ДУБНА•1977

ОБЪЕАИНЕННЫЙ ИНСТИТУТ ЯАЕРНЫХ ИССЛЕАОВАНИЙ

JOINT INSTITUTE FOR NUCLEAR RESEARCH I977 • DUBNA

Проблемнотематический план Объединенного
 института
 ядерных
 исследований
 на 1977 год

Научная деятельность Объединенного института ядерных исследований проводилась в соответствии с Проблемно-тематическим планом научно-исследовательских работ и международного научно-технического сотрудничества лабораторий Института, утвержденным Ученым советом ОИЯИ на его XLI сессии.

При утверждении плана Ученый совет отметил как нанболее важные следующие направления.

Лаборатория теоретической физики

1. В области квантовой теории поля и теории элементарных частиц:

- исследование глубоконеупругих процессов с большим переданным импульсом;
- изучение динамики кварков и составных кварковых моделей элементарных частиц;
- исследование ультрафиолетовых асимптотик и разработка методики аналитических вычислений на ЭВМ в теории поля и теории конденсированных сред.

2. В области развития теории атомного ядра и ядерных реакций:

- изучение структуры ядерных состояний с промежуточной и высокой энергией возбуждения;
- развитие теории взаимодействия элект ронов и ядерных частиц с ядрами;
- исследования по релятивистской ядерной физике.

3. Развитие теории конденсированных сред.

Лаборатория
высоких энергий

1. Физические исследования на ускорителях:

- исследования закономерностей множест венного образования частиц с помощью двухметровой пропановой пузырьковой камеры, камеры "Людмила", метровой водородной пузырьковой камеры; поиск новых частиц с помощью установки БИС и фотоэмульсий;
- исследование поведения амплитуд бинарных реакций с использованием материалов по
$\pi^{-} \mathrm{p}-, \mathrm{pp}-, \mathrm{pd}-\mathrm{n} \mathrm{pHe}$ - рассеянию в широкой области энергий от 4 до 500 ГэВ, полученных с помощью установки "Фотон" на смнхрофазотроне и в экспериментах на ускорителе НУЛ /Батавия/;
- исследования по релятивистской ядерной физике с помощью материалов, полученных на установках "Диск-2", "Альфа", СКМ-2ОО, спектрометре ядер отдачи, двухметровой пропановой и мет ровой жидководородной пузырько вых камерах;
- исследование электромагнитной структуры элементарных частиц с использованием ма териалов, полученных в эксперименте по π еи $\mathbf{K}^{-}{ }^{-}$- рассеянию при высокой энергии.

2. Методические исследования:

- развитие синхрофазотрона как релятивистского ускорителя ядер, формирование ин жекционного комплекса;
- улучшение качества пучков синхрофазотрона и источников многозарядных ионов, развитие системы каналов частиц в корп. 205 на основе медленного вывода;
- проведение проектных и исследователь ских работ по жесткофокусирующему ускорителю релятивистских ядер - нуклотрону;
- разработка и внедрение в эксперимент современной электроники и детекторов, запуск EC-104O;
- развитие криогенных систем, создание сверхпроводящих магнитов для ускорительнонакопительного комплекса н нуклотрона.

Лаборатория
 ядерных проблем

1. Физические исследования на ускорителях:

- иследование структуры частиц, проверка законов сохранения и симметрий взаимодейст внй;
- исследование процессов взаимодействий мезонов н протонов с нуклонами и ядрамн, в том чнсле понск сверхплотных атомных ядер;
- нсследование мезоатомных и мезомолекулярных процессов на мезонных пучках синхроциклотрона, включая изучение подбарьерного механизма диффузии положительных мюонов в металлах;
- изучение свойств средних и тяжелых ядер в экспериментах по программе ЯСНАПП, в том числе изучение угловых корреляций нзлучений с помощью прототипа установки "Спин";
= завершение набора статистики в исследованиях дифракционной диссоциации пионов

и каонов на ядрах с помощью МИС и начало массовой обработки экспериментального материала;

- понск новых нестабильных частиц с кван товым чнслом "шарм" и супергиперфрагментов при взаимодействии нейтрино и протонов высокой энергни с ядрами;
- исследование поляризационных явлений в нуклон-нуклонном н мезон-протонном рассеяниях.

2. Методические исследования:

- проведенне работ по созданню новых установок / АРЕС, СПИН, ГОДЕСК/ н аппаратуры для ядерно-физнческих и медико-бнологических нсследованнй на установке "Ф";
- разработка современной электронной аппаратуры, в том чнсле в стандарте КАМАК, и оснащение ею экспериментов, проводимых на синхроциклотроне и 70-ГэВ синхротроне; освоение ЭВМ ЕС-104О и расширение использования малых ЭВМ для работы на линии с экспериментальной аппаратурой;
- завершение работ по созданию узлов установки РИСК н начало монтажа ее в ИФВЭ;
- проведение работ по созданию ряда крупных узлов установки "Гиперон" и отладка пучковой части спектрометра;
- разработка большой "замороженной" поляризованной мишени для поляризацнонных экспериментов.

3. Разработки в области ускорительной техники:

- обеспечение работ по созданию установки " Φ ", проведение механических и раднотехнических испытаний вариатора частоты;
- разработка и конструированне системы электростатического вывода пучка и системы управления установкой, разработка поляризованного источника ионов;
- запуск ускорителя $У$ - $\mathbf{1 2 O M}$ в Инстнтуте ядерной фнзики ЧСАН;
- проведение исследовательских работ по суперциклотрону.

