ДУБНА:1988

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

6067/89

JOINT INSTITUTE FOR NUCLEAR RESEARCH

1988 DUBNA

Вручение Ленинских премий 1988 года в области науки и техники 13 мая в Кремле. Выступает президент АН СССР академик Г.И.Марчук. В первом ряду слева направо: лауреаты Ленинской премии В.А.Матвеев, А.Н.Тавхелидзе, Р.М.Мурадян, А.М.Балдин, П.Н.Боголюбов

ЛАБОРАТОРИЯ ВЫСОКИХ ЭНЕРГИЙ

В Лаборатории высоких энергий в соответствии с главными задачами, определенными 63 сессией Ученого совета ОИЯИ и Комитетом Полномочных Представителей странучастниц, выполнена программа фундаментальных исследований, нацеленная на решение актуальных проблем физики элементарных частиц и атомного ядра на кварковом уровне с использованием пучков синхрофазотрона и серпуховского ускорителя. Проводилась подготовка к новым экспериментам на У-70 и УНК ИФВЭ.

Выполнены работы в рамках проекта DELPHI (LEP, ЦЕРН).

Завершены значительные этапы работ по созданию нуклотрона, обеспечено эффективное использование пучков синхрофазотрона физиками, усовершенствован ряд его систем. Получены новые методические результаты в области электроники, детекторов и криогеники. Программа научноисследовательской деятельности выполнялась с участием специалистов более 100 научных организаций стран-участниц ОИЯИ.

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЕ РАБОТЫ

МЕХАНИЗМ РОЖДЕНИЯ И РАСПАДА ЧАСТИЦ И РЕЗОНАНСОВ. ПОИСК НОВЫХ ЧАСТИЦ

1. С целью поиска и исследования новых частиц и состояний сотрудничество БИС-2 продолжало вести обработку материалов взаимодействия нейтронов (E = 40 ГэВ) с различными мишенями (H₂, C, Al, Cu).

Проведен поиск странных бариониев. распадающихся на Λ , \overline{p} (или $\overline{\Lambda}$, p) и пионы. Статистика основана на данных анализа $\sim 10^7$ нейтрон-протонных и $\sim 2.4 \cdot 10^7$ нейтрон-ядерных взаимодействий 11. Жидководородная мишень имела толщину 2,1 г/см2 по пучку, а ядерные $-3,4 \text{ A}^{1/3} \text{ г/см}^2$ (A атомный номер ядра-мишени). Отобрано ~2,2·10⁵ и ~2,7·10⁴ событий, содержащих ΛиΛ соответственно и идентифицированных по распадам: $\Lambda \rightarrow p\pi^-$ и $\Lambda \rightarrow \bar{p}\pi^+$. Странные барионии U/Ms и U/Ms искали среди событий, содержащих Λ или $\bar{\Lambda}$ и не менее двух заряженных адронов h и h , образующих общую вершину взаимодействия. С учетом этих условий отобрано 62345

и 8241 событие с Λ и $\bar{\Lambda}$ соответственно. Результаты анализа спектров инвариантных масс различных конечных состояний показаны в табл. 1,2.

Таблица 1

Конечное состояние	Интервал масс сигнала, $M \ni B/c^2$	Число комбинаций сигнал/фон
$\Lambda \bar{p} \pi^+$	3020 - 3080	120/318
$\Lambda \bar{p} \pi^-$	3040 - 3080	34/33
$\Lambda \bar{p} \pi^+ \pi^-$	3020 - 3080	83/159
$\Lambda \bar{p} \pi^+ \pi^+$	3020 - 3060	24/45

Таблица 2

Конечное состояние	Интервал масс сигнала, $M \ni B/c^2$	Число комбинаций, сигнал/фон
$\bar{\Lambda} p \pi^-$	3000 - 3040	25/45
$\bar{\Lambda} p \pi^+$	3020 - 3060	37/43
$\bar{\Lambda} p \pi^+ \pi^-$	3020 - 3060	22/39
$\bar{\Lambda} p \pi^- \pi^-$	3020 - 3040	4/17

Итак, в семи спектрах инвариантных масс различных состояний около одного и того же значения массы наблюдаются узкие пики, что указывает на существование бариониев с отрицательной $(U/M_s^\circ, U/M_s^+, U/M_s^-)$ и положительной $(\overline{U/M_s^\circ}, \overline{U/M_s^+}, \overline{U/M_s^+})$ странностями.

Среднее значение массы бариониев равно 3050 ± 10 (стат.) ± 30 (сист.) МэВ/с². Ширина не превышает 30 МэВ/c^2 .

Наличие дважды заряженных состояний U/M_s^{--} и $\overline{U/M}_s^{++}$ показывает, что изотопический спин бариониев $I \geqslant 3/2$. Это однозначно свидетельствует об их многокварковой структуре. Свойства U/M_s согласуются с предсказаниями ряда теоретических моделей для четырехкварковых бариониев, содержащих один странный кварк (антикварк).

Соответствующий мультиплет адронов должен включать в себя также барионии со скрытой странностью, т.е. содержащие странные кварки и антикварки. Масса таких резонансов должна быть больше, чем U/M_s , а распадаться они должны с образованием странных частиц. Указание на существование такого бариония (M_ϕ) было получено сотрудничеством БИС-2 в 1986 г. В последующее время статистика событий была увеличена $^{/2}$. Поиск проводился по событиям, содержащим барион, антибарион и странные частицы (табл. 3).

Таблица 3

Интервал масс сигнала, МэВ/с ²	Число комбинаций, сигнал/фон
3220 — 3260	72/178
3240 - 3280	30/50
3240 - 3280	36/55
3230 - 3290	30/38
3240 - 3300	36/48
3240 - 3280	37/55
3230 - 3290	25/46
3220 - 3260	36/46
	3220 — 3260 3240 — 3280 3240 — 3280 3240 — 3280 3230 — 3290 3240 — 3300 3240 — 3280 3230 — 3290

Было отобрано 5764, 2452, 1249, 460, 1293, 969, 615 и 1222 комбинации, соответствующие конечным состояниям, указанным в табл.3. В спектрах масс всех

восьми конечных состояний наблюдаются узкие ($\Gamma < 30 \text{ МэВ/c}^2$) статистически значимые пики около одного значения массы, что подтверждает ранее сделанное наблюдение о существовании бариония М. Его масса равна 3255±10 (стат.) ± 30 (сист.) МэВ/с? Кинематическая область наблюдения М в данном эксперименте ограничена значениями $x_F > 0,2$ и $P_T < 1$ ГэВ/с. Оценка А-зависимости сечения рождения бариония не противоречит A²/3. Произведение сечения на вероятности распадов составило для нейтральных каналов 0,4-3,0 мкб на нуклон, а для заряженных — от 0,5 до 7,0 мкб на нуклон на 90%-ном уровне достоверности.

- С помощью спектрометра БИС-2 ранее было исследовано рождение очарованных барионов Л нейтронами ≅ 58 ГэВ) на ядрах углерода, алюминия, меди. В пр-взаимодействиях при той же средней энергии нейтронов также наблюдалось рождение $\Lambda_{\mathbf{c}}^{+}$, распадающихся по каналам $\Lambda_c^+ \to \overline{K}^\circ p \pi^+ \pi^-$ и $\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^- /3 /$. В кинематической области $x_F \ge 0.5$, $P_T <$ $< 1 \ \Gamma$ эВ/с парциальные сечения ($\sigma_{\rm p}$ ·Br) составили соответственно: $\sigma_{\rm p} = (1,0 \pm 0,3 \pm$ \pm 0,2) мкб и $\sigma_{\rm p}$ = (0,28 \pm 0,15 \pm 0,04) мкб для указанных каналов распада. С учетом того, что вклад канала $Br(\Lambda_c^+ + \Lambda \pi^+ \pi^-) =$ $= (2,8 \pm 0,7 \pm 1,1)\%$, среднее сечение рождения Λ_c^+ нейтронами на водороде составляет: $\sigma_{\rm p} ({\rm x_F} > 0.5) = (10.0 \pm 5.9 \pm 4.2)$ мкб. Исходя из данных БИС-2 сечение рождения Λ_c^+ на нуклон ядра оказывается равным σ_0 = $= (1.5 \pm 0.8) \sigma_{\rm p}$
- 3. В нейтрон-ядерных взаимодействиях при средней энергии нейтронов 40 ГэВ в спектре эффективных масс $\Lambda \pi^+ \pi^-$ наблюдалось образование резонанса Λ (1520) /4 /. Рождение Λ (1520) до эксперимента БИС-2 наблюдалось только в двух экспериментах: в пр-взаимодействиях при энергии 5,6 ГэВ и во встречных рр-взаимодействиях на ISR (ЦЕРН) при энергии в с.ц.м. \sqrt{S} = 62,3 ГэВ.

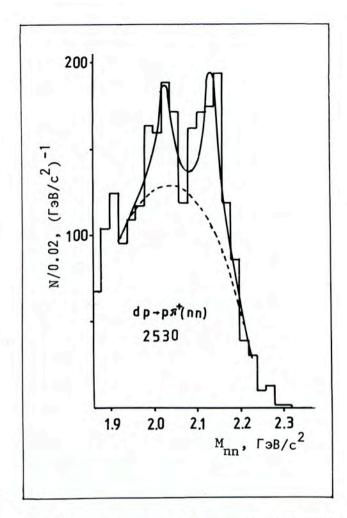
В данном эксперименте образование Λ (1520) наблюдалось на ядрах углерода, алюминия и меди. Масса резонанса оказалась равной (1522,9 ± 1,1) МэВ/с², ширина (16,5 ± 3,5) МэВ/с². Сечения рождения для $x_F \ge 0.3$ составили (мкб/ядро):

$$\sigma_{(C)} = 130,8 \pm 11,8 \pm 28,8,$$

 $\sigma_{(Al)} = 269 \pm 81,5 \pm 59,2,$

$$\sigma_{(Cu)} = 567,6 \pm 42,5 \pm 124,8.$$

Зависимость сечения Λ (1520) от атомного веса ядра-мишени описывается степенным законом $\sigma \sim A^{\alpha}$, где α = 0,6 ± 0,2.


