. Суммарная длина всех прослеженных следов

ЯДЕРНАЯ ФИЗИКА том 73 № 11 2010

L используется для определения среднего пробега ядер и сечения реакции. Заряды релятивистских фрагментов ядер ⁷Li определяются визуально по плотности ионизации их следов, которая для однои двухзарядных частиц различается примерно в 4 раза. Направление следа релятивистского ядра до взаимодействия определяется по координатам вершины взаимодействия и координатам нескольких точек на следе, измеренным на длине до 2 мм от вершины взаимодействия. Направление релятивистского фрагмента определяется по координатам вершины взаимодействия и координатам точек на следе, измеренным на расстояниях 500 и 1000 мкм от вершины взаимодействия. За результаты измерения принимаются усредненные значения из нескольких измерений. В отдельных измерениях разброс в значениях полярного угла фрагментов θ относительно первичного направления ядра 'Li составляет около 0.03°, разброс значений азимутального угла ψ в плоскости, перпендикулярной направлению ядра ⁷Li, составляет около 3°. Определение массы релятивистского фрагмента проводится методом измерения многократного кулоновского рассеяния фрагмента в фотоэмульсии в горизонтальной плоскости. Для определения среднего угла рассеяния частицы на измерительном микроскопе МПЭ11 вдоль следа на расстоянии *l* друг от друга последовательно измеряются Yкоординаты следа. Вторые разности У-координат *D* характеризуют последовательные отклонения следа в горизонтальной плоскости, а отношение D/l характеризует угол рассеяния на длине l. При многократном кулоновском рассеянии заряженной частицы распределение углов рассеяния и распределение вторых разностей У-координат имеют нормальные распределения, а среднее значение $\langle |D| \rangle$ на ячейке длиной l определяется выражением $\langle |D|
angle = K Z_f l^{3/2} / (p eta c)$, где $Z_f, p, eta c$ — заряд, импульс и скорость частицы. Для фотоэмульсии типа БР-2 обычно используется экспериментально определенная константа рассеяния K = 28.5. Значения D и l выражены в мкм, а значение $(p\beta c)$ – в ГэВ. Такая связь между измеряемой величиной |D| и величиной ($p\beta c$) позволяет оценить импульсы частиц и разделить по массе фрагменты с одинаковым зарядом. При импульсе нуклона 3 ГэВ/c значение β близко к единице, и распределение частиц по величине ($p\beta c$) практически отражает распределение по импульсам. Экспериментальное распределение однозарядных релятивистских фрагментов по величине $(p\beta c)$ можно удовлетворительно аппроксимировать суммой трех функций Гаусса с максимумами при значениях, близких к значениям импульсов одно-, двух- и трехнуклонных фрагментов ядраснаряда. Согласно распределению за минимальное значение ($p\beta c$) для ³H-фрагментов принято 7 ГэВ.

	$^{7}\text{Li} \rightarrow {}^{3}\text{H} + {}^{4}\text{He}$		Протон отдачи						Относит.
Событие	Импульс $Q,$ Мэ B/c	Азимут. угол ψ_Q , град	Пробег $R(p)$, мкм	Импульс P(p), M ightarrow B/c	Азимут. угол ψ_p , град	Полярн. угол <i>θ</i> _p , град	Импульс $P_t(p),$ Мэ B/c	$Q - P_t(p),$ M $ m B/c$	угол $\psi_Q-\psi_p,$ град
65-041	109	349	303	115	181	82.6	114	-5	180
66 - 257	146	197	640	143	19	79.8	141	+5	178
69-381	241	278	>4209	>247	104	79.9	>243	(-2)	174
70-373	244	75	4600	252	249	79.1	247	-3	-174
71-287	284	208	>8181	>302	24	77.1	>294	(-10)	176
71-371	208	329	2958	224	153	80.9	221	-13	176
71 - 462	239	119	>2487	>213	297	81.9	>211	(+25)	-178
73-039	135	302	552	137	126	84.4	135	0	176
73-144	322	339	13825	353	153	79.0	346	-24	-174
74-066	185	111	1602	187	285	81.3	185	0	-174
75-150	195	146	2013	200	333	82.0	198	-3	173
70 - 327	230	230	5840	275	53	83.1	273	-43	177
75-185	239	263	5650	272	83	81.4	269	-30	180
Среднее	214 ± 5			227 ± 6		81 ± 2	223 ± 6	-8 ± 2	176