Лаборатория

ядерных реакций

1. Работы по созданию ускорителя тяжелых ионов У-40О.
2. Синтез н изучение физнческих и химнче ских свойств сверхтяжелых элементов / Z = $=110-116 /$ на пучках ионов кальция-48.
3. Синтез и изучение свойств тяжелыхизотопов трансурановых элементов с $\quad 7 \geq 104$.
4. Поиск сверхтяжелых элементов в природе.
5. Синтез и нзучение свойств ядер, удаленных от линни бета-стабильности.
6. Изучение механизма взаимодействня сложных ядер.
7. Проверка принципиальных вопросов квантовой электродинамики в условнях сверхсильных электромагнитных полей, возннкающих при столкновении тяжелых ядер.
8. Практическое использование тяжелых ионов для решения научно-техннческих задач с учетом интересов стран-участниц ОИЯИ.
9. Работы, связанные с запуском циклотрона У-20ОП для Варшавского уннверситета.
10. Улучшение параметров циклотрона y-300.

Лаборатория нейтронной физики

1. Завершение подготовки и осуществление физнческого пуска реактора ИБР-2 /без натриевого контура охлаждения/ и подготовка к энергетнческому пуску ИБР-2; проведенне экспериментально-конструкторских разработок по комплексу ИБР-2 с инжектором ЛИУ-3О, курирование строительно-монтажных работ.
2. Экспериментальная проверка, проектирование, макетирование, изготовление и наладка отдельных систем ускорителя ЛИУ-30.
3. Изготовление физической аппаратуры первой очереди для исследований на ИБР-2.
4. Создание первой очереди измерительновычнслительного центра ИБР-2 с целью обеспечения первоочередных физических экспериментов к энергетическому пуску ИБР-2.
5. Изучение атомных ядер с помощью нейтронов и заряженных частиц.
6. Изучение свойств ультрахолодных нейтронов и фундаментальных свойств нейтрона.
7. Изученне конденсированных сред, а также сложных соединений биологических объектов с помощью нейтронов.
8. Подготовка и развитие прикладных исследований.

Лаборатория
вычислительной техники и автоматизации

1. Развитие и эффективное использование центрального вычислительного комплекса:

- разработка проекта увеличения памяти на магнитных дисках ЕС-5061 для ЭВМ БЭСМ-6;
- создание первой очереди сети терминальных устройств на базе малой ЭВМ и БЭСМ-6;
- проведение на ЭВМ БЭСМ-6 модификации операцнонной системы в связи с подключением терминалов и их концентратора.

2. Развитие и эффективное использование автоматических н полуавтоматических систем измерений камерных снимков / НРD, АЭЛТ, СИ, ПУОС-САМЕТ-БЭСМ-4/:

- разработка на спиральных измерителях режима фильтрации данных в реальном времени, разработка аппаратуры и программного обеспечения для автоматизации просмотра;
- проведение на АЭЛТ-2 методических измерений снимков с МИС.

3. Разработка методов расчета и создание зистем обработки экспериментальных данных:

- создание и развитие математического обеспечения для установок БИС-2, "Фотон" и "Альфа";
- продолжение работ по созданию и развитию системы программ модульной структуры, а также по математическому обеспечению системы обработки спектрометрической информации;
- разработка и применение новых методов численного решения нелинейных и квазистационарных физнческих задач;
- разработка новых алгоритмов и развитие библиотеки программ решення задач, связанных с исследованиями, проводимыми в Лаборатории теоретической физики.

4. Исследования по релятивистской ядерной физике и физике резонансов:

- изучение ядерных процессов при релятивистских энергиях при помощи магнитного спектрометра с искровыми камерами и установки СКМ-2ОО;
- изучение процессов множественного образования частиц в пион-нуклонных, нейтронпротонных и в пион-ядерных взаимодействиях при высоких энергиях.

новых методов

ускорения
Ускорение тяжелых ионов впрототипе Ути.

Научноисследовательские работы, выполненные лабораториями ОИЯИ в 1977 году

Лаборатория
 высоких

энергий

Научно-исследовательские работы

Поведение амплитуд рассеяния в зависимости от энергии взаимодействующих частиц

Закончен набор статистики в эксперименте по изучению упругого рp- и pd рассеяния в области интерференции кулоновского и ядерного рассеяния при энергиях 50-400 \quad ГэВ на ускорителе НУЛ /Батавия/. Измерены дифференциальные сечения $\mathrm{d} \sigma / \mathrm{dt}$ упругих процессов при 6 значениях энергии для pp-pacсеяния и величинах $|\mathrm{t}|=$ $=0,0005 \div 0,03 / \Gamma э B / c /^{2}$, а также при 8 значениях энергии для pd -рассеяния

и величинах $|\mathrm{t}|=\mathrm{O}, \mathrm{OO1}-\mathrm{O}, \mathrm{O8} /$ ГэВ $/ \mathrm{c} /^{2}$. Завершен набор статистики в эксперименте по изучению упругого pHe - рассеяния на малые углы с помощью гелиевой струйной мишени. При энергии 40 и 300 ГэВ получены предварительные данные о зависимости дифференциального сечения от величины |t|/puc. 1/, из которых следует, что сужение в дифракционном конусе наблюдается. Экспериментальные данные об энергетической зависимости параметра наклона упругого рр-и pd-рассеяния также указывает на различную скорость сужения дифракционных конусов при энергиях свыше 70Γ ГВ, что противоречит представлению

Рис. 1. Зависимость дифференциального сечения упругоzо рНе -рассеяния от величины переданного импульса $|t|$ при энергии 40 и 300 ГэВ/nо предварительным данным/.

о доминирующем вкладе померона /рис. 2/. Для упругого pHe -рассеяния при $|\mathrm{t}|=0,24 / \Gamma э В / с /{ }^{2}$ и энергиях 40 и 300 ГэВ проявляется разная глубина глауберовского минимума, что естественно объяснить различной величиной $\rho=\operatorname{ReA} / \operatorname{ImA}$ при этих двух энергиях $/ \rho_{\mathrm{pN}}$ при энергии 280 ГэВ меняет знак/.

Рис. 2. Энергетические зависимости параметров наклона дифракиионных конусов $p p, p D$, $p H e$, Hep, НеD упругого рассеяния, полученные из описания экспериментальных данных по формуле $d \alpha!d t=F^{2}(t) \exp [b(s) \cdot t]$, где $F(t)$ - произведение формфакпоров взаимодействующих ядер, bпараметр наклона конуса.