4. Проанализировано 12,5 млн пр-взаимодействий и выделен процесс дифракционной диссоциации пр $+\Lambda$ ° K° р $^{/5}$. Показано, что дифракционное рождение Λ ° К°-системы составляет менее 25% от полного сечения образования Λ ° К° в пр-взаимодействиях. Динамика этого процесса отличается от динамики инклюзивного процесса пр $+\Lambda$ ° К° X.

5. Ряд работ, проведенных в Лаборатории, посвящен дальнейшему выяснению вопросов, связанных с существованием дибарионных (мультикварковых) резонансов.

В связи с результатами, полученными в исследовании реакции пр → рр π + группой Ю.А.Трояна на однометровой жидководородной пузырьковой камере (6), и проведенными экспериментами по прецизионному измерению сечений упругого рр-рассеяния с разрешением по эффективной массе 0,2 МэВ, в которых не было обнаружено заметного вклада возможных резонансных состояний, в рамках унитарной феноменологической теории проанализирован характер энергетической зависимости эффективного сечения чисто упругого резонансного рассеяния частиц с произвольным спином при наличии постоянного нерезонансного фона (7).

В инклюзивных импульсных спектрах протонов из nC- и π^- C-взаимодействий при импульсе нейтронов ~ 7 ГэВ и π -мезонов 4 ГэВ/с¹⁸ и наблюдались нерегулярности в интервале импульсов от 200 до 400 МэВ/с, однако для однозначной интерпретации этих эффектов необходимы дальнейшие исследования.

На однометровой жидководородной пузырьковой камере, экспонированной пучком дейтронов (поляризованных и неполяризованных) с импульсом 3,33 ГэВ/с, получены новые данные по исследованию двухнуклонных особенностей в dp-взаимодействиях $^{/9}$ /. Полное число $d(d^{\uparrow})$ p-взаимодействий составило $\sim 1,15\cdot 10^{5}$ событий, для анализа были

отобраны каналы: dp + ppn (47298 событий) и dp + p π^+ nn (24124 события). Показано, что в разных каналах в спектре эффективных масс двух нуклонов наблюдаются с высокой значимостью два состояния: $M_1 = 2,01 \div 2,02 \ \Gamma \ni B/c^2$ и $M_2 = 2,12 \div 2,15 \ \Gamma \ni B/c^2$ (рис.1), а также пики и при других значениях массы. Ядерные эффекты наблюдаемую ширину резонансов (~20 МэВ) не объясняют.

На этой же установке изучены импульсные распределения нуклонов, вылетающих под большими углами в 4 Нер-столкновениях при импульсах 8,6 и 13,6 ГэВ/с $^{/1\,0\,/}$. Полученные результаты не противоречат предположению о присутствии механизмов взаимодействия Δ -изобары в промежуточном состоянии с нуклоном или поглощения виртуального π -мезона парой нуклонов.

6. На статистике ~2,7·10⁴ dd-взаимодействий при 12 ГэВ/с, зарегистрированных с помощью двухметровой жидководородной камеры "Людмила" на пучке ускорителя ИФВЭ, определена (двумя способами) доля многократных процессов 111. Первый способ основан на прямом выделении однократных взаимодействий по налибыстрых протонов-спектаторов. Во втором - рассматриваются средние множественности заряженных частиц в ddи NN-взаимодействиях. Доля многократпроцессов составила $(10.1 \pm 2.8)\%$ и ~14% от полного неупругого сечения соответственно по первому и второму способам.

Проведен анализ инклюзивных характеристик вторичных частиц, образованных в мягких \bar{p} р-, pр- и π^- р-взаимодействиях в интервале импульсов от 4 до 360 ГэВ/с с помощью Лунд-модели /12 /. Использовались данные, полученные с помощью двухметровых пропановой и жидководородной пузырьковых камер ЛВЭ, облученных на синхрофазотроне и синхротроне ИФВЭ (p = 4, 10, 24, 40 Γ эВ/c), и опубликованные данные по рр-взаимодействиям при р = 360 ГэВ/с, полученные на SPS (ЦЕРН). В области импульсов p = 4 ÷ 10 ГэВ/с Лундмодель (ЛМ) с параметрами адронизации струны, взятыми из данных по е е -аннигиляции, хорошо описывает средние множественности и импульсные характеристики вторичных нуклонов, пионов и К-мезонов. При высоких энергиях (р > 20 ГэВ/с) появляются существенные расхождения между экспериментом и ЛМ вследствие большего проявления дифракционных процессов, которые в данной версии модели не учитываются. Не учитываются также и процессы рр-аннигиляции, доля которых при Е> > 20 ГэВ составляет $\approx 20\%$.

Сравнение формы распределений Λ° -, $K_{\rm s}^{\circ}$ -, ρ° - и π^{\pm} -частиц с расчетами по ЛМ показывает, что модель неплохо описывает область фрагментации протона в мягких π^{-} р-взаимодействиях и дает завышенные значения сечений в области фрагментации пионов ($\mathbf{x}_{\rm F} \gtrsim 0.4$). Для $\bar{\rm p}$ р-взаимодействий имеется отмеченное выше расхождение и в области $\mathbf{x}_{\rm F} \lesssim -0.6$. Для описания сечений образования ρ° -, $K_{\rm s}^{\circ}$ -, π -мезонов в π^{-} р-соударениях при р = 360 ГэВ/с также необходима модификация модели.

РЕЛЯТИВИСТСКАЯ ЯДЕРНАЯ ФИЗИКА. ИССЛЕДОВАНИЕ АСИМПТОТИЧЕСКИХ СВОЙСТВ МНОЖЕСТВЕННЫХ ПРОЦЕССОВ

1. Для описания множественных процессов используются релятивистски-инвариантные безразмерные величины

$$b_{ik} = -\left(\frac{p_i}{m_i} - \frac{p_k}{m_k}\right)^2 = (u_i - u_k)^2$$
 (1)

(где p_i , p_k — 4-импульсы, m_i , m_k — массы частиц i и k), позволяющие выразить принцип автомодельности для распределения вероятностей (сечения) W в следующем виде:

$$\begin{aligned} & \left. W(b_{\alpha k}, b_{\beta k}, b_{\alpha \beta}, \ldots) \right|_{b_{\alpha \beta} \to \infty} = \\ & = \frac{1}{b_{\alpha \beta}^{m}} \left. W^{1}\left(b_{\alpha k}, x_{k} = \frac{b_{\beta k}}{b_{\alpha \beta}}, \ldots \right). \end{aligned} \tag{2}$$

Величина W^1 не зависит от $b_{\alpha\beta}$ и автомодельна по этой переменной. Определение m (m может быть числом или функцией аргументов W¹) из моделей или уравнений задача более простая, чем отыскание решений при полном наборе независимых величин (определяющих параметров). Смысл выражения (2) состоит в том, что сечения W не должны зависеть от бесконечных величин, но могут зависеть от их отношения, имеющего конечную величину. В работе 13/ исследовались автомодельные свойства барионных кластеров во взаимодействиях р-, d-, He-, C- и п -частиц с ядрами углерода интервале импульсов 4 ÷ 40 ГэВ/с на нуклон. Материал был получен с помощью двухметровой пропановой пузырьковой камеры (табл. 4). Анализировались инвариантные F(b_k) распределения протонов в кластерах:

$$F(b_k) =$$

$$= \frac{1}{N} \frac{2}{m_N^2} \int \frac{1}{\sqrt{b_k + b_k^2/4}} \frac{dN}{db_k d\Omega} d\Omega.$$
 (3)

Распределения (3) обладают тем замечательным свойством, что в системе покоя кластера \vec{V}_{α} = 0 средняя величина $<\!b_k\!>$,

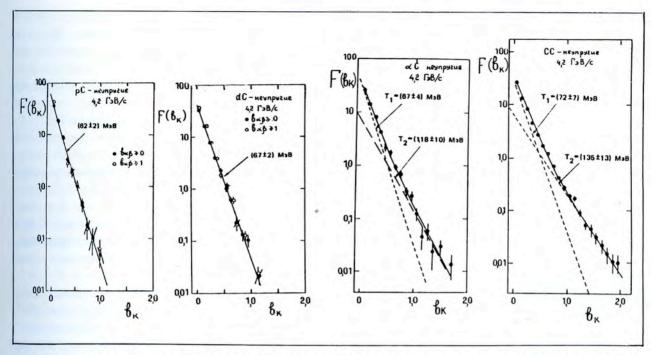


Рис.2. Инвариантные функции $F(b_k)$ для протонов в кластере, образующихся в pC- и dC-, α C- и CC-взаимодействиях

получаемая из этого распределения, однозначно связана со средней кинетической энергией протонов в кластере, которая обычно называется "температурой":

$$\langle b_k \rangle = \langle \frac{2E_k}{m_N} - 2 \rangle = \frac{2\langle T_k \rangle}{m_N}.$$
 (4)

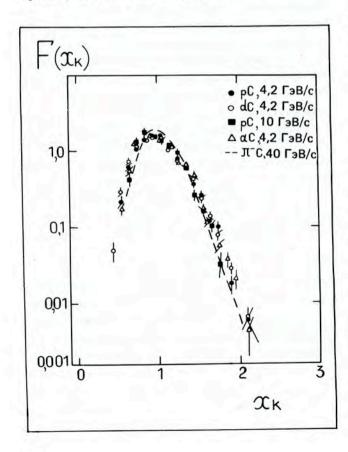
Зависимости $F(b_k)$, полученные в эксперименте для pC-, dC-, α C- и CC-взаимодействий, показаны на puc. 2.