События фрагментации ядер ⁷Li на протонной мишени

Согласно распределению двухзарядных фрагментов по величине ($p\beta c$) за минимальное значение ($p\beta c$) для ⁴Не-фрагментов принято 10 ГэВ. Подробнее процедура идентификации релятивистских фрагментов описана в работе [3].

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

При фрагментации ядра ⁷Li по каналу ³H + + ⁴Не на протонной мишени в конечном состоянии отсутствуют нейтроны. Поэтому в азимутальной плоскости суммарный поперечный импульс релятивистской системы и поперечный импульс протона-мишени равны по абсолютной величине и имеют противоположные направления. Равенство этих векторов доказывает, что взаимодействие релятивистского ядра произошло при столкновении со свободным протоном. Релятивистские фрагменты в процессе кластерной фрагментации с точностью до процента сохраняют абсолютное значение первоначальной скорости ядра-снаряда до взаимодействия. Поэтому значение поперечного импульса $p_t(A_f)$ фрагмента с массовым числом A_f определяется выражением $p_t(A_f) = p_0 A_f \sin \theta_f$, где $p_0 = 3 \ \Gamma$ эВ/c – импульс нуклона ядра-снаряда и θ_f — полярный угол вылета фрагмента относительно первоначального направления релятивист-

ского ядра до взаимодействия. Точность определения поперечного импульса фрагмента определяется точностью измерения полярного угла фрагмента и составляет около 7 МэВ/с. Точность определения векторной суммы поперечных импульсов релятивистских фрагментов Q, оцененная по серии повторных измерений событий, составляет около 10 МэВ/c, а точность определения азимутального угла суммарного импульса фрагментов ψ_Q оценивается равной 3°. Направление следа-отдачи определяется по координатам, измеренным окулярным микрометром в поле зрения микроскопа, ограниченном примерно 30 мкм. В серии повторных измерений разброс в значениях полярного угла θ_p следа не превышает 1°, значения азимутального угла ψ_p согласуются также в пределах 1°.

Среди зарегистрированных 3730 неупругих взаимодействий релятивистских ядер ⁷Li было обнаружено 13 взаимодействий, в которых кроме релятивистских фрагментов ³H и ⁴He имеется след нерелятивистской частицы, направление которого и вектор суммы поперечных импульсов релятивистских фрагментов **Q** в азимутальной плоскости в пределах ошибок образуют угол 180°. Разность азимутальных углов вектора **Q** и вектора поперечного импульса протона отдачи **P**_t(p) ($\psi_Q - \psi_p$) для каждого события приведена в правом столбце

ЯДЕРНАЯ ФИЗИКА том 73 № 11 2010

Рис. 1. Расположение векторов поперечных импульсов фрагментов ³H и ⁴He, их векторной суммы \mathbf{Q} и вектора поперечного импульса протона отдачи $\mathbf{P}_t(p)$ на азимутальной плоскости в событии 70–373.

таблицы. В таблице для каждого события представлены характеристики системы релятивистских фрагментов, характеристики протона отдачи и их сравнение. Для системы релятивистских фрагментов приведены значения импульса Q и азимутального угла ψ_Q . Для нерелятивистской частицы приведены измеренный пробег R(p) и соответствующий этому пробегу импульс P(p) для протона, углы вылета θ_p и ψ_p и значение поперечного импульса протона $P_t(p) = P(p) \sin \theta_p$. Для определения импульса протона отдачи использована зависимость импульса протона от пробега в фотоэмульсии "Ilford". Точность измерения пробега и определения импульса оценивается равной ~2%.