За 2 сеанса работьи на синхрофазотроне с помощью установки "Фотон" на водородной мишени записано на магнитные ленты 320 тыс. рабочих запусков установки и 40 тыс. - на ядерных мише нях при импульсах π-мезонов 3,3 и 4,75 ГэВ/с. Обработано 150 тыс. рабочих запусков установки по выделению и анализу реакции $\pi-\mathrm{p} \rightarrow \mathrm{n} \eta^{\circ}$ в области малых переданных импульсов $|t|=$ $=$ O,O1-O,3 / ГэВ/с/ ${ }^{2}$.При малых вели-

чинах $|\mathrm{t}|$ обнаружен заметный минимум, указывающий на существенную роль ам плитуды, с изменением спиральности /puc. 3/.

Рис. 3. Дифференциальное сечение реакиии $\pi^{-p} \rightarrow$ $\rightarrow \eta^{\circ}$; - оанные эксперимента ОИЯИ/.

Механизм рождения

 и распада частиц и резонансов.Продолжен анализ результатов поиска очарованных частии на материалах облучения установки БИС на серпуховском ускорителе пучком нейтронов с импульсом 45 ГэВ/с. Обработаны предполагаемые случаи распада новых частиц $\Lambda_{\pi^{+}} \pi^{-}$; $\Lambda \mathrm{K}^{+} \mathrm{K}^{-}, \Lambda \mathrm{K}^{+} \pi^{-}, \Lambda \mathrm{K}^{-} \pi^{+}$. В системе $\Lambda \mathrm{K}^{+}$Коб- $^{-}$ наружена особенность с массой 2790 МэВ, шириной около 15 МэВ и сечением образования $-0,5$ мкб /рис. 4/.

Рис. 4. Распределения эффективных масс в системах $\Lambda \pi^{+} \pi^{-}, \Lambda K^{+} K^{-}, \Lambda K^{+} \pi^{-}, \Lambda K^{-} \pi^{+}$, получемные с помощью установки БИС-2 на серпуховском ускорителе.

Проанализированы 24 тыс. звезд, образованных в ядерных фотоэмульсиях протонами с энергией 70 ГэВ и π-мезонами с энергией 60 Гэ . Найдены 4 случая, которые могут быть интерпретированы как лептонные распады новых частиц с временем жизни $\sim 10^{-14}$ с и сечением их образования в пересчете на pN -взаимодействия около 5 мкб.

Закончен набор статистикив совмест－ ных ОИЯИ－США－экспериментах по изу－ чению неупругих $\mathrm{pp}-$ ， $\mathrm{pd}-$ и рНе－взаимо－ действий при энергиях $40 \div 400$ ГэВ на ускорителе НУЛ／Батавия／．Получены дифференциальные сечения инклюзивных дифракционных процессов $\mathrm{pp} \rightarrow \mathrm{pX}$ и $\mathrm{pd} \rightarrow \mathrm{dX}$ в области недостающих масс $\mathrm{M}_{\mathrm{x}}^{2}=$ $=0,1 \div 5,0 \quad$ Гэ $\boldsymbol{B}^{\text {ппри }}$ малых переданных импульсах $|\mathrm{t}|=\mathrm{O}, 005-\mathrm{O}, \mathrm{O6} / \Gamma \ni В / \mathrm{c} /{ }^{2}$ для рр－и при $|\mathrm{t}|=\mathrm{O}, \mathrm{O} 25 \div \mathrm{O}, 17 /$ Гэ $B / \mathrm{c} / 2$ для pd－рассеяния．Показано，что если рассматривать дейтрон как целое，то в области（ $1-\mathrm{x}$ ）$<0,05$ отношение сече－ ний дифракционного к упругому не за－ висит от сорта мишени／р или $d /$ в пре－ делах 5\％，что хорошо согласуется с пред－ ставлением о факторизуемом помероне． При сравнении $\mathrm{pp}-$ и pd －сечений при одной энергии налетающего протона пока－ зано，что общий ход зависимости отно－ шения

$$
\mathrm{R}=\left(\frac{\mathrm{d}^{2} \sigma}{\mathrm{dt} \mathrm{~d} \mathrm{x}}-/ \frac{\mathrm{d} \sigma_{\mathrm{e}} \ell}{\mathrm{~d} \mathrm{t}}-\right)_{\mathrm{pp}} /\left(-\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \mathrm{t} \frac{\mathrm{dx}}{\mathrm{dx}}-} / \frac{\mathrm{d} \sigma}{\mathrm{dt}} \mathrm{e}-\right)_{\mathrm{pd}}
$$

от（1－x）／puc．5／хорошо объясняется

Рис．5．Зависимость отношения нормированного сечения рр－рассеяния к нормированному сечению pD－рассеяния в оифракиионной области от величи－ ны $(1-x)$ ，где $1-x=M_{\mathrm{x}}^{2} / S-m_{\mathrm{p}}^{2} / S$ ．

рассеянием системы M_{x}^{2} на втором нук－ лоне дейтрона и вкладом π－мезонного обмена в неупругое p р－рассеяние．В пер－ вом приближении оценено сечение упру－ гого рассеяния системы $\mathrm{M}_{\mathrm{x}}^{2}$ на нуклоне， равное $\sigma_{\mathrm{xN}}=43 \pm 10$ мб．

За счет существенного улучшения уг－ лового разрешения аппаратуры／до O，8 мрад／при регистрации частицы от－ дачи удалось наблюдать дифракционное возбуждение протона до уровня масс 1400,1520 и 1680 МэВ．