Таблица 4

Тип взаимо- действий	Импульс пучковых частиц, ГэВ/	1 11	
$p(C_3H_8)$	4,2	7,16	6207
$d(C_3 H_8)$	4,2·A	7,16	8724
$\alpha(C_3H_8)$	4,2·A	7,16	3795
$C(C_3H_8)$	4,2·A	7,16	10199
$p(C_3H_8)$	10	19,4	2706
π^-C	40	570	8791

Исследована зависимость распределения протонов в кластерах от переменной $\mathbf{x}_k \equiv \mathbf{x}_k^\alpha = \mathbf{b}_{\beta\,k}/\mathbf{b}_{\alpha\,\beta}.$ В системе покоя кластера

 $\vec{V}_{\alpha}=0$ переменная \mathbf{x}_k переходит в известную переменную светового фронта: $\mathbf{x}_k^{\alpha}=\mathbf{u}_{ko}^{\alpha}-\mathbf{u}_{kz}^{\alpha}$ (здесь ось z определяет направление линии, соединяющей центры кластеров \mathbf{V}_{α} и \mathbf{V}_{β} в трехмерном пространстве), т.е. зависимость $\mathbf{F}(\mathbf{x}_k)$ означает зависимость инвариантной функции \mathbf{F} от направления отрезка, соединяющего центры кластеров \mathbf{V}_{α} и \mathbf{V}_{β} . Это означает, что изолированная система (кластер) должна распадаться анизотропно по отношению к указанному направлению в системе покоя кластера.


С целью изучения особенностей образования протонных кластеров с различной температурой были построены зависимости инвариантного сечения $E \frac{d^3 \sigma}{dp^3}$ от переменной $b_{\rm II \, C}$, т.е. относительно ядра-мишени. Показано, что нуклонные кластеры с $<\mathbf{T}_k>_1=60\div70$ МэВ характеризуются средним значением четырехскорости относительно ядра-мишени $<\mathbf{b}_{\rm II \, C}>_1=0$,11÷0,14, которое не зависит ни от типа взаимодействия, ни от энергии в интервале 4÷40 ГэВ. Для кластеров с более высокой температурой $(<\mathbf{T}_k>=130$ МэВ) значение $<\mathbf{b}_{\rm II \, C}>_2=$

= 0,5 ÷ 0,6. Свойства этих кластеров в зависимости от типа и энергии взаимодействия нуждаются в дальнейшем изучении. Показано, что они характеризуются анизотропным угловым распределением протонов и большими поперечными импульсами.

Таким образом, барионные кластеры, образующиеся в промежуточной области релятивистских ядерных столкновений, характеризуются универсальными свойствами по двум параметрам подобия: масштабнонеинвариантному $\mathbf{b}_{\mathbf{k}}$ и масштабно-инвариантному $\mathbf{x}_{\mathbf{k}}$.

Проведен также анализ четырехмерных протонных кластеров в рС- и СС-взаимодействиях, сопровождающихся испусканием кумулятивных пионов и протонов $^{/1\,4\,/}$. Показано, что рождение кумулятивных протонов происходит чаще в событиях с фрагментацией на кластеры с $b_{\rm II\,C} < 0.6$. Свойства протонных кластеров в мезонных и протонных кумулятивных взаимодействиях оказываются различными. Рождение кумулятивных пионов отражается на свойствах протонных кластеров.

Рис.3. Инвариантные функции $F(x_k)$ для протонов в различных типах взаимодействий

2. Продолжалось изучение процессов кумулятивного рождения частиц. На установке СКА (спектрометр кумулятивных адронов) 115 / получена А-зависимость сечений образования кумулятивных пионов на основе материалов по взаимодействию протонов (E = 25 ÷ 62 ГэВ) с ядрами Ве, С, Al, Ti, Mo, W^{/16}/. Измерения проводились на пучке серпуховского ускорителя. Сечения образования пионов измерены в интервале их импульсов от 250 до 950 МэВ/с. Отмечается регулярность поведения А-зависимости от кумулятивной переменной Х при значительном различии в энергии первичных протонов и углах вылета л-мезонов (различные p_{τ}).

Измерена энергетическая зависимость выхода π^+ - и π^- -мезонов под углом 159° в интервале $0,6 \le X \le 2,0$ в рС-взаимодействиях при энергии протона от 15 до $61 \, \Gamma \ni B^{/1\, 7\, /}$. Величины сечений и наклоны спектров в этом диапазоне энергий оказались близкими к измеренным при энергии пучка синхрофазотрона. Наклоны спектров при X > 1 и X < 1 существенно различны, что дает основание предполагать перераспределение вклада различных механизмов образования пионов при переходе в кумулятивную область.

На установке ДИСК-3 проведен набор статистики по образованию частиц с большими поперечными импульсами (p_T =1000 ÷ ÷ 1600 МэВ/с) в рА-взаимодействиях. Выполнен эксперимент по измерению инклюзивных сечений кумулятивного рождения частиц во взаимодействиях ядер углерода с ядрами мишеней. Набрана статистика $\geq 10^3$ корреляционных событий типа ря в области эффективных масс Δ -изобары в ар-взаимодействиях. Проведены обработка и анализ экспериментальных данных по двухчастичным dp-, pp-, р π - и $\pi\pi$ -корреляциям.

Получены экспериментальные данные по инклюзивным сечениям рождения π^{\pm} -, K^{\pm} -мезонов в зависимости от их импульса при фиксированных углах эмиссии ($\theta=180^{\circ}$, $\theta=62^{\circ}$) для pp- и dp-взаимодействий π^{18} .

Проанализирована большая совокупность данных по кумулятивному рождению частиц в адрон-ядерных взаимодействиях на основе различных теоретических подходов /19 /.

Продолжалось изучение адрон- и ядроядерных процессов с рождением протонов в кинематически запрещенной области для нуклон-нуклонных столкновений. Исследованы кинематические корреляции между п
-мезонами и протонами с импульсом $p_p = 0.25 \div 0.75 \ \Gamma$ эВ/с во взаимодействиях d, ⁴ He, С с ядрами углерода при первичном импульсе 4,2 ГэВ/с на нуклон 1201. В отличие от каскадной модели наблюдаются заметные корреляции между кинематическими переменными пионов (быстрота, импульс, угол вылета) и вторичных протонов. Измерены также инклюзивные сечения рождения протонов во взаимодействиях p, d, ⁴ Не, С с ядрами углерода и тантала ^{/2 1} . Получено указание на некоторое подавление выходов протонов из ядра-мишени под большими углами при увеличении атомного веса ядра-снаряда.

3. Несмотря на большой объем исследований, выполненных в последние годы по множественному рождению частиц в ядроядерных столкновениях, информация о процессах образования нейтральных π -мезонов во взаимодействиях релятивистских ядер с энергией порядка нескольких ГэВ на весьма бедна. Ha установке МАССЕР проводился цикл исследований по измерению инклюзивных сечений образования π °-мезонов с целью получения информации, необходимой для выяснения механизма кумулятивного эффекта. В 1988 г. $pC \rightarrow \pi \circ X$ при выполнен анализ реакции импульсе $p_p = 4,5 \ \Gamma \ni B/c^{/2} ^{2}$. На статистике \sim 1,4·10⁴ π °-мезонов получены зависимости сечения от p_T^2 и переменной Фейнмана x_F . Дифференциальное сечение по р_т параметризуется функцией $f(p_T^2) = A_2 \exp(-\hat{B}_2 p_T^2)$ с параметром $B_2 = (6.3 \pm 0.2) (\Gamma \ni B/c)^{-2}, A_2 =$ = (19.5 ± 0.8) мб· $(\Gamma \ni B/c)^{-2}$ / ядро ¹² С. Инвариантное инклюзивное сечение $f(x_F)$ в интервале $0.5 < x_F < 0.95$ параметризуется степенной функцией $f(x_F) = A_1 (1 - x_F)^{B_1} c$ параметрами $A_1 = (126 \pm 21) \text{ мб/ядро}^{-12} \text{ C};$ $B_1 = (2,72 \pm 0,14)$.

4. Получены первые экспериментальные данные по инклюзивным спектрам π °-мезонов в СТа- и многонуклонных СС^{мн}взаимодействиях при импульсе 4,2 ГэВ/с на нуклон на материалах двухметровой пропановой пузырьковой камеры $^{/2}$ 3 $^{/}$. Ин-

клюзивные спектры π °-мезонов восстанавливались по экспериментально измеренным спектрам γ -квантов на статистике: 860 γ -квантов для СТа- и 1206 γ -квантов для СС-взаимодействий.

5. Ряд работ был посвящен изучению взаимодействия нейтральных частиц (нейтронов) с ядрами и образования нейтронов в ядро-ядерных столкновениях. Проведен сравнительный анализ импульсных и угловых характеристик протонов, образующихся в nC- и nTa-взаимодействиях при импульсе 4,2 ГэВ/с/24/. Показано, что импульсный спектр и угловые распределения протонов в пТа-соударениях значительно мягче и шире. Получены средние характеристики вторичных частиц в пр- и пС-взаимодействиях 1251, а также прямые экспериментальные данные по образованию нейтроновспектаторов в d(С3 Н8)-соударениях, доля которых при p_d = 4,2 ГэВ/с на нуклон оказалась равной Δ_{n_s} = 0,24 ± 0,02. В работе $^{\prime 2}$ 6 $^{\prime}$ представлены предваритель-

В работе $^{\prime 2}$ 6 $^{\prime}$ представлены предварительные результаты исследования характеристик нейтронов, испускаемых в π^- Xe-взаимодействиях при импульсе 3,5 ГэВ/с. Эффективность наблюдения нейтральных звезд оказалась достаточно высокой (0,65 н.з/взаим.), что дает возможность после полной обработки материала получить новые данные.