Суммарный поперечный импульс релятивистских фрагментов сравнивается со значением поперечного импульса ядра отдачи, полученным в предположении, что нерелятивистская частица является протоном. В таблице приводятся разности абсолютных значений вектора Q и поперечного импульса протона отдачи $\mathbf{P}_t(p)$. На рис. 1 для иллюстрации приведено расположение векторов поперечных импульсов релятивистских фрагментов, вектора их суммы Q и вектора поперечного импульса протона отдачи $\mathbf{P}_t(p)$ на азимутальной плоскости в событии 70-373. Азимутальные углы векторов отсчитываются от горизонтальной оси У, лежащей в плоскости фотоэмульсии. На рисунке указан азимутальный угол ψ_Q вектора **Q**. В 10 событиях след нерелятивистской частицы останавливается в фотоэмульсии. Из них в семи

ЯДЕРНАЯ ФИЗИКА том 73 № 11 2010

Рис. 2. Сравнение значений поперечного импульса протона отдачи $P_t(p)$ и суммарного поперечного импульса релятивистских фрагментов Q. Точки — события, горизонтальная координата которых равна $P_t(p)$, а вертикальной координатой служит значение Q. Прямая линия соответствует равенству абсолютных значений импульсов Q и $P_t(p)$.

событиях разность в значениях поперечных импульсов не превышает 15 МэВ/с. В остальных трех событиях импульсы протонов превышают суммарные импульсы релятивистских фрагментов на 24, 30 и 43 МэВ/с. В этих трех событиях пробеги протонов в эмульсии превышают 5000 мкм. Такое превышение в оценке импульсов протонов возможно, если тормозная способность используемой в эксперименте эмульсии меньше, чем тормозная способность эмульсии "Ilford". Включение этих трех событий значительно увеличивает дисперсию значений разности импульсов Q и $P_t(p)$. Степень согласия поперечных импульсов релятивистской системы фрагментов Q и протона $P_t(p)$ в этих 10 событиях более наглядно можно проследить на рис. 2, где события представлены на плоскости точками, горизонтальной координатой которых является значение $P_t(p)$, а вертикальной координатой — значение Q. Линия на рисунке соответствует равенству абсолютных значений поперечных импульсов Q и $P_t(p)$, а величина отклонения точки от этой линии характеризует разницу их значений в событии. Видно, что точки располагаются вблизи линии равенства импульсов. Наблюдаемое согласие измеренных угловых и импульсных характеристик взаимодействий на протонной мишени подтверждает как правильную идентификацию релятивистских фрагментов, так и удовлетворительную точность угловых измерений. В трех событиях

Рис. 3. Дифференциальное сечение фрагментации ядер ⁷Li по каналу ³H + ⁴He по переданному поперечному импульсу Q. Заштрихованная гистограмма — сечение на протонной мишени, светлая гистограмма — сечение когерентной фрагментации ядер ⁷Li на ядрах фото-эмульсии.

пробег нерелятивистской частицы не был измерен. В двух событиях частицы выходят из эмульсионной стопки, и в одном событии нерелятивистский след не был прослежен в фотоэмульсии до остановки частицы. В этих случаях по длине следа до выхода частицы из эмульсии оценивается минимальное значение импульса P(p). При этом разница в значениях поперечных импульсов Q и $P_t(p)$ в таких событиях составляет соответственно -2, -10 и 25 МэВ/с. В таблице эти значения указаны в скобках.