Сотрудники 16 лабораторий стран－ участниц продолжали вести обработку и анализ взаимодействий отрицательных пионов с импульсом 4 O Гэ $B /$ с с прото－ нами и ядрами углерода на материале облучения двухметровой пропановой ка－ меры в пучке серпуховского ускорителя 70 ГэВ．Изучены корреляции по быстро－ те и распределения по разности азиму－ тальных углов π－мезоновиз $\pi \mathrm{C}$－взаимо－ действий．Определен размер области об－ разования вторичных π－мезонов $\quad \mathrm{R}=$ $=/ 4,5 \pm 1,0 /$ Фм и длительность процесса их образования $\tau=/ 1,7 \pm О, 7 / \times 1 \mathrm{O}^{-23}$ с．Ис－ следование π^{-}р－взаимодействий，в ко－ торых имеются вторичные π－мезоны с большими поперечными импульсами P_{\perp}＞ $>0,8$ ГэВ／с，показало，что по своим ха⿱亠䒑－ рактеристикам такие взаимодействияот－ личаются от остальных взаимодействий и указывают на наличие＂струй＂пионов， сопровождающих частицы с большими по－ перечными импульсами．Получены и про－ анализированы экспериментальные дан－ ные о двухчастичных корреляционных функциях C и R для гамма－квантов в инклюзивных и полуинклюзивных π С－рас－ пределениях．Получено，что доля π－ме－ зонов，образующихся в результате рас－ пада $\rho-$ ，ω－и f－мезонов，составляет 45% от полного числа всех вторичных π－мезонов．Сделан вывод о доминирую－ щей роли резонансов в изученных про－

цессах. Изучение зависимости зарядовой асимметрии показало, что асимметрия увеличивается с ростом поперечного им пульса вторичных частиц, что согласует ся с кварковым подходом к π^{-}р-взаимодействию.

На материалах, полученных при облучении установки "Людмила"пучком антипротонов с импульсом 23 ГэВ/с на серпуховском ускорителе, было найдено, что величина зарядовой асимметрии в передней и задней полусферах в с.ц.м. растет с увеличением величины P_{\perp} и этот результат наблюдается в аннигиляционном и неаннигиляционном каналах. Для пар тождественных π-мезонов наблюдался эффект интерференции, из анализа которого определена величина области испускания π-мезонов $\mathrm{R}=/ 3, \mathrm{O} \pm \mathrm{O}, 5 /$ Фм $^{\text {м }}$ и время их образования $\tau=$ $=/ 3,1 \pm 1,6 / \cdot 10^{-23}{ }_{c}$.

На основе анализа 14 тыс. событий изучено инклюзивное и полуинклюзивное образование ρ°-мезонов и Δ^{++}-изобар. Распределение по продольной быстроте показывает, что ρ°-мезон образуется преимущественно в центральной области /рис. 6/. Для образования Δ^{++}-изобары получено указание на существенный вклад однопионного обмена с поглощением. На основе анализа 2000 событий получено указание на совместное образование изобар Δ^{++}и Δ^{++}.

Резонансные пики в спектрах эффективных масс $\Lambda \Lambda / 2336$ МэВ/ и Λ р $/ 2256$ и 2128 МэВ/, найденные при обработке событий, полученных с помощью пропановой пузырьковой камеры, облученной пучком нейтронов со средним им пульсом 7,0 ГэВ/с на синхрофазотроне, получили удовлетворительное объяснение в рамках модели Джаффе. Эмпирически найденное правило отбора для существо-

Рис. 6. Зависимость сечения образования ρ°-мезона оп величины продольной быстроты в с.ц.м.
 $23 \Gamma э B / с$.

вания адронных резонансов по гиперзаряду $\mathrm{Y} \leq 1$ интерпретируется как необходимое условие существования "кваркового мешка". Ввиду ненаблюдаемости кварков размеры и объем "мешков" долж ны мало зависеть от природы объектов /внутри "мешков"/. Это приводит к тому, что двух- и многобарионные резонансы должны являться сверхплотными объектами с конечным временем жизни, а неравенство $Y \leq 1$ может являться необходимым условием образования сверхплотного состояния ядерной материи.

Продолжалось изучение реакиии $\mathrm{dp} \rightarrow \mathrm{ppn}$ с помощью метровой жидководородной камеры, облученной дейтронами с импульсом 3,3 ГэВ/с на синхрофазотроне. На основе анализа 50 тыс. событий получены спектры нуклонов и π-мезонов в широкой области переданных импульсов. Наблюдалось изменение наклона в распределениях инвариантного сечения $\mathrm{f}(\mathrm{T})$ в районе $\mathrm{T} \sim \mathrm{O}, 03$ ГэВ для нуклонов и π-мезонов, где T -кинетическая энергия частиц, летящих в заднюю полусферу в системе налетающего дейтрона. Полученные данные не противоречат образованию части нуклонов и π мезонов с проявлением кумулятивного эффекта. При исследовании реакции $\mathrm{dp} \rightarrow \mathrm{pp}(\mathrm{n})$, идущей с перезарядкой, показано, что около 20% случаев в области эффективных масс (p р) могут быть объяснены эффектом промежуточной Δ-изобары. Получено, что np -перезарядка в области малых углов идет с переворотом спина.

При изучении пр-взаимодействий, зарегистрированных с помощью метровой жидководородной камеры в пучке нейтронов на синхрофазотроне, определены сечения различных каналов реакций в пятилучевых звездах при импульсах $5,10 \pm \mathrm{O}, 17$ ГэВ/с. Показано, что в реакции $\mathrm{np} \rightarrow \mathrm{pp} \pi^{+} \pi^{-} \pi^{-}$при импульсе 5,1 ГэВ/с с вероятностью 95% происходит образование нуклонных изобар и нет указания на образование бозонных резонансов. В канале $\mathrm{np} \rightarrow \mathrm{pp} \pi^{+} \pi^{-} \pi^{-} \pi^{\text {o }} \quad$ получено указание на образование ω°-мезона с сечением $\sigma=0,023 \pm 0,002$ мб /рис. $7 /$, но основную долю рожденных резонансов составляет изобара $\Delta^{++}(1236)$. Для канала $\mathrm{np} \rightarrow \mathrm{pn} \pi^{+} \pi^{+\pi} \pi^{-}$- характерно образование нуклонных изобар $\Delta^{++}(1236)$ и $\Delta^{-}(1236)$ в 84% случаев. Совместное образование обеих изобар происходит в 10% случаев этого канала реакции.