6. Исследовалась зависимость от энергии лидирующего протона характеристик вторичных протонов и π^- -мезонов в pCвзаимодействиях при р = 4,2 и 10 ГэВ/с рТа-взаимодействиях при = 10 ГэВ/с/27/ с целью получения данных "тормозной" способности ядер. следует из полученных данных, удельные потери в области 4 ≤ р ≤ 10 ГэВ/с увеличиваются с ростом импульса, т.е. dE/dx~E и, кроме того, в тяжелом ядре тантала среднее значение dE/dx оказывается меньше, чем для ядра углерода. Полученные в данной работе верхние оценки для объемной плотности энергии не превышают 0,6 ГэВ/фм³ (для pC при $p_p = 10 \ \Gamma \ni B/c$).

Сделаны оценки средних и максимальных потерь энергии пионов и протонов за счет сильных взаимодействий при прохождении через внутриядерную материю $^{12.8}$ /. При анализе π^- Хе-взаимодействий при р $_{\pi^-}$ = 3,5 ГэВ/с показано, что распределение нейтральных π -мезонов по продольному

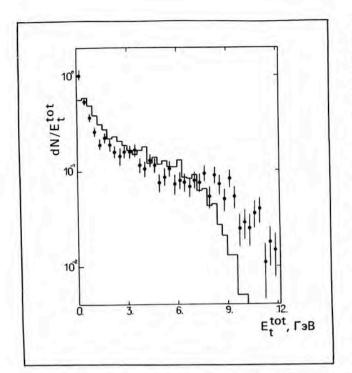


Рис. 4. Распределение по полной поперечной энергии в СТа-взаимодействиях при 4,2 ГэВ/с на нуклон. Гистограмма — расчет по ДКМ, статистика 1552 события

импульсу сужается с увеличением множественности вторичных протонов $(0 \le n_p \le 9)$. Отмечено $^{/2}$ 9 1 , что адроны с энергией в несколько ГэВ могут проходить через массивные ядра, не вызывая рождения частиц; прохождение сопровождается эмиссией быстрых нуклонов строго определенным способом.

Получены спектры полной поперечной энергии $(E_{\rm T}^{\rm tot})$ вторичных заряженных частиц во взаимодействиях p, d, ⁴ He, C с ядрами углерода и в CTa-соударениях при импульсе 4,2·A ГэВ/с^{/3 0 /}. Показано, что с ростом $E_{\rm T}^{\rm tot}$ все более значительный вклад в ее величину дают отдельные частицы с большими ${\rm p_T}$. Пример спектра для CTa-взаимодействия показан на рис.4.

Изучалась зависимость средней множественности π^- -мезонов $< n_\pi^->$ от числа протонов-участников N_p для СТа-взаимодействий при импульсе 4,2 ГэВ/с на нуклон $^{/3}$ 1 /. Наблюдается линейный рост $< n_\pi^->$ с увеличением N_p для нецентральных СТа-соударений. Для центральных (их доля $\sim 17\%$ от всех непуругих взаимодействий) $-< n_\pi^->$ не зависит от N_p . Доля π^- -мезонов, испускаемых в заднюю полусферу, для центральных столкновений составляет $\sim 20\%$ от всех π^- -мезонов, образованных во взаимо-

действии, т.е. в два раза больше, чем в периферических столкновениях. Корреляции между < n_{π} -> и N_{p} при первичной кинетической энергии 3,36 ГэВ/нукл. описываются в рамках модели независимых взаимодействий.

Сделана оценка температуры адронного вещества на основе термодинамического подхода на стадии, близкой к наибольшему возбуждению, с использованием величины выхода пионов в столкновениях близких по массе ядер $(A_p \approx A_T)^{/3\,2\,7}$. Полученное значение температуры $(T=(120\pm2)\text{ M3B})$ для СС-взаимодействий при p=3,66 ГэВ/с на нуклон с учетом результатов других экспериментов при более низких энергиях указывает на линейный рост T_0 с энергией ядер (в логарифмическом масштабе) в интервале $0,1\div3,7$ ГэВ/нуклон.

Методом ядерных фотоэмульсий продолжалось изучение процесса полного разрушения ядер. Впервые получены данные по полному разрушению ядра свинца ядрами магния с импульсом 4,5 А ГэВ/с/33/ и проведено их сравнение с данными для C + Pb реакции при том же импульсе. Наблюдается рост числа релятивистских однозарядных частиц, усиление коллимации вылета вторичных заряженных частиц, увеличение противоиспускания в азимутальной плоскости частиц от разрушения ядра-мишени и рожденных частиц, усиление бокового выброса этих частиц с ростом массы ядра-снаряда. Среди найденных 60 событий было обнаружено одно событие с плотностью 10 s-частиц на интервал псевдобыстроты $\Delta \eta_s = 0,1$. Вероятность случайного характера этого события менее 10-2.

Проведен анализ зарядового состава фрагментов ядра кремния-28 с импульсом 4,5 А ГэВ/с с ядрами фотоэмульсии. Получены топологические характеристики фрагментации, множественность и зарядовый состав фрагментов на различных компонентах эмульсии. Оценены вероятности полного разрушения ядра кремния 134/.

7. Метод определения пространственновременных характеристик области излучения частиц на основе интерференции тождественных частиц использован при анализе ранее полученного экспериментального материала на установке СКМ-200, экспонированной в пучках ядер ⁴ He, ¹² C, ¹⁶ O

с энергией 3,66·А ГэВ $^{/35}$. Мишенями служили тонкие диски $(0,2\div0,5\ r/cm^2)$ из Li, C, Cu, расположенные внутри объема камеры, а также газ Ne, заполняющий камеру. В пределах ошибок полученные радиусы испускания π^- -мезонов $r=3,9\div4,4$ фм не отличаются для различных A_p и A_t и степени центральности взаимолействий.

Пространственно-временные характеристики источников вторичных протонов в различных типах релятивистских ядерных столкновений анализировались с целью объяснения зависимости размеров области испускания протонов от их импульса 13 6 1. Рассматривались два фактора: большие временные интервалы испускания протонов и малые поперечные размеры источников. Предполагается, что каждый из этих факторов доминирует в разных интервалах импульсов протонов.

8. В направлении поиска аномальных фрагментов в процессах фрагментации релятивистских ядер были выполнены две ра-

боты. Проведен тщательный анализ данных эксперимента "Аномалон" по фрагментации ядер магния с импульсом 4.5 ГэВ/с на нуклон во взаимодействиях с плексигласом /37/. Особое внимание при этом уделялось области длин пробега менее 10 мм. Всего обработано около 1,2·10⁵ событий. Для фрагментов с зарядом Z = 6 ÷ 10 авторы наблюдают наличие компонент со средней длиной пробега $\lambda_a = (1,9 \pm 0,8)$ мм, тогда компонента имеет λ_{μ} = как нормальная $= (141.7 \pm 1.9)$ MM. Примесь аномальной компоненты оценивается величиной $\sim (8,4 \pm 2,7)\%$.

Проведены эксперименты по исследованию взаимодействия ядер $^{1\,2}$ С с импульсом $54~\Gamma$ эВ/с с медными мишенями в 2π -геометрии, позволяющие изучать угловое распределение вылета аномальных фрагментов $^{/3\,8}$ /. Поведение фрагментов изучалось по выходу γ -излучения наведенной активности в кольцевых мишенях, перекрывающих диапазоны углов $0-10^\circ$, $10^\circ-19^\circ$, $19^\circ-31^\circ$, $31^\circ-43^\circ$, $43^\circ-52^\circ$, $52^\circ-90^\circ$. Наблюдалось существенное увеличение вы-

Для исследований на пучках релятивистских ядер создается новый спектрометр — установка "Памир". На снимке: мишенный узел установки

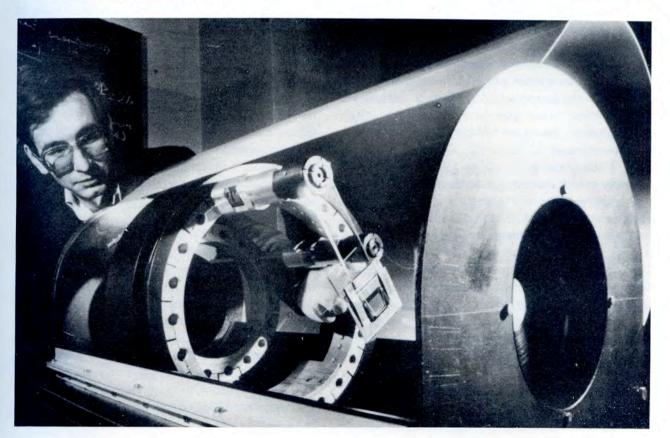
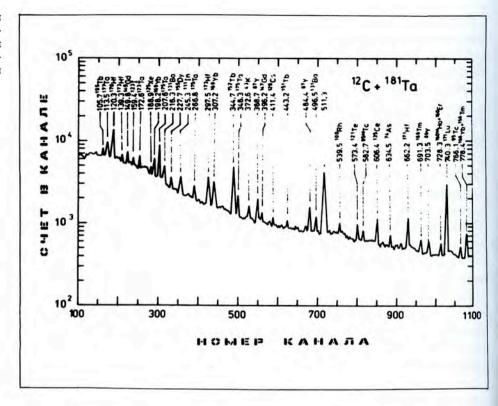



Рис.5, Спектр γ -лучей остаточных ядер-нуклидов, образующихся при фрагментации ¹⁸¹ Та ядрами углерода с энергией 3,65 ГэВ/нуклон

хода изотопа 2 Nа в кольце под углами $19^{\circ}-31^{\circ}$ при соударениях ядер углерода-12 и меди-64 по сравнению с реакцией на α -частицах ($p_{\alpha}=4,0$ ГэВ/с). Однозначной интерпретации этого эффекта пока нет.