Сечение реакции $\sigma(p)$ определяется отношением числа зарегистрированных событий $N_{\rm co6}$ к числу ядер $N_{\rm яд}$ в фотоэмульсии на полной длине L прослеженных следов. Полная длина L равна 548 м. Плотность протонов в фотоэмульсии $\rho(p)$ равна 2.97×10^{22} см⁻³. Если для оценки сечения фрагментации ядра ⁷Li по каналу ³H + ⁴He на протонной мишени использовать 13 событий, то сечение $\sigma(p) = N_{\rm co6}/(\rho(p)L) = 8 \pm 2$ мбн. Значение пробежной длины для этой реакции в фотоэмульсии $\lambda(p) = 42 \pm 12$ м. Используя ранее измеренное сечение ядерной фрагментации по этому каналу на ядрах фотоэмульсии 29 ± 3 мбн и

степенную зависимость сечения от массового числа ядра-мишени в виде $\sigma(A) = \sigma(p)A^{\alpha}$, получим, что значение показателя степени $\alpha = 0.33 \pm 0.05$. Отношение экспериментального значения сечения фрагментации ядра 7Li для этого канала на протонной мишени и теоретически вычисленного с использованием двухкластерной модели ядра ⁷Li может служить оценкой вероятности формирования такой кластеризации нуклонов в ядре ⁷Li. Экспериментальные оценки вероятностей кластеризации нуклонов в ядрах проводятся на основе анализа сечений квазиупругого рассеяния адронов высокой энергии на соответствующих кластерах в ядрах. В частности, в работе [10] получены оценки числа квазидейтронов и квазитритонов в ядрах ^{6,7}Li на основе анализа сечений квазиупругого рассеяния π^- -мезонов с импульсами около 1 ГэВ/c на ядрах 6,7 Li, измеренных на трехметровом магнитном спектрометре ИТЭФ с регистрацией в событии рассеянного мезона и дейтрона или тритона.

На рис. З заштрихованной гистограммой представлены значения дифференциального сечения по переданному поперечному импульсу Q для канала фрагментации ${}^{3}\text{H} + {}^{4}\text{He}$ на протонной мишени. Более чем в 80% событий импульсы располагаются в интервале от 100 до 250 МэВ/с. Максимальное значение импульса не превышает 400 МэВ/с. Следует отметить отсутствие событий с поперечным импульсом менее $100 \text{ M} \Rightarrow B/c$, в то время как в когерентных взаимодействиях на ядрах фотоэмульсии в этой области располагается более четверти событий. Среднее значение переданного поперечного импульса релятивистским фрагментам ядра ⁷Li на протонной мишени $\langle Q \rangle$ равно 214 \pm 5 МэВ/с, что заметно превышает среднее значение поперечного импульса для когерентных взаимодействий с ядрами фотоэмульсии, равное $166 \pm 5 \text{ M} \cdot \text{B}/c$. Для сравнения на рисунке светлой гистограммой приведены также дифференциальные сечения когерентной фрагментации ядер ⁷Li по этому каналу на ядрах фотоэмульсии [4].

При взаимодействии релятивистского ядра со свободным протоном по пробегу протона определяется полный импульс протона отдачи. Поэтому в таких событиях можно определить соотношение поперечного и продольного переданных импульсов реакции. Эти данные позволяют оценить изменение импульсов фрагментов за счет передачи энергии и импульса от релятивистского ядра ядру-мишени. Углы испускания протонов θ_p в этих событиях распределены в интервале от 77° до 85°. Среднее значение полярного угла вылета протона $\langle \theta_p \rangle$ равно 81°. Среднее значение полного импульса протона, оцененное по 13 событиям, равно 227 ± 6 MэB/*c*, а среднее значение полеречного импульса равно

ЯДЕРНАЯ ФИЗИКА том 73 № 11 2010

 $223 \pm 6 \text{ МэВ/c.}$ Среднее значение продольных импульсов протонов равно $37 \pm 2 \text{ МэВ/c}$, а дисперсия распределения продольных импульсов равна 16 МэВ/c. Эти результаты указывают на возможность использования приближения, при котором для дифракционных процессов вместо полного переданного импульса используется поперечный импульс реакции.

ЗАКЛЮЧЕНИЕ

В ядерной фотоэмульсии, облученной ядрами ⁷Li с импульсом 3 A ГэВ/c, зарегистрировано 13 взаимодействий ядер ⁷Li со свободными протонами, в которых ядра ⁷Li распадаются на фрагменты ³H и ⁴He. Поперечное сечение этого канала фрагментации на протонной мишени равно 8 \pm 2 мбн. Следует отметить, что результаты исследования фрагментации на протоне и на сложных ядрах эмульсии [4] получены одинаковой методикой в одном опыте.