Рис. 7. Распределение эффекпивмых масс сиспемы $\pi^{+} \pi^{-} \pi^{\circ}$ из реакиии $n p \rightarrow p p \pi^{+} \pi^{-} \pi_{\pi}^{-} \pi^{\circ} \quad n p u$ импульсе нейтронов 5,1 ГэВ/с; "а" - для всех собыпий, "б" - после вычитания ломной комбимации.

Исследованы угловые и энергетические распределения протонов, зарегистрированных во взаимодействиях положительных π-мезонов с ядрами ксенона при импульсе $2,34 \quad$ Гэ $B /$ с с помощью пузырьковой ксеноновой камеры на синхрофазотроне. На основе анализа экспериментального материала оценена величина функции $f\left(\mathrm{P}_{\mathrm{F}}\right)$ для распределения плотности вероятности импульсов внутриядерных нуклонов ядра ксенона /puc. 8/. В области $\mathrm{P}_{\mathrm{F}} \leq 500$ МэВ сфункция $f\left(P_{F}\right)$ удовлетворительно описывается фермиевским распределением. В области $\mathrm{P}_{\mathrm{F}}=500 \div 1000 \mathrm{M}$ эВ $/ с$ проявляется в основном влияние вторичных внутриядерных взаимодействий протонов отдачи.

Рис. 8. Значения функции $f\left(p_{\mathrm{F}}\right)$-импульсного распределения нуклонов внутри ядра ксенона. Anпроксимация экспериментальных данных проведена кривой с фермиевским распределением /кривая 2/. Чувствишельность аппроксимации оцениваешся с помощью кривой 1 , соопветспвующей реакции с образованием оп 4 до 7 зарязенных частиц.

Электромагнитная

структура элементарных частиц

Уточнен электромагнитный формфактор π-мезона в эксперименте по прямому рассеянию отрицательных π-мезонов с импульсом $100 \quad \Gamma э B / с$ на электронах в жидководородной мишени: $\mathrm{r}_{\pi}=0,56 \pm$ \pm О,O4 м. После модернизации спектрометра с помощью системы из 32 дрейфовых камер, изготовленных в ЛВЭ, проведены измерения и набрана статистика по каон-электронному и пион-электронному рассеянию при энергии 250 ГэВ. С помощью тех же дрейфовых камер на ускорителе в Батавии проведен эксперимент при энергии 250 ГэВ с целью обнаружения эффекта каналирования частиц высокой энергии. Получены предварительные положительные результаты.

Релятивистская

 ядерная физикаНа синхрофазотроне ОИЯИ осуществляется широкая программа экспериментов в области релятивистской ядерной физики. Исследование ведется в 9 группах физиков.

На установке "Диск-2" набран большой экспериментальный материалпоизучению образования кумулятивных частиц. В пучках протонов и дейтронов с импульсом 8,6 ГэВ/с зарегистрировано 460 тыс. взаимодействий на мишенях из 14 ядер

Рис. 9. Экергетическая зависимость инвариантных сечений образования положительных π-мезонов на мишенях $, ~ D, H e$.

от дейтерия до урана с образованием пионов, каонов и протонов, а также фрагментов d , a и других с импульсами от 150 до 1800 МэВ/с и кумулятивным числом больше 1,5 . Изучены энергетические выходы положительного π-мезона на мише нях H, D , Не / рис. 9/, протона на мишенях Не и D, дейтрона на мишени Не, угловые зависимости выхода положительных π-мезонов на мишенях H , D , Не, протонов на мишенях D и Не, дейтронов на гелиевой мишени / pис. $10 /$.

На ядрах-мишенях $\mathrm{C}, \mathrm{Al}, \mathrm{Cu}, \mathrm{Pb}$ получены энергетические зависимости выхода протонов, дейтронов и ядер трития, удовлетворяющих отбору частиц при кумулятивном числе $Q=1,5 \div 5$. Для этих же частиц получена зависимость от величины заряда ядра-мишени.

Рис. 1O. Угловая зависимость выхода протонов на мищенях D, Не и дейтронов на гелиевой мишени в кумулятивной области их образовакия.

На полученном ранее материале по дифракиионному рассеянию альфа-частиц при импульсе 4,5 Гэ $\boldsymbol{B} /$ нукл. на протонах и ядрах $\mathrm{He}, \mathrm{C}, \mathrm{Al}, \mathrm{Cu}$ с помощью установки "Альфа" на синхрофазотроне уточнены данные по угловому распределению альфа-частиц. Это позволило сделать оценки сечений $\sigma_{\text {tot }}$, $\sigma_{\text {e }}$ и радиусов α А-взаимодействий, определить абсолютные величины дифференциальных сечений рассеяния альфа-частиц в дифракционной области и величины наклонов дифракционных конусов / puc. 11 и табли ца/.

Сравнение экспериментальных данных о наклонах конусов в $\mathrm{pA}-\mathrm{n}$ a A -рассеяниях для событий с большими |t|> $>\mathrm{O}, 1 / \Gamma э B / \mathrm{c} /{ }^{2}$ приводит к указанию, что a А-рассеяние лучше интерпретировать как квазиупругое рассеяние не на отдельных нуклонах ядра, а на кластерах α или d в ядре.

Pис. 11. Дифференциальное сечение dб/dt для упругого рассеяния на яорах альфа-частии с импульсом 4,5 ГэВ/нукл.