9. Экспериментально проверена методика определения выхода нуклонов, образующихся во взаимодействии релятивистских ядер с тяжелыми ядрами методом наведенной у-активности облученных мишеней. Определены выходы радиоактивных ядер в реакциях деления ²³⁵ U(n, f), в реакциях фрагментации 181 Та (12 С, Х) при энергии 3,65 ГэВ/нуклон^{/39} (рис.5). Выход фрагментов имеет минимум в области А/2 мишени, и затем резко увеличивается с ростом массового числа А. Этим же методом изучены реакции, вызываемые ядрами 12 C (E = = 3,65 · A ГэВ) на ядрах ^{5 5} Mn, ^{5 9} Co, Ni, Си/40/. Проведено сравнение массовых распределений нуклидов в реакциях с протонами ($E_p = 3,65 \ \Gamma \ni B$) на тех же ядрах. Сравнение полученных результатов с ранее имевшимися данными при других энергиях подтвердило режим предельной фрагментации.

10. Получены данные по генерации нейтронов в свинцовой мишени размерами 50 x 50 x 80 см протонами, дейтронами и

 α -частицами с импульсом 4,5 ГэВ/с на нуклон⁴¹. Нейтроны регистрировались с помощью детекторов реакций (n, F) и (n, γ), установленных в объеме мишени.

Проведено сравнительное измерение распределения нейтронного потока, генерируемого в указанной мишени пучками протонов ($p_p = 9 \Gamma \ni B$) и ядер углерода ($p_C = 4.5 \cdot A \Gamma \ni B/c$) /4 2 /.

Отношение интенсивности нейтронов в расчете на ядро ¹² С к интенсивности на один протон составило 7,2 ± 1,4 на расстоянии 27 см от переднего торца мишени и 14,0±2,9 на расстоянии 78 см. Показано, что вклад нейтронов с энергией больше 10 МэВ в полный спектр генерируемых в свинцовой мишени нейтронов существенно выше, чем в спектр нейтронов деления.

11. Продолжено изучение образования и свойств релятивистских гиперядер на установке ГИБС^{/43} $^{/}$. Получено более 80 тыс. фотографий в пучках релятивистских ядер 4 He, Li, C, O, экспериментальный материал обрабатывается. Для сечения образования гиперядра $^4_{\Lambda}$ H α -частицами с импульсом 4 ,5 4 A 5 В 6 с на мишени CH 2 получено значение 6 с 4 6 4 мкб. Средний импульс и среднее время жизни $^{4}_{\Lambda}$ H составили (16,7 $^{\pm}$ 0,2) ГэВ/с и (2,2 $^{+0}$,5 5) 10 с соответственно.

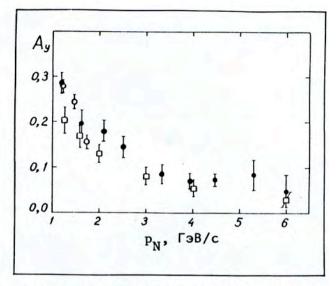
12. Рассматривались следствия применения концепции релятивистской длины (КРД), в частности, к таким вопросам, как рост длины формирования адронов с увеличением энергии, проблема фундаментальной (или элементарной) длины и др. 144 / 1.

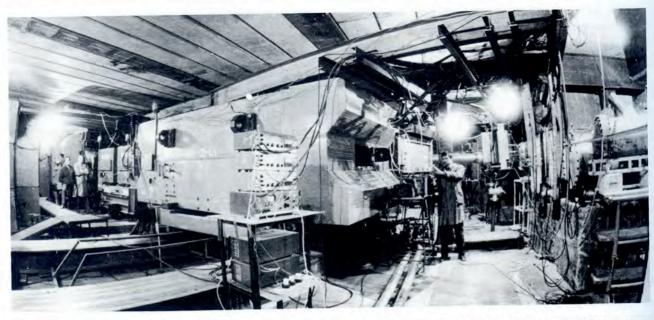
ИССЛЕДОВАНИЯ ПОЛЯРИЗАЦИОННЫХ ЭФФЕКТОВ

1. Измерена векторная анализирующая способность (A_v) реакций упругого d^pи d[†]d-рассеяния и реакции неупругого взаимодействия d↑С → рХ /45 /. Экспериментальная установка собрана на основе спектрометра ядер отдачи (СЯО), работающего на внутреннем пучке синхрофазотрона. Поляризация ускоренного пучка дейтронов определялась с помощью полупроводникового поляриметра путем измерения лево-правой асимметрии сечения упругого $d\uparrow$ р-рассеяния при $-t = 0.025 (\Gamma \ni B/c)^2$ и импульсе пучка 2,38 ГэВ/с. Анализирующая способность реакции d↑p + dp при этих условиях известна. Мишенью служила пленка из полиэтилена СН2 или СО2 толщиной 2-3 мкм. Среднее значение векторной поляризации пучка составило:

<P> = 0,39 ± 0,015 (стат.) ± 0,04 (сист.).

Зависимость A_y в реакции $d\uparrow p$ при $-t = 0.025 (\Gamma \ni B/c)^2$ от импульса на нуклон дейтрона показана на рис.6, а зависимость



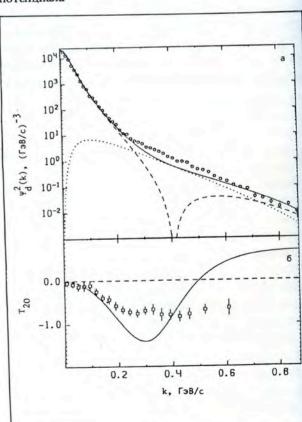

Рис.6. Векторная анализирующая способность упругого d $^{\uparrow}$ р-рассеяния; $^{\circ}$ — данные из работы $^{\prime 45}$ /

А_у в реакции d↑C → pX при импульсе 2,38 ГэВ/с от кинетической энергии регистрируемых протонов под углами 75° и 120° представлена в табл. 5. Из сравнения данных по анализирующей способности и поляризации в неупругой реакции следует предположение (см. /45 /) о возможном механизме неупругого взаимодействия адронов с ядрами через бинарные подпроцессы на нуклонах или других конституентах ядра.

Получены значения A_y для реакций $d\uparrow C \rightarrow pX$ и $d\uparrow C \rightarrow dX$ при энергии $d\uparrow$ 800 МэВ/нуклон $^{/4.6}$, которые хорошо

Таблица 5

θ = 75 $^{\circ}$ в лаб. системе			θ = 120 $^{\circ}$ в лаб. системе			
Е _р , МэВ	A_y	ΔA_y	Е _р , МэВ	A_y	ΔA_y	
80 - 100	-0,047	0,021	40 - 60	- 0,004	0,007	
100 - 120	-0,056	0,020	60 - 80	-0.010	0,009	
120 - 140	-0,039	0,024	80 - 100	-0.006	0,011	
140 - 160	-0,041	0,026	100 - 120	-0.016	0,014	
160 - 180	0,019	0,033	120 - 140	0,008	0,022	
180 - 200	0,037	0,020	140 - 160	-0.010	0,031	
200 - 220	0,021	0,024	160 - 180	-0.032	0,037	
220 - 240	0,059	0,027	180 - 240	0,158	0,074	
240 - 260	0,076	0,034			,,,,,	
260 - 280	0,087	0,040				
280 - 300	0,075	0,057				


На установке "Альфа-3C" при работе на пучке тензорно-поляризованных дейтронов синхрофазотрона получены новые результаты в исследовании структуры дейтрона

согласуются с экспериментальными данными для реакции $p^{\uparrow}C \rightarrow pX$, но противоречат предсказаниям модели прямого выбивания нуклонов.

На установке "Альфа-3С" в пучке тензорно-поляризованных дейтронов впервые измерены величины тензорной анализирующей способности $T_{2\,0}(k)$ в реакции $^{1\,2}$ C(d,p)с вылетом протонов под нулевым углом при $p_{d\uparrow}$ = 9,1 ГэВ/с в области импульсов протонов в системе покоя дейтрона до $k \approx 650 \text{ МэВ/c}^{/47}$. Средняя интенсивность пучка ускоренных поляризованных дейтронов составляла ~5·108 част./цикл. На рис.7 показаны зависимости T20(k) и импульсного распределения нуклонов в дейтроне от k из ранее полученных данных по фрагментации неполяризованных дейтронов в протон. Данная зависимость Т20 согласуется с моделью дейтрона, учитывающей кварковые степени свободы, однако нельзя одновременно удовлетворительно описать дифференциальные сечения и $T_{2\,0}$, используя эту модель.

Вместе с электронными установками СЯО, "Альфа-3С" в пучке d↑ с импульсом 3,34 ГэВ/с экспонировалась однометровая жидководородная пузырьковая камера 148/. Выбор величины импульса определялся, вопервых, из соображений максимальной и хорошо известной анализирующей способности водорода и, во-вторых, из возможности

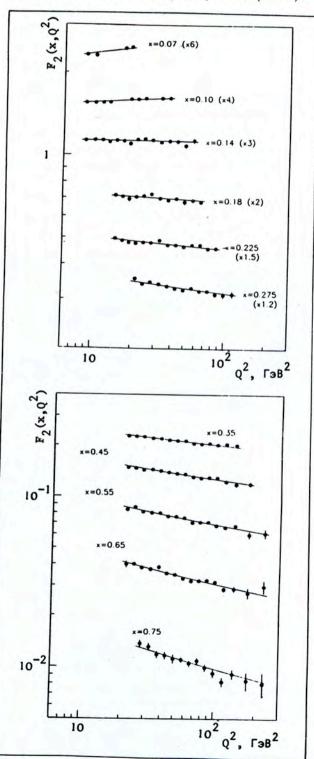
Рис.7. Зависимости импульсного распределения нуклонов в дейтроне (а) и тензорной анализирующей способности дейтрона T_{20} (б) от импульса протона в системе покоя дейтрона, полученные на установке "Альфа-3С"; о, □ — экспериментальные данные, сплошные линии — расчет: а — квадрат волновой функции дейтрона, б — импульсное приближение для парижского нуклон-нуклонного потенциала

сравнения с реакцией $dp \rightarrow ppn$ на неполяризованных дейтронах, большой обработанный материал по которой имеется. Отобрано и измерено $2\cdot10^4$ событий реакции $dp \rightarrow ppn$, ведется анализ результатов.

ЭКСПЕРИМЕНТ NA-4

Завершены обработка и анализ 1,8 млн событий глубоконеупругого мюон-водородного рассеяния при энергиях 100, 120, 200 и 280 ГэВ. Окончательная статистика отобранных событий намного больше, чем в любом другом из выполненных ранее экспериментов.

Структурная функция F_2 (x, Q^2) и отношение сечений поглощения продольно- и поперечно-поляризованных фотонов $R = \sigma_L / \sigma_T$ получены в кинематической области $x = -0.06 \div 0.8$ и $Q^2 = 7 \div 260$ Гэ B^2 .


Знание структурной функции в области малых х очень важно для оценки массы топкварка и числа нейтрино. Поэтому наблюдаемые расхождения с данными Европейской мюонной коллаборации в этой области вызвали необходимость дополнительных тщательных проверок систематических ошибок. Они подтвердили надежность результатов эксперимента NA-4 и показали, что несмотря на их высокую статистическую обеспеченность систематические ошибки сравнимы со статистическими.

Нарушение скейлинга, четко видное в Q² -зависимости структурной функции, проанализировано в рамках КХД с помощью двух подходов. Предсказания теории как в лидирующем, так и в следующем порядке прекрасно согласуются с экспериментом. Наблюдаемое отличие отношения R от нуля в области малых х хорошо согласуется с предсказанием КХД. Анализ проведен не только в несинглетном приближении, но и в полном, синглет + несинглет, подходе. Структурная функция $F_2(x, Q^2)$ представлена на рис. 8 вместе с теоретическими кривыми. При этом впервые получена оценка степени глюонного распределения в следующем порядке теории $\eta = 9 \pm 2$ при $Q^2 = 5 \Gamma \ni B^2$. Полученное значение КХД масштабного параметра согласуется

Рис.8. Структурная функция протона $F_2(x,Q^2)$, полученная в эксперименте NA-4

в пределах статистических ошибок с результатами аналогичного анализа данных, полученных нами ранее на углеродной мишени, несмотря на существенно разные х-зависимости нарушения скейлинга, наблюдаемые в этих двух экспериментах. Это обстоятельство можно рассматривать как дополнительное подтверждение теории.

Из результатов этих двух экспериментов получено Λ =220 \pm 15 (стат.) \pm 50 (сист.).

СОЗДАНИЕ НОВЫХ ЭКСПЕРИМЕНТАЛЬНЫХ УСТАНОВОК, РАЗВИТИЕ МЕТОДИКИ

В 1988 г. в ЛВЭ продолжалась разработка и создание новых комплексов физической аппаратуры для экспериментов на синхрофазотроне, У-70 и УНК ИФВЭ, LEP ЦЕРН.

1. Проведены сборка, наладка и испытания адронного калориметра (АК) установки DELPHI в подземном зале LEP (ЦЕРН). Осуществлены работы по модернизации высоковольтного питания детекторов АК. На пучках синхрофазотрона продолжались исследования долговременной стабильности детекторов и полномасштабного прототипа АК с использованием радиоактивного источника, космических лучей и частиц, ускоренных на синхрофазотроне. Изучена возможность использования уже созданной считывающей электроники совместно со специально разработанным предусилителем в насыщенном пропорциональном режиме работы детекторов АК /49 /, а также использования АК в качестве мюонного триггера установки. Показано, что переход в указанный режим не ухудшает основные характеристики АК и существенно повышает надежность его детекторов.

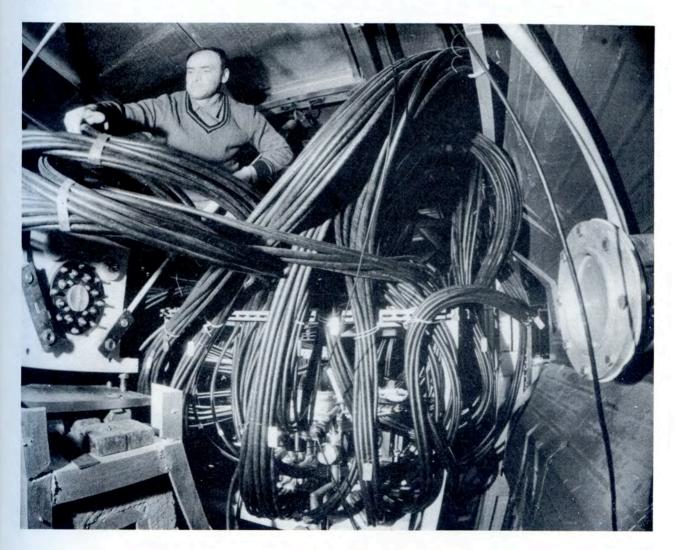
В рамках участия ЛВЭ в подготовке эксперимента DELPHI выполнен комплекс работ по созданию терминальной станции связи с вычислительным центром ЦЕРНа 1501.

- 2. Разработан проект центральной трековой системы универсального калориметрического детектора (УКД) для встречных пучков УНК.
- 3. Выполнены работы по проектированию струйной поляризованной мишени непрерывного действия (проект "Парус-Нептун"). Проведено математическое моделирование и стендовые испытания шестиполюсных магнитов.

Создан криостат для стабилизации газообразного атомарного водорода при низких температурах в сильных магнитных полях $^{/5\,1\,/}$. В первых экспериментах при $T=0.44~\rm K$ и $B\approx 7~\rm Tл$ достигнута плотность $\approx 10^{1\,3}~\rm atom/cm^3$, остававшаяся стабильной в течение одного часа.

Проводились работы по созданию полупроводникового спектрометра медленных частиц. При участии Радиевого института (Ленинград) и НПО "Тесла" (ЧССР) изготовлены и испытаны образцы полупроводниковых детекторов.

- 4. В рамках работ по проекту "Меченые нейтрино" изготовлены кассеты модулей адронного калориметра, начата сборка и монтаж модулей в установке. Изготовлены 50 зеркал для оптической системы и узлы черенковского счетчика, проведен его монтаж. Подготовлен набор программ для оптимизации условий эксперимента.
- 5. Проводились монтаж и наладка узлов и систем установок "Чарм", СВД, ТПК-2М, продолжалось изготовление оборудования, выполнялось моделирование экспериментов. В том числе завершены такие этапы:
- методический пуск быстроциклирующей пузырьковой камеры вершинного детектора спектрометра СВД;
- монтаж павильона для установки БИС-2М на ускорителе ИФВЭ (Протвино).
- 6. Изготовлены три сцинтилляционных годоскопа переднего детектора установки "Сфера", включающие 80 сцинтилляционсчетчиков с размерами радиаторов Смонтировано 20 сцин-100 х 4 х 0,5 см. тилляционных счетчиков для четвертого годоскопа. Изготовлен ряд узлов сверхпроводящей магнитной системы: кожух, механизм управляемых токовводов, модифицированный теплообменник сателлитного рефрижератора и др. Выполнено моделирование эффективности регистрации π° -, η° -, η° '-мезонов, сделаны оценки разрешения по эффективной массе и требуемых параметров детекторов у-квантов. Разработана система в стандарте FUSTBUS для измеревременных интервалов и быстрых сигналов на установке /52/ аналоговых Программное обеспечение позволяет осуществить связь управляющей ЭВМ с магист-FUSTBUS, тестирование модулей, сбор и обработку данных, а также представление результатов.


7. Завершен большой этап работы по созданию установки для облучения ядерных фотоэмульсий в сильном магнитном поле (проект "Слон"). Установка включает в себя конденсаторную батарею на энергию $\sim 1,5 \, \text{МДж}$ (576 конденсаторов $C_0 =$ = 200 мкФ, $U_0 = 5 \text{ кB}$), систему мощных вакуумных разрядников, способных коммутировать импульсные токи до 1 МА, коллектор тока, осуществляющий сбор параллельных ветвей тока и их объединение в рабочем объеме импульсного магнита. системы и устройства заряда конденсаторной батареи, эвакуации энергии, синхронизации, магнитометрии, контроля, измерения, управления, блокировки и сигнализации и др.

В конце 1988 г. осуществлена комплексная наладка модуля установки "Слон" на

энергию $\sim 300 \ \mathrm{kДж}$ и получено магнитное поле $\sim 20 \ \mathrm{Tr}$ в объеме более $35 \ \mathrm{cm}^3$. Все основные системы установки работали надежно, обеспечена устойчивая повторяемость срабатывания коммутатора при токе до $500 \ \mathrm{kA}$.