Принимая ранее измеренное сечение ядерной фрагментации по этому каналу на ядрах фотоэмульсии, равное 29 ± 3 мбн, зависимость сечения от массового числа ядра-мишени можно описать степенной зависимостью с показателем степени, равным 0.33 ± 0.05 . Среднее значение суммарного переданного поперечного импульса релятивистских фрагментов равно 214 ± 5 МэВ/с. Эта величина заметно превышает среднее значение поперечного импульса в когерентных взаимодействиях с ядрами фотоэмульсии, равное 166 ± 5 МэВ/с. Поперечная составляющая импульса протона отдачи составляет в среднем 98% от полного импульса. Среднее значение продольных импульсов протонов равно $37 \pm 2 \text{ МэB/c}$, а дисперсия распределения продольных импульсов равна 16 МэB/c. Полученные в работе экспериментальные данные могут служить еще одним тестом проверки кластерного подхода в теории фрагментации при релятивистских энергиях. Примененный в работе метод идентификации фрагментации ядер ⁷Li по каналу ³H + ⁴He может быть использован при изучении кластерной фрагментации радиоактивных ядер, в частности при изучении фрагментации ядер ⁷Be по каналу ³He + ⁴He.

Работа выполнена по проекту РФФИ, грант № 07-02-00871-а.

СПИСОК ЛИТЕРАТУРЫ

- C. A. Bertulani and G. Baur, Phys. Rept. 163, 299 (1988).
- 2. А. Г. Ситенко, *Теория ядерных реакций* (Энергоатомиздат, Москва, 1983).
- M. I. Adamovich, Yu. A. Alexandrov, S. G. Gerasimov, *et al.*, J. Phys. G 30, 1479 (2004).
- Н. Г. Пересадько, В. Н. Фетисов, Ю. А. Александров и др., Письма в ЖЭТФ 88, 83 (2008).
- 5. В. И. Кукулин, В. Г. Неудачин, Ю. Ф. Смирнов, ЭЧАЯ **10**, 1236 (1979).
- С. Б. Дубовиченко, М. А. Жусупов, Изв. АН Каз-ССР. Сер. физ.-мат., № 4, 44 (1983).
- В. В. Давидовский, М. В. Евланов, В. К. Тартаковский, ЯФ 69, 252 (2006).
- BECQUEREL. Project: htt//Becquerel.jinr.ru; V. Bradnova *et al.*, 9Φ 66, 1694 (2003).
- 9. В. В. Белага и др., ЯФ **59**, 869 (1996).
- 10. Б. М. Абрамов и др., ЯФ **68**, 503 (2005).

FRAGMENTATION OF THE RELATIVISTIC NUCLEI ⁷Li TO THE CHANNEL ³H + ⁴He ON THE PROTON

N. G. Peresadko, Yu. A. Alexandrov, S. G. Gerasimov, V. A. Dronov, V. G. Larionova, A. V. Pisetskaya, E. I. Tamm, V. N. Fetisov, S. P. Kharlamov, L. N. Shesterkina

Among the 3730 inelastic interactions observed in the nuclear emulsions exposed to the ⁷Li beam with momentum 3 A GeV/c at Dubna synchrophasotron 13 events have been identified where the ⁷Li nuclei decayed into ³H and ⁴He fragments by the interaction with target protons. The cross section for this fragmentation channel is found equal to 8 ± 2 mb. The mean value of the total transverse momentum of the fragments is $214 \pm 5 \text{ MeV}/c$. It is higher than the mean value of the transverse momentum seen in coherent dissociation of ⁷Li nuclei in interactions with emulsion nuclei, which is $166 \pm 5 \text{ MeV}/c$. The transverse momentum of the longitudinal momentum of protons has the dispersion of 16 MeV/c and the mean value of $37 \pm 2 \text{ MeV}/c$.