	Таблица	
Мишень	Интервал $\|\mathrm{t}\|,(\text { ГэВ } / \mathrm{c})^{2}$	Наклон конуса $(\text { ГэВ } / \mathrm{c})^{-2}$
H_{2}	$0,0206-0,102$	$32,1 \pm 0,3$
He	$0,0141-0,0656$	$10,2 \pm 0,7$
C	$0,0088-0,0244$	$37,9 \pm 0,8$
A 1	$0,0088-0,0244$	$97+5$
Cu	$0,0088-0,0172$	308 ± 40

Проведен монтаж установки "Альфа" в варианте с твердыми мишенями. В сеансах на синхрофазотроне в пучках протонов, релятивистских дейтронов и альфачастиц набрано $1,4 \times 10^{6}$ событий рассеяния на ядрах $\mathrm{C}, \mathrm{Al}, \mathrm{Cu}, \mathrm{Pb}$ в интервале углов $20 \div 60$ мрад.

С помощью установки "Спектрометр ядер отдачи" на синхрофазотроне исследована фрагментация ядра-мишени углерода. Получены дифференциальные сечения образования изотопов H , He , Li и Ве в реакции $d+{ }^{12} \mathrm{C}$ при импульсах дейтерия 1,$1 ; 1,5 ; 1,9 ; 2,0 ; 2,4 ; 3,1 ; 3,7$ и 4,6 ГэВ/нукл. /рис. 12/ и в реакции $\alpha+{ }^{12} \mathrm{C}$ при импульсе 2,5 ГэВ/нукл. под углом 90° в лабораторной системе. Эксперимент проводился на внутренней полиэтиленовой мишени толщиной от 1 до 5 мкм. Вторичные заряженные частицы регистрировались системой из $\triangle \mathrm{E}-\mathrm{E}$ телескопов, в состав которых входили кремниевые детекторы с энергетическим разрешением $50 \div 80$ КэВ. В диапазонах кинетической энергии фрагментов $5 \div 30$ и $30 \div 70$ МэВ спектры хорошо описываются зависимостью а. $\exp [-\mathrm{E} / \mathrm{b}]$. Анализ величин компонент энергетического

Рис. 12. Инвариампные оифференииальные сечекия $2 E_{\mathrm{n}} \frac{d^{3} \sigma}{d p^{3}}$ выходов изотопов Li и вев зависимости оп кинепической энергии Е фрагментов в реакиии ${ }^{d+}{ }^{12} \mathrm{C}$ при импульсе дейтронов 4,б ГэВ/нукл. / E_{n} - полная энергия фрагменпов/.

спектра в обеих областях связан с определенным механизмом образования фрагментов. При энергии пучка больше 600 МэВ/нукл. параметр "b" не зависит от энергии, что указывает на проявление "ядерной" масштабной инвариантности.

На основе анализа материалов взаимодействия альфа-частиц с ядрами $\mathrm{Li}, \mathrm{C}, \mathrm{Ne}, \mathrm{Al}, \mathrm{Cu}$ и Pb с помощью установки СКМ-2ОО в пучке альфа-частиц с импульсом 4,5 ГэВ/нукл. показано подобие топологических сечений рождения отрицательных пионов альфа-частицами и в элементарных pp -взаимодействиях в области импульсов от 4 до 400 ГэВ/с. Хорошо совпали зависимости дисперсий распределения по множественности отрицательно заряженных частиц от средней множественности отрицательных частиц для $a \mathrm{~A}$-и $\mathrm{pp-взаи-}$ модействий /puc. 13/. Изучены характеристики процесса фрагментации альфачастиц на ядре лития и определены сечения различных каналов этого процесса, отмечен большой выход изотопов ${ }^{3} \mathrm{He}$ и $\quad{ }^{3} \mathrm{H}$ с сечением $\sigma=40 \pm 3$ мб.

Рис. 13. Сравкение зависимости дисперсии D_{-}от среднего числа отрицательных частии <n $>{ }^{-}$оля аА -взаимодействий при импульсе 4,5 ГэВ/нукл. и для рр -взаимодействий в области $4 \div 4 О О$ ГэВ/с.

Проведено облучение установки СКМ-200 в пучке альфа-частиц с импульсом 4,5 ГэВ/нукл., получено 33 тыс. фотографий.

Изучены двухлучевые взаимодействия ${ }^{4} \mathrm{He}+$ р при импульсе 2,15 ГэВ/нукл. с помощью метровой жидководородной камеры на синхрофазотроне. Упругое (${ }^{4} \mathrm{He}+\mathrm{p}$)-рассеяние характеризуется большой величиной наклона конуса $\mathrm{b}=$ $=274 \pm 15 / \Gamma э B / c /-\frac{2}{2}$ а для событий с образованием одного пиона величина bcoставляет $11,4 \pm 1,9 / Г э B / с /^{-2} /$ рис. 14/. Для реакции с развалом ${ }_{3}^{4} \mathrm{He}$ выделены события со спектаторами ${ }^{3} \mathrm{He}_{s}$ или n_{s}. Для виртуального рассеяния $\mathrm{p}+{ }^{3} \mathrm{He} \rightarrow \mathrm{p}+{ }^{3} \mathrm{He}$ и

[^0]$p n \rightarrow n p$ определены распределения энергии в с.ц.м., характер которых обусловлен ферми-движением. Параметр асимметрии угла Треймана-Янга зависит от величины импульса частицы-спектатора, что не может быть объяснено кине матическим эффектом. В сеансе на синхрофазотроне получено 65 тыс. фотографий в пучке альфа-частиц с импульсом 3,5 ГэВ/нукл.

в сеансах на синхрофазотроне с помощью двухметровой пропановой камеры в пучках протонов, дейтронов, альфачастиц и ядер углерода получено 156 тыс. фотографий / рис. 15/. Определена средняя множественность отрицательных пио нов, g-частиц и протонов в интервале импульсов пучка от 2 до 5 ГэВ/нукл. Проведен сравнительный анализ измене ния средних множественностей в зависи мости от сорта и энергии налетающего ядра. Найдено, что увеличение средней множественности для пионов, g-частиц и быстрых протонов при переходе от $\mathrm{pW}-\kappa \quad \alpha \mathrm{W}$-взаимодействиям различно и максимально для быстрых протонов /рис. 16/. Определено среднее число взаимодействовавщих нуклонов $n_{p}=$ $=2,7 \pm \mathrm{O}, 1$ в $\alpha \mathrm{W}$ - событиях при импульсе $4,2 \Gamma$ эВ/нукл.

Для работы с материалами, получае мыми с помощью двухметровой пропановой камеры на синхрофазотроне в пучках релятивистских ядер, организовано сотрудничество ученых 18 лабораторий НРБ, ВНР, МНР, ПНР, ЧССР, СССР.

Pис. 15. Случай взаимодействия ядра углерода с энергией $5 О$ ГэВ с пластинкой из тантала, зарегистрированного в двухметровой пропановой пузырьковой камере.

Рис. 16. Энергетическая зависимость роста отнощения средних множественностей образования вторичных частич при переходе от $p W-\kappa$ к W-взаимофействию.

С помощью фотоэмульсий, облученных пучком ядер углерода с энергией 50 ГэВ на синхрофазотроне, исследовались неупругие взаимодействия углеродядро. Показано, что средние множественности, рассчитанные на один нуклон налетающего ядра, совпадают с аналогичными данными для взаимодействий альфаядро и дейтрон-ядро. В 90% случаев наблюдаются заряженные фрагменты ядра углерода. Обнаружено дифракционное расщепление ядра углерода на три альфачастицы с вероятностью 2%. Угловые распределения фрагментов ядра мишени слабо зависят от атомного номера налетающего ядра.

Обработку событий ведут физики 8 лабораторий Дубны, Москвы, Ленинграда, Ташкента, Бухареста, Варшавы и Кошице.

Совершенствование действующих

и разработка новых физических приборов и установок

Разработана и прошла испытания на стенде пропорциональная камера для эффективной регистрации ядер размером 50×60 мм 2, работающая в режиме низкого давления $20 \div 200$ мм рт.сm. Специально разработанная регистрирующая электронная аппаратура помогла обеспечить рекордное пространственное разрешение - 40 мкм. Энергетическое разрешение камеры для альфа-частиц с энергией 5,2 МэВ составило 17%.

Для создания расширенной системы диагностики пучка при облучении установки "Людмила" на серпуховском ускорителе разработаны, исследованы и введены в строй 8 двухкоординатных пропорциональных камер размером 50×50 мм 2 и 2 камеры размером 150×150 мм 2. Регистрация информации с камер осуществляется с помощью электронной аппаратуры по 912 каналам. Система математического обеспечения создана на базе ЭВМ ТРА-і и позволяет выводить на дисплей и телетайп профили пучка по двум координатам в 10 сечениях канала частиц. В несколько раз сократилось время настройки канала частиц, идущих на установку "Людмила".

На основе пропорциональных камер создан прибор для изучения биологичес-

ки активных веществ, меченных радиоактивными изотопами, который предназначен для использования в молекулярной биологии и биохимии. Прибор обеспечивает измерение пространственного распределения изотопов на поверхности объекта /хроматограммы/ размером 200×200 мм 2 с точностью $1 \div 2$ мм. Система подключена к ЭВМ, визуальная регистрация распределения делается с помощью телевизора. Имеется возможность идентификации изотопов ${ }^{3} \mathrm{H},{ }^{14} \mathrm{C}$, $32 \mathrm{P}_{\text {в }}$ одном цикле измерений. Прибор обеспечивает скорость 10^{5} измерений за секунду, чувствительность - не хуже $10 n К и /$ см 2.По своим возможностям и хđрактеристикам прибор значительно превосходит существующие аналогичные устройства.

Для автоматизации контроля и уnравления физическими установками и дальнейшего развития спектрометровфизики высоких энергий разработан и изготовлен ряд новых электронных блоков Общее число разработанных блоков разных типов доведено до 120 .

Налажен интерфейс ЭВМ ЕС-104О, позволяющий принимать от физических спектрометров до 100 триггеров за цикл работы ускорителя. Созданы системы на линии с ЭВМ ТРА-70для измерений низких температур при охлаждении магнитов, для измерения энергетических потерь в сверхпроводниках. Изготовлена 10 -канальная система для измерения малых уровней интенсивности циркулирующего пучка ядер в синхрофазотроне.

Разработана микропроцессорная система на основе контроллера в стандарте КАМАК с микропроцессором фирмы Интел. Начата эксплуатация ЭВМ ЕС-104О.

В области разработки и создания систем быстрой электроники завершен этап перехода на интегральные схемы,

что привело к улучшению эксплуатационных показателей электронных блоков. В области многоканальных логических узлов отбора и регистрации сигналов наносекундного диапазона разработано 8 типов блоков, среди которых: универсальный годоскоп-шифратор, быстродей ствующий процессор для отбора событий в реальном времени эксперимента, уси-литель-дискриминатор для дрейфовых камер. В области преобразования информации создано 4 блока, в том числе 16канальный преобразователь аналоговой информации в цифровой код, генератор наносекундных импульсов с управлением от ЭВМ. Для съема информации с физических установок созданы усилительформирователь для электронных умножителей, 4-канальный линейный приемникусилитель сигналов с удаленных датчиков; разработана специализированная гибридная интегральная схема для регистрации импульсов こ пропорциональных камер.

В области создания и совериенствования приборов и устройств криогенной техники проведены следующие работы:
a/ Создана гелиевая струйная мишень для проведения эксперимента по рНе рассеянию на ускорителе НУЛ /Батавия/. Количество гелия, образующееся при работе мишени, составило $10^{-7} 2 /$ с 2 при ширине струи 5 мм, что дало возможность успешно набрать статистический материал в эксперименте на ускорителе.

б/ Для создания систем криостатирования больших физических установок исследована возможность применения гелиевого струйного насоса как криогенного эжектора для работы сверхпроводящих магнитных систем.

в/ при исследовании влияния ориентации плоской сверхпроводящей шины на

потери энергии в импульсно работающих соленоидах было показано, что при ориентации шины параллельно магнитному полю соленоида существенно уменьшаются суммарные потери и деградация критического тока при скоростях изменения магнитного поля до $7,8 \quad T / c$. Изучены зависимости величины критического тока от диаметра изгиба сверхпроводящей шины и от степени плоской деформации. На пучке ядер с энергией 8 ГэВ проведены подготовительные работы и ведется исследование влияния радиационного нагрева на величину критического тока в сверхпроводниках.

Совершенствование

синхрофазотрона, работы
по проекту нуклотрона
На синхрофазотроне проведены работы по повышению эффективности его использования для физических экспериментов и совершенствованию его параметров.

За счет ввода в эксплуатацию системы прецизионной связи частоты с магнитным полем, получения расчетной ам плитуды ускоряющего напряжения в линейном ускорителе ЛУ-2О, использования группирователя на входе ЛУ-2О и модулятора энергии разгруппирователя после ЛУ-2О и после перевода ускорения частиц на вторую кратность частоты обращения возросла интенсивность пучка дейтронов до 3×10^{11} в импульсе и пучка альфа-частиц до 3×10^{10} в импульсе.

Проведены длительные испытания криогенного источника ионов "Крион-1" на синхрофазотроне. Удалось ускорить ядра углерода до энергии 60 Гэ $В$, ядра азота до энергии 70 ГэВ, ядра кислоро-

да до энергии 80 ГэВ и ядра неона до энергии 100 ГэВ. На первом этапе работы "Крион-1" интенсивность ядер углерода в канале медленного вывода составила $2,8 \times 10^{4}$ в импульсе и ядер кислорода 5×10^{3} в импульсе. Это позволило провести облучение двухметровой пропановой камеры, установки СКМ-2ОО и нескольких пачек ядерной фотоэмульсии.

В варианте источника "Крион-2" достигнут фактор ионизации $3 \times 1 \mathrm{O}^{20}$ см $^{-2}$ при энергии электронов 6,5 кэВ. Впервые получены ядра Ar^{+18} и Xe^{+37}

Проведен заключительный этап отработки режима совмещения медленного и быстрого выводов в одном цикле работы ускорителя для их длительного применения. Длительность медленного вывода доведена до 300 мс, а быстрого до 600 мкс. Получен режим, позволяющий производить в одном цикле быстрый и медленный выводы как при одной, так и при разных энергиях ускоряемых частиц. Проведены эксперименты по облучению физических установок в совмещенном режиме.

Осуществлен вывод ядер с энергией $40 О$ МэВ/нукл. для проведения исследований в области лучевой терапии.

По проекту жесткофокусирующего ускорителя релятивистских ядер нуклотрона проделаны следующие работы. Создана первая очередь стенда для проведения теплофизических исследований малых импульсных магнитов, в котором будут использоваться гелиевые криостаты диаметром 150 и 300 мм. Ведется сборка и наладка стенда для исследования потерь в коротких образцах сверх проводников. Проведены испытания сверхпроводящего магнита с диаметром 250 мм и сердечником из железных пластин. Определена величина критического тока в статическом и импульсном

режимах, измерены потери, снята карта магнитного поля. Спроектированы и изготовлены два сверхпроводящих магнита длиной 400 мм с использованием сверхпроводящего кабеля, изготовленного в лаборатории. Проведено испытание сверхпроводящего магнита со сплошным стальным сердечником на поле $2,5 T$ с обмотками коррекции. Разработаны и изготовлены две сверхпроводящие квадрупольные линзы. Проведены их испытания и измерены величины критического тока, потери при различной длительности цикла питания и градиента магнитного поля.

Эксплуатация синхрофазотрона

Запланированное время работы ускорителя - 4149 часов.

Ускоритель работал:
a/ на экспериментальные исследования по физике элементарных частиш и физике релятивистских ядер - 3288 часов со средней интенсивностью $3,3 \times 10^{11}$ ускоренных протонов, $1,1 \times 10^{11}$ дейтронов, 6×10^{9} альфа-частиц, 10^{4} ядер углерода за один цикл ускорителя.

б/ на совершенствование системускорителя - 629 часов.

Продолжается поиск "очарованных" частиц с помощью установки БИС-2 на нейтронном пучке серпуховского ускорителя. Эксперимент проводится на линии с ЭВМ ЕС-104О.
Во время очередного сеанса по набору статистики: а/ электронная аппаратура установки; б/ за пультом управления ЭВМ ЕС-1О4О.

Проверка надежноспи
монтажа пропорииональ-
ных камер.

Модули черенковских счетчиков полного поглощения.

В сеансах на синхрофазотроне в пучках протонов, релятивистских дейтронов и альфа-частии набрано свыие 1 млн. событий рассеяния на ядрах. Эксперимент ведепся в помощью установки "Альфа", работающей на линии с ЭВМ ЕС-1О1О.

Для ряда экспериментальных установок созданы оригинальные криогенные мииени. На снимке: набор криогенных мишеней /g-H , Не , D / для установки "Диск-2".

Для изучения биологических объектов, меченных радиоакпивными изотопами, создан прибор на основе пропорииональной камеры.

На синхрофазотроне проведень длимельные испьт тания криогенного источника ионов нового типа "Крион", позволивиего ускорить ядра углерода, азота, кислорода и неона до энергии 5 Гэв/нукл.

[^0]: Рис. 14. Распределение числа событий в реакциях ${ }^{4} \mathrm{He}+\mathrm{p} \rightarrow{ }^{4} \mathrm{He}+\mathrm{p} \quad u^{4} \mathrm{He}+\mathrm{p} \rightarrow{ }^{4} \mathrm{He}+\mathrm{N}+\pi \quad$ в зависимости от величины переданного импульса |t| при импульсе ядер гелия 2,15 ГэВ/нукл.