8. Совершенствовались системы спектрометра ГИБС: система контроля режимов работы стримерной камеры и качества экспериментальной информации 1531, система высоковольтного питания и другие. Накоплен положительный опыт эксплуатации импульсного генератора с параметрами $U \cong 500$ кВ (нестабильность амплитуды $\leq 1\%$), Т $\cong 12$ нс^{/5 4 /}. Генератор обеспе- $\sim 2.35 \cdot 10^{5}$ срабатываний, из них $\sim 1,55 \cdot 10^5$ совместно со стримерной камерой (~900 часов работы без ремонта).

Завершен большой этап работ по созданию установки для облучения ядерных фотоэмульсий в сильном магнитном поле — проект "Слон". На снимке: в центре — блок коммутаторов тока, слева — импульсный магнит

ЭЛЕКТРОНИКА, СИСТЕМЫ ОБРАБОТКИ ДАННЫХ, ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

1. Создан ряд модулей электронной аппаратуры в стандартах КАМАК, FUSTBUS и VME для спектрометров физики высоких энергий. В стандарте FUSTBUS разработаны, в частности, 16-канальный 8-разрядный АЦП с временем преобразования 20 нс; 8-канальный быстрый АЦП с внутренней памятью глубиной 256 8-разрядных слов; 16-канальный измеритель временных интервалов со скоростью счета до 300 МГц; 32-канальный входной сдвиговый регистр глубиной 8 слов с частотой стробирования информации до 200 МГц и др. 15 5 1.

Разработан многоцелевой параллельный интерфейс-модуль VME 1.0 в стандарте VME/56/, имеющий следующие возможные применения: интерфейс ЭВМ или другого источника программ (например, на основе ПЗУ), подключаемый через стандартную или нестандартную для ЭВМ карту параллельного ввода-вывода данных, а также интерфейс для шины VME внешних устройств параллельного ввода-вывода данных (АЦПУ и т.п.).

В состав комплекса аппаратуры установки "Альфа" введен многоканальный блок с управляемыми задержками для регистрации сигналов, поступающих по длинному кабелю (~200 м) от сцинтилляционных годоскопов 15 л. Наряду с функциями усиления и формирования сигналов по 18 каналам предусмотрено ручное управление задержкой по каждому из каналов в пределах 0 ÷ 15 нс с шагом 3 нс.

2. Разработанный ранее метод синдромного кодирования для паралелльных систем регистрации и обработки данных в спектрометрах физики высоких энергий предложено использовать в последовательных устройствах, таких как кольцевые счетчики и сдвиговые регистры с логической обратной связью /5 8 /.

Рассмотрена эффективность алгоритма выполнения операции умножения одновременно над многими элементами в поле Галуа GF(2) на конкретном примере схемы для одновременного умножения 15 элементов 15 9 1.

3. Разработана и внедрена система программ (РСЕS) для использования ПЭВМ "Правец-16" в качестве интеллектуального графического терминала ЕС ЭВМ/60/. РСЕS эмулирует работу алфавитного-цифрового терминала ЕС-7906 с командами экранного редактирования, обеспечивает обмен текстовыми файлами между ПЭВМ и ЕС ЭВМ. Расширенный базовый пакет графических программ ЕС ЭВМ генерирует изображение в терминах графического процесса программы РСЕS. Изображение пересылается на ПЭВМ, отображается на экране и может храниться на диске ПЭВМ.

Создана программа расчета параметров атомного пучка источников поляризованных частиц и струйных поляризованных мишеней на ПЭВМ "Правец-16", имеющей сопроцессор 1611.

СОВЕРШЕНСТВОВАНИЕ УСКОРИТЕЛЬНОЙ БАЗЫ ЛАБОРАТОРИИ. СОЗДАНИЕ НУКЛОТРОНА

1. Обеспечена эффективная работа синхрофазотрона на физический эксперимент, выполнен ряд работ по совершенствованию ускорительного комплекса. Улучшены системы источника поляризованных дейтронов ПОЛЯРИС. Создана устойчивая к сильным электрическим помехам система контроля параметров источника 1621. Интенсивность ускоренного до конечной энергии (более 9 ГэВ) пучка $d\uparrow$ составил $1,1\cdot10^9$ част./цикл.

Проведены работы по стендовому электронно-лучевому ионизатору "Крион-С". На основе численного анализа выбрана наиболее приемлемая конфигурация магнитных полюсов, предложена и реализована методика измерения однородности магнитного поля в области формирования

электронного пучка $^{16\ 3\ 7}$, получен постоянный электронный пучок с током 0,15 A при энергии 80 кэВ и плотности тока $300\ {\rm A/cm^2}$.

Проведены трудоемкие работы по созданию системы каналов на втором направлении медленного вывода пучка из синхрофазотрона (контур радиационной защиты, монтаж линз, магнитов, юстировка и т.д.).

Существенно улучшена система фокусировки пучка, выводимого по второму направлению МВ-2. С этой целью на краю блока магнита ускорителя в районе вывода установлены полюсные наконечники, создающие градиент поля для фокусировки пучка по горизонтали. В результате размер пучка на входе в канал транспортировки уменьшился на порядок величины 1641. Для канала медленного вывода пучка разработана и изготовлена универсальная станция диагностики, включающая сцинтилляционные счетчики, многопроволочные ионизационные камеры (ПИК), телевизионные экраны, цилиндрические ионизационные камеры для измерения абсолютной интенсивности пучка и другие устройства 1651. Введена в опытную эксплуатацию система контроля радиационной безопасности (АСКРБ), что позволило снять ограничения на интенсивность ускоренного и выведенного пучка. АСКРБ включает 64 датчика нейтронного излучения, расположенные в различных точках здания и территории, прилегающей к синхрофазотрону. Реализован ряд функций АСКРБ, включая блокировку пучка при превышении нормативных значений доз за смену, месяц или при аварийных ситуациях.

Синхрофазотрон в 1988 г. отработал 4242 ч, из них на физический эксперимент 3320 ч, на совершенствование систем ускорителя 594 ч. Коэффициент одновременно-

сти экспериментов составил $k \approx 4,0$. Пучки ускорителя были использованы 15 группами экспериментаторов лабораторий Института (ЛВЭ, ЛЯП, ЛВТА), а также ИЯИ АН СССР, ИАЭ им. И.В.Курчатова, МГУ и др.

2. Продолжалась работа по созданию нуклотрона. Производились сборка и массовые комплексные испытания дипольных магнитов. Разработана методика коррекции асимметрии магнитного поля, позволившая свести к заданному допуску (<10-4 от значения основного поля) величины квадрупольной, октупольной и других четных гармоник поля 1661. Проведены полномасштабные испытания образца квадрупольной экспериментальные стендовые исследования, необходимые для оптимизации конструкции ее обмотки. Более половины дипольных магнитов прошли полные испытания в рабочем режиме при токе возбуждения более 7 кА и частоте циклов 1 Гц. Проведены испытания в рабочем криостатном режиме цепочки из четырех дипольных магнитов. Создан стенд для комплексных исследований суперпериодов (1/8 часть магнитной системы нуклотрона).

Для системы криогенного обеспечения смонтированы 11 компрессорных установок, проведена их обвязка необходимыми трубопроводами, начаты поузловые испытания. Установлено крупногабаритное оборудование 2 гелиевых ожижителей КГУ-1600/4,5.

Полностью подготовлен тоннель для размещения магнитной системы. Сдана в опытную эксплуатацию система питания СПмагнитов и линз. Создан макет высокочастотной ускоряющей станции.

Для систем автоматизации и контроля пучка изготавливаются модули электроники, датчики и др.

ПРИКЛАДНЫЕ ИССЛЕДОВАНИЯ. РАБОТЫ ПО ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДИМОСТИ

1. Изготовлены устройства для измерения критических токов, температуры и магнитной восприимчивости образцов ВТСП. Измерена зависимость от температуры транспортного критического тока $I_{\mathbf{c}}$ и вольт-

амперных характеристик образцов из керамик $Ba_2 Cu_3 O_7$ и $Bi_2 Sr_2 CaCu_2 O_8$ /6 7 /. Сделан вывод о различных механизмах диссипации транспортного тока в этих керамиках. Исследовано влияние облучения пучка-

ми протонов с энергией 0,66 и 8,1 ГэВ и ядрами углерода с энергией 3,65 ГэВ/нуклон на критическую температуру (T_c) и плотность критического тока (j_c) иттриевой керамики. Доза облучения варьировалась от $5\cdot10^3$ до $3\cdot10^8$ Гр. Деградация T_c и j_c ВТСП-керамики оказалась сильнее, чем у сверхпроводников на основе NbTi сплава $^{16\,8}$ Исследовалась также намагниченность керамики Ba_2 Cu_3 O_{7-x} после облучения релятивистскими ядрами углерода $^{16\,9}$ / .

2. Разработан уровнемер непрерывного отсчета для криогенных жидкостей^{/71}. Технические параметры уровнемеров приведены в табл. 6.

Таблица 6

	Кидкий N	Жидкий Не	
Активная длина, см Погрешность	50	60	
измерения уровня, % Кратковременная	1	5	
стабильность, %	0,01	0,2	
Разрешение, мм	0,5	1	

- 3. Измерена магнитная восприимчивость стеклотекстолита, эбонита, текстолита, фторопласта, оргстекла, капролона и эпоксидной смолы в полях от 0 до 2000 Э при $4.2~\mathrm{K}^{\prime 700}$. Измерения проводились на магнитометре со сквидом, чувствительность которого по магнитному моменту составляет $3\cdot10^{-13}~\mathrm{A\cdot M}^2\cdot\Gamma\mathrm{u}^{-1/2}$.
- 4. Продолжалась разработка систем на основе координатных детекторов для использования в биологии, медицине, промышленности. Создан и передан в Институт кристаллографии АН СССР линейный позиционно-чувствительный рентгеновский детектор для дифрактометрии белковых монокристаллов. Число каналов 1000, эффективность $\sim 75\%$ ($E_{\gamma} \approx 8 \text{ кэВ}$), пространственное разрешение $\sim 0.15 \text{ мм}$.

Разработан совместно с ФИАН макет двумерного координатного детектора с высокой чувствительностью на основе МПК, заполняемой 3 Не. Размеры детектора 260 х 130 мм. Ожидаемое пространственное разрешение при регистрации тепловых нейтронов $1,5 \div 2$ мм.

Выполнены методические разработки и исследования твердотельного координатного детектора с использованием ПЗС-матрицы.

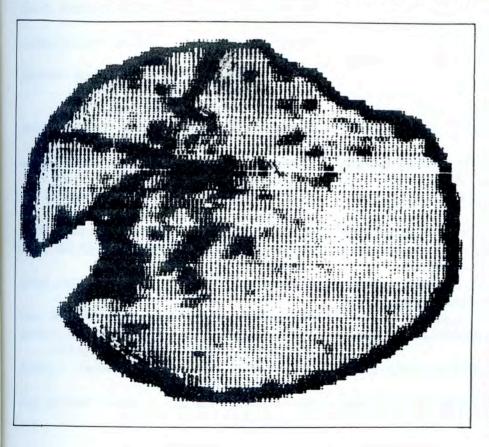


Рис.9. Радиографическое изображение пленки кристалла CdWO₄

Проведены исследования характеристик детектора с различными сцинтилляторами. На рис.9 показано радиографическое изображение кристалла CdWO₄ (толщина

 ~ 40 мкм, максимальный размер ~ 15 мм), облучаемого рентгеновскими лучами $\rm E_{\gamma} \approx 10$ кэВ. Темные пятна на снимке соответствуют дефектам поверхности кристалла.

ЛИТЕРАТУРА

- 1. Алеев А.Н. и др. ОИЯИ Д1-88-368, Дубна, 1988.
- 2. Алеев А.Н. и др. ОИЯИ Д1-88-369, Дубна, 1988.
- 3. Алеев А.Н. и др. ОИЯИ Р1-88-397, Дубна, 1988.
- 4. Крастев В.Р. и др. ОИЯИ Р1-88-31, Дубна, 1988.
- Алеев А.Н. и др. ОИЯИР1-88-51, Дубна, 1988.
- 6. Троян Ю.А. и др. ОИЯИ Д1-88-329, Дубна, 1988.
- 7. Любошиц В.Л. ОИЯИР2-88-507, Дубна, 1988.
- 8. Кечечян А.О., Шахбазян Б.А. В сб.: Краткие сообщения ОИЯИ, № (32)-88, Дубна, 1988, с.4.
- 9. Балгансурен Я. и др. ОИЯИР1-88-503, Дубна, 1988.
- 10. Собчак Т. и др. ОИЯИР1-88-393, Дубна,1988.
- 11. Батюня Б.В. и др. ОИЯИ P1-88-45, Дубна, 1988.
- 12. Батюня Б.В. и др. ОИЯИ Р1-88-327, Дубна, 1988.
- 13. Балдин А.М. и др. ОИЯИ Р1-88-331, Дубна, 1988.
- 14. Любимов В.Б., Тогоо Р. В сб.: Краткие сообщения ОИЯИ, №7(33)-88, Дубна, 1988, с.5.
- 15. Беляев И.М. и др. ОИЯИ 13-88-341, Дубна, 1988.
- 16. Беляев И.М. и др. В сб.: Краткие сообщения ОИЯИ, №7(33)-88, Дубна, 1988, с.38.
- 17. Беляев И.М. и др. ОИЯИ Р1-88-33, Дубна, 1988.
- Гиордэнеску Н. и др. В сб.: ІХ Межд. семинар по проблемам физики высоких энергий. ОИЯИ, Д1,2-88-652, Дубна, 1988, т.1, с.212.
- 19. Ставинский В.С. В сб.: IX Межд. семинар по проблемам физики высоких энергий. ОИЯИ, Д1,2-88-652, Дубна, 1988, т.1, с.190.
- 20. Гулканян Г.Р. и др. ОИЯИ Р1-88-143, Дубна, 1988.
- 21. Гулканян Г.Р. и др. ОИЯИ Р1-88-685, Дубна, 1988.
- 22. Абрамян Х.У. и др. ОИЯИ P1-88-334, Дубна, 1988.

- 23. Гулканян Г.Р. и др. ОИЯИ Р1-88-226, Дубна, 1988.
- 24. Бекмирзаев Р.Н. и др. ОИЯИ Р1-88-196, Дубна, 1988.
- 25. Бекмирзаев Р.Н. и др. ОИЯИ Р1-88-617, Дубна, 1988.
- 26. Гришин В.Г. и др. ОИЯИ P1-88-520, Дубна, 1988.
- 27. Агакишиев Г.Н. и др. ОИЯИ P1-88-154, Дубна, 1988
- 28. Strugalski Z. JINR E1-88-639, Dubna, 1988.
- 29. Strugalski Z. JINR E1-88-211, Dubna, 1988.
- 30. Мехтиев Р.Р., Чеплаков А.П. ОИЯИ Р1-88-760, Дубна, 1988.
- 31. Бацкович С. и др. ОИЯИ Р1-88-858, Дубна, 1988.
- 32. Оконов Э.О., Хусаинов Е.К. ОИЯИ Р1-88-546, Дубна, 1988.
- 33. Краснов С.А. и др. ОИЯИ Р1-88-389, Дубна, 1988.
- 34. Краснов С.А. и др. ОИЯИ Р1-88-252, Дубна, 1988.
- 35. Абдурахимов А.У. и др. ОИЯИ P1-88-406, Дубна, 1988.
- 36. Pluta J. JINR E1-88-754, Dubna, 1988.
- 37. Карев А.Г. и др. -ОИЯИ Р1-88-110, Дубна, 1988.
- 38. Брандт Р. и др. ОИЯИ, Д1,2-88-272, Дубна, 1988, с.51.
- 39. Дамдинсурен Ц. и др. ОИЯИ Р1-88-135, Дубна, 1988.
- 40. Kozma P. et al. JINR E1-88-244, Dubna, 1988.
- 41. Воронко В.А. и др. ОИЯИ Р1-88-294, Дубна, 1988.
- 42. Воронко В.А. и др. ОИЯИ Р1-88-703, Дубна, 1988.
- 43. Авраменко С.А. и др. В сб.: IX Межд. семинар по проблемам физики высоких энергий, ОИЯИ, Д1,2-88-652, Дубна, 1988, т.2, с.172.
- 44. Стрельцов В.Н. ОИЯИ P2-88-61, P2-88-173, P2-88-626, Дубна, 1988.
- 45. Авдейчиков В.В. и др. ОИЯИ Р1-88-796, Дубна, 1988.

- 46. Beznogikh G.G. et al. JINR E2-88-609, Dubna, 1988.
- 47. Ableev V.G. et al. JINR E1-88-250, Dubna, 1988.
- 48. Глаголев В.В. и др. ОИЯИ Р1-88-6, Дубна, 1988.
- 49. Водопьянов А.С. и др. ОИЯИ Д13-88-614, Дубна, 1988.
- 50. Водопьянов А.С. и др. ОИЯИ P11-88-92, Дубна, 1988.
- 51. Luppov V.G., Mertig M., Pilipenko Yu.K. In: JINR Rapid Communications, No. 5(31)-88, Dubna, 1988, p.21.
- 52. Афанасьев С.В. и др. ОИЯИ 13-88-619, Дубна, 1988.
- 53. Бжески П. и др. ОИЯИ 13-88-686, Дубна, 1988.
- 54. Аксиненко В.Д. и др. ОИЯИ 13-88-35, Дубна, 1988.
- 55. Вейс М. и др. ОИЯИ 13-88-618, Дубна, 1988.
- 56. Черных Е.В. ОИЯИ Р10-88-72, Дубна, 1988.
- 57. Науманн Л. и др. ОИЯИ P10-88-353, Дубна, 1988.
- 58. Никитюк Н.М. **ОИЯИ P10-88-742**, **Дубна**, 1988.

- 59. Никитюк Н.М. ОИЯИ P11-88-852, Дубна, 1988.
- 60. Балашов В.К. и др. ОИЯИ Р10-88-502, Дубна, 1988.
- 61. Куликов М.В. и др. ОИЯИ 13-88-470, Дубна, 1988.
- 62. Жигулин И.В., Шутов В.Б. ОИЯИ Р11-88-608, Дубна, 1988.
- 63. Куликов Ю.В. и др. ОИЯИ Р9-88-263, Дубна, 1988.
- 64. Василишин Б.В. и др. ОИЯИ Р9-88-738, Дубна, 1988, с. 183.
- 65. Булдаковский В.Н. и др. ОИЯИ 9-88-384, Дубна, 1988.
- 66. Донягин А.М. и др. ОИЯИ Р9-88-644, Дубна, 1988.
- 67. Drobin V.M., Dyachkov E.I., Trofimov V.N. In: JINR Rapid Communications, No. 4(30)-88, Dubna, 1988, p.95.
- 68. Александров А.С. и др. Там же, с.73.
- 69. Гончаров И.Н. и др. Там же, с. 78.
- 70. Владимирова Н.М., Карпунина И.Е. ОИЯИ P14-88-789, Дубна, 1988.
- 71. Величков И.В., Дробин В.М. ОИЯИ 8-88-213, Дубна, 1988.