ДУБНА·1974

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

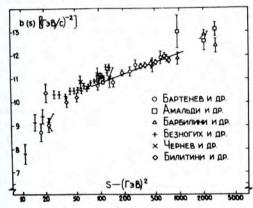
 $\frac{0.3M}{0-292}$ $\frac{1}{2-19772}$

10INT INSTITUTE FOR NUCLEAR RESEARCH BY A STATE OF THE SEARCH BY A STAT

Лаборатория высоких энергий

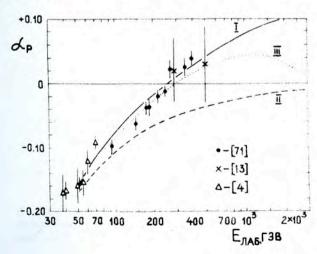
В лаборатории велись научные исследования по физике элементарных частиц, в области релятивистской ядерной физики, работы по созданию новых приборов для проведения физических экспериментов, по разработке и совершенствованию методов проведения экспериментов, по совершенствованию основной ускорительной базы лаборатории - синхрофазотрона, по расширению возможностей синхрофазотрона для постановки новых экспериментов. Важная часть научной программы лаборатории была связана с эксперименускорителе тами на Серпуховском 70 ГэВ и на ускорителе 400 ГэВ в Батавии.

Большая часть исследований проводилась на основе широкого международного сотрудничества с лабораториями и институтами стран-участниц ОИЯИ.


Научноисследовательские работы

Поведение амплитуд рассеяния в зависимости от энергии взаимодействующих частиц

1. Завершена обработка измерений в эксперименте по изучению упругого рррассеяния в интервале энергий от 9 до 400 ГэВ, проведенного в рамках советско-американского соглашения на ускорителе 400 ГэВ /Батавия/. В опыте использовалась газовая струйная водородная мишень с регистрацией протонов отдачи с помощью позиционных полупроводниковых детекторов.


Для дифракционного упругого рр-рас-

сеяния вперед измерен наклон b(s) в диапазоне переданных импульсов /t = 0,005÷0,09 $\Gamma extit{3}B^2$.Обнаружен /puc. 1/t рост наклона b(s) в зависимости от s. В интервале $s = 100 \div 750 \Gamma extit{3}B^2$ значения величин наклона b(s) описаны зависимостью $b(s) = b_0 + 2\alpha \text{ fns}$, где $b_0 = 8.23\pm0.27$ и $a' = 0.278\pm0.024$ $\Gamma extit{3}B^{-2}$.

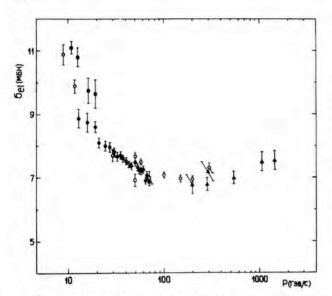
1. Наклон дифракционного пика b(s) для переданного импульса $/t/\le O$, $12~\Gamma \ni B^2$ в зависимости от квадрата полной энергии в с.у.м.

Отношение α_{pp} реальной части амплитуды упругого pp-рассеяния вперед к мнимой части, измеренное в области энергии E = 50 + 400 $\Gamma \ni B$, составляет /puc. 2/

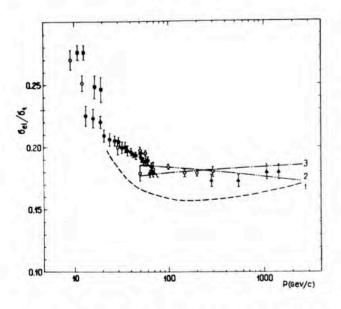
 $a_{pp} = -0.157 \pm 0.012$ при E = 51.5 ГэВ и $a_{pp} = +0.039 \pm 0.012$ при E = 393 ГэВ.

Величина $a_{\rm pp}=0$ при значении $E=280\pm60$ ГэВ. После указаний, полученных в эксперименте на встречных пучках ЦЕРНа, впервые надежно установлен экспериментальный факт, что $a_{\rm pp}$ при высоких энергиях меняет знак с отрицательного на положительный.

В интервале 9-400 ГэВ вычислено сечение упругого протон-протонного рассеяния. В области энергий больше 100 ГэВ наблюдается рост сечения упругого протон-протонного рассеяния / рис. 3/.


Интересной особенностью поведения упругого сечения является практическое постоянство отношения упругого сечения к полному $\sigma_{\rm el}$ / $\sigma_{\rm tot}$ при энергиях свыше 100 Γ эВ.

В проведении эксперимента и обработке измерений участвовали физики ОИЯИ, ФНУЛ /Батавия/, Рокфеллеровского ун-та /Нью-Йорк/, Рочестерского ун-та /Рочестер/.


2. Изучено дифракционное упругое рарассеяние в области импульсов 50-385 ГэВ/с с помощью газовой струйной дейтериевой мишени и набора полупроводниковых детекторов на ускорителе У-400

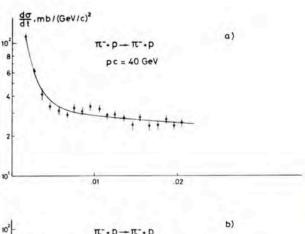
2. Отношение реальной и мнимой частей амплитуды упругого pp- рассеяния вперед при t=0 в зависимости от энергии. Кривые вычислены по дисперсионным соотношениям с вариантами: I - величины полных сечений σ_+ (pp) и σ_+ (\overline{p} p) раступ, как $0.49 l n^2$ (S/122) до E_- , II - полное сечение σ_+ (pp) при энергии E 120 Γ эВ яеляется константой, равной 38 мбн, III - полное сечение σ_+ (pp) при энергии E 2000 Γ эВ становится постоянным, равным 44,2 мбн. Во всех трех вариантах предполагается, что σ_+ (\overline{p} p) стремится к σ_+ (\overline{p} p) как E^{-0} , ε

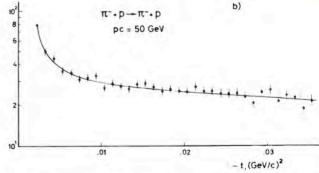
/Батавня/ советско-американской группой.

3. Энергетическая зависимость сечения упругого протон-протонного рассеяния.

4. Энергетическая зависимость отношения сечений $\sigma_{\rm el}$ $/\sigma_{\rm tot}$ для рр-взаимодействия.

В интервале переданных импульсов $/t/= O,O5\div O,12$ $\Gamma \ni B^2$ дифференциальное сечение упругого pd-рассеяния фитировалось функцией


$$\frac{d\sigma}{dt}$$
 - exp(bt + ct²).


Определено

 $b(s) = /35,7\pm1,1/ + /0,73\pm0,17/$ fns , а величина с бралась постоянной, равной c = 0,06 $\Gamma \ni B^{-4}$.

В получении экспериментальных данных участвовали сотрудники ОИЯИ, ФНУЛ /Батавия/, Рокфеллеровского ун-та /Нью-Йорк/ и Рочестерского ун-та /Рочестер/.

3. Завершена обработка результатов эксперимента по изучению упругого π^- ррассеяния при импульсах пионов 40 и

5. Дифференциальные сечения упругого $\pi^- p$ -рассеяния при энергиях 40 и 50 Γ эВ.

50 ГэВ/с на малые углы на Серпуховском ускорителе с помощью магнитного искрового спектрометра. По 5000 событиям упругого $\pi^- p$ -рассеяния при 40 ГэВ/с и 8000 событиям при 50 ГэВ/с определены дифференциальные сечения $d\sigma/dt$ в зависимости от переданного импульса / рис. 5/.

Для величины отношения реальной части амплитуды упругого рассеяния вперед к мнимой части получено значение: $a_{\pi p} = -0.074\pm0.033$ при 40 $\Gamma \ni B/c$ и $a_{\pi p} = -0.006\pm0.026$ при 50 $\Gamma \ni B/c$.

Работа проведена сотрудниками ОИЯИ, ИФВЭ /Серпухов/ и Калифорнийского университета.

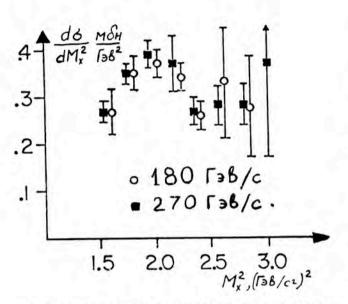
4. Начато изучение процессов упругого dd-рассеяния на синхрофазотроне в интервале энергий 6-10 ГэВ с помощью спектрометра частиц отдачи. Принцип действия установки состоит в реализа-

 Двухмерный спектр частиц отдачи, полученный при изучении упругого dd - рассеяния.

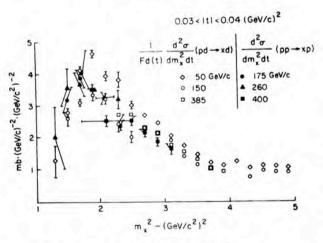
ции режима многократного прохождения внутреннего пучка ядер синхрофазотрона через тонкую мишень при одновременной регистрации угла вылета и энергии частиц отдачи. Часть детекторов частиц отдачи может устанавливаться неподвижно, а часть передвигается в диапазоне углов от 75 до 91,5°по отношению к направлению пучка. Работа ведется на линии с ЭВМ. Предусмотрен режим двухмерного анализа спектров частиц отдачи для обеспечения идентификации частиц отдачи / рис. 6/.

В области переданных импульсов /t/= = 0,008 \div 0,15 $\Gamma \ni B^2$ исследовалось упругое dd-рассеяние при энергии дейтронов от 6 до 10 $\Gamma \ni B$. Получены предварительные данные о дифференциальном сечении упругого dd-рассеяния.

В проведении эксперимента участвуют сотрудники ОИЯИ и ИЯИ /Варшава/.

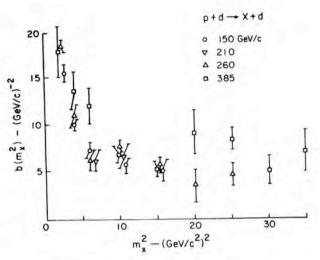

Механизм

рождения и распада частиц и резонансов. Поиск новых резонансов


1. Проведена обработка измерений неупругого pd-взаимодействия в области энергий $E=50\div400$ ГэВ на ускорителе У-400 /Батавия/ с помощью газовой струйной дейтериевой мишени и набора ΔE , E-сэндвичей полупроводниковых детекторов.

При изучении реакции $pd \rightarrow N*d$ установлено, что при энергиях 18О и 27О $\Gamma \ni B$ сечение дифракционного возбуждения N* в области малых масс N* не зависит от энергии / puc. 7/.

Изучено поведение инвариантного сечения дифракционной диссоциации на дейтроне в реакции $pd \rightarrow Xd$ в области энергий E = 50 4000 $\Gamma \ni B$ для интервала переданных импульсов/ $t/= 0.03 \div 0.12$ $\Gamma \ni B^2$. Обнаружено, что в спектре малых масс доминирует макси-



7. Энергетическая зависимость сечения возбуждения N* в реакции pd → N*d.

8. Сечение образования M²(x) в реакции pd→Xd при высоких энергиях.

мум при $M^2(X) = 1.8 \Gamma 3B^2/puc. 8/$, а t -зависимость сечений при фиксированном $M^2(X)$ — характеризуется быстрым уменьшением величины наклона b от значения $18 \Gamma 3B^{-2}$ при $M^2(X) \ge 6 \Gamma 3B^2/puc. 9/$.

9. Зависимость наклона дифференциального сечения образования X в реакции pd → Xd при высоких энергиях.

В получении результатов и обработке измерений принимают участие физики ОИЯИ, ФНУЛ /Батавия/, Рокфеллеровского ун-та /Нью-Йорк/ и Рочестерского ун-та.

2. Продолжается исследование неупругих $\pi^- p$, $\pi^- n$ и $\pi^- C$ - взаимодействий при импульсе 40 ГэВ/с с помощью двухметровой пропановой пузырьковой камеры, облученной на ускорителе 70 ГэВ/Серпухов/. Сотрудничество лабораторий Алма-Аты, Будапешта, Бухареста, Варшавы, Дубны, Кракова, Москвы, Серпухова, Софии, Ташкента, Улан-Батора, Ханоя, Чандигара /Индия/ на статистике 10500 событий $\pi^- p$ и $\pi^- n$ -взаимодействий, 15000 гамма-квантов в πN -взаимодействиях и около 12000 Λ -и K° -частиц получило следующие результаты:

а/ Обнаружен ранний скейлинг в области фрагментации пиона для реакции $\pi^- p \to \pi^+ \dots$ при $E \ge 5$ ГэВ, для которого достаточно условия экзотичности фраг-

ментирующей системы /в данном случае $\pi^-\pi^-/$.

6/ В области фрагментации нуклонамишени получено указание на ранний скейлинг только при условии экзотичности реакции /для $\pi^- n \to \pi^+ \dots$ скейлинг имеется/.

в/ Для π^- N-реакции с рождением $2\pi^-$ мезонов обнаружены близкие корреляции 2π -мезонов с длиной корреляции L = 2.

г/ Значение величины корреляционной функции

R(y₁, y₂) =
$$\sigma_{in} \frac{d^2\sigma}{dy_1 dy_2} / \frac{d\sigma}{dy_1} \cdot \frac{d\sigma}{dy_2} - 1$$

для системы $(\pi^+\pi^-)$ примерно в 2 раза больше по сравнению с системой $(\pi^+\pi^+)$ или $(\pi^-\pi^-)$.

д/ Значение R(0,0) для $\pi^- p$ - взаимодействий при импульсе 4O $\Gamma \ni B/c$ в пределах $\pm 10\%$ совпадает с аналогичной величиной R(0,0) для pp-взаимодействий при энергиях 2OO и 15OO $\Gamma \ni B$.

е/ Определены сечения дифракционного процесса $\pi^- p \rightarrow p...$ $\sigma_d = 2,32\pm0,12$ мбн и множественность вторичных частиц $\langle n_+ \rangle = 3,8\pm0,2$.

Сравнение сечений $\sigma_{\rm d}$ при импульсах 40 и 205 $\Gamma \ni B/c$ /данные из Батавин/ показало их совпадение в пределах ошибок.

ж/ Сравнение нормированных структурных функций для реакций

 $\pi^- p \rightarrow \gamma + \dots$ и $\pi^- C \rightarrow \gamma + \dots$ показало, что в области фрагментации пиона они совпадают в пределах $\pm 7\%$, а в области фрагментации протона и ядра углерода резко различаются, что совпадает с предсказаниями партонной модели.

з/ Продолжалось изучение инклюзивных распределений ∧ – и К°-частиц.

и/ При изучении зарядового обмена в тр - взаимодействиях получено, что существенную роль имеют процессы недифракционного типа /вплоть до энергии

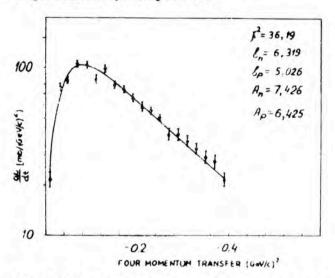
4ОО ГэВ/, что согласуется с предсказаниями мультипериферической модели с кластерами.

3. Исследование π^- р-взаимодействий при импульсе 5 ГэВ/с проводится с помощью однометровой жидководородной пузырьковой камеры, облученной на синхрофазотроне ОИЯИ.

Проведено сравнение расчетных данных по модели OPER с одним набором параметров и одним формфактором с экспериментальными данными реакции $\pi^- p \to p \pi^+ \pi^- \pi^-$ /спектры эффективных масс, угловые распределения и т.д./ в широком интервале значений энергии от 2 до 205 ГэВ. Получено согласие не хуже 20%.

Завершено сравнение экспериментальных данных о реакции $\pi^-p \to n \pi^+\pi^-$ с расчетами по модели OPER и получено удовлетворительное согласие. Обработка результатов велась физиками ОИЯИ в сотрудничестве с физиками ИТЭФ/Москва/.

4. Взаимодействие дейтронов с импульсом 3,3 ГэВ с протонами изучалось с помощью однометровой жидководородной пузырьковой камеры, облученной в пучке сепарированных дейтронов на синхрофазотроне ОИЯИ.


На статистике 8380 событий уточнено сечение реакции $dp \rightarrow ppn$ $\sigma = 37,2\pm1,4$ мбн, а для реакции с сохранением зарядов у взаимодействующих частиц $\sigma = 30,8\pm1,2$ мбн. Полученное дифференциальное сечение $d\sigma / dt$ аппроксимировано функцией с формфактором Альбери, Берточчи и Бялковского /АВВ//рис. 10/.

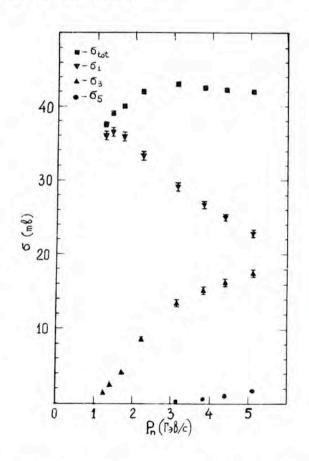
Проведен анализ угловых распределений спектатора. Получено, что в области малых импульсов спектаторов /О - 4О *МэВ/с/* для описания данных достаточно учесть только первую полюсную диаграмму.

Сделана оценка верхней границы при-

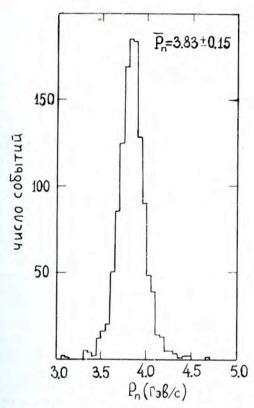
меси $\Delta\Delta$ -состояния в волновую функцию дейтрона: ~100 мкбн.

Работа проводится группами физиков ОИЯИ, ТГУ /Тбилиси/, ИЯИ /Варшава/, Варшавского университета.

10. Дифференциальное сечение $d\sigma / dt$ реакции $dp \rightarrow ppn$.


5. Взаимодействие антипротонов импульсом 22.4 ГэВ/с с протонами изучается с помощью двухметровой жидководородной пузырьковой камеры "Людмила", облученной пучком сепарированных антипротонов на ускорителе 70 ГэВ /ИФВЭ, Серпухов/. Объединенная группа 10 лабораторий: Дубны, Бухареста, Праги, Кошице, Хельсинки, Москвы, Тбилиси, Алма-Аты на статистике 11558 событий провела анализ топологических сечений рр - взаимодействий. Рассчитана средняя множественность заряженных частиц

 $n_{+-} = 4,69\pm0,O5$ и ее дисперсия $D = 2,30\pm0,O6$.


Исследован ранний KNO-скейлинг нормированных топологических сечений. За год получено 81 тыс. кадров в пучке антипротонов с импульсом 22,4 ГэВ/с.

6. Изучение взаимодействий моноэнергетических нейтронов с импульсами
от 1 до 5 ГэВ/с с протонами проводится
с помощью однометровой жидководородной пузырьковой камеры, облученной в
пучке нейтронов на синхрофазотроне
ОИЯИ. На статистике ~200 тыс. звезд
определены топологические сечения првзаимодействий /рис. 11/. Импульсный
спектр нейтронов при импульсе Р =
= 3,8 ГэВ/с приведен на рис. 12.

Работа ведется физиками ОИЯИ и ИАФ /Бухарест/.

11. Топологические сечения пр-взаимодействия в интервале импульсов от 1 до $5\ \Gamma \ni B/c$.

12. Импульсный спектр нейтронов, падающих на однометровую жидководородную пузырьковую камеру в одном из сеансов облучения.

7. Изучался механизм образования Ар-системы с помощью пропановой пузырьковой камеры, облученной т-мезонов с импульсом 4 ГэВ/си пучком нейтронов со средним импульсом 7 ГэВ/с. Для имитации пика в спектре эффективных масс Ар-системы при 2058 МэВ использовалось выражение сечения Аррассеяния в приближении эффективного радиуса. Пики при значениях масс 2127 н 2251 МэВ описывались с помощью формул для сечения резонансного Аррассеяния в форме Брейта-Вигнера. Полученные результаты свидетельствуют в пользу предложенного механизма образования резонансных пиков Ар - системы

как следствия особенностей в сечении упругого рассеяния Λp при низких энергиях.

8. Проведен анализ распадов К°-мезонов, зарегистрированных бесфильмовым искровым спектрометром на ускорителе 70 ГэВ/Серпухов/. Получены следующие результаты:

а/ на статистике 32 ООО случаев распада $K_L^0 \to \pi^+\pi^-\pi^0$ исследован коэффициент наклона квадрата матричного элемента, который оказался равным $a_1 = -0,280 \pm +0,014$.

б/ На статистике 50000 случаев распада $K_L^0 \to \pi^\pm \ e^- + \nu$ для линейной параметризации формфактора распада функцией

 $f_{+}(t) = f_{+}(0) \cdot (1 + \lambda_{+} t / m_{\pi}^{2})$

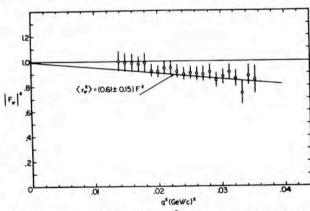
получено значение параметра наклона $\lambda_{+} = 0.047 \pm 0.005$,

что хорошо согласуется со значением ранее полученной величины $\lambda_{+} = 0.046 \pm 0.008$ для распада $K_{\perp}^{0} \rightarrow \pi^{\pm} \mu^{\pm} \nu$.

Работа ведется совместно ОИЯИ, ЦИФИ /Будапешт/, ФИ ЧСАН /Прага/, ИФВЭ /Берлин/.

9. Для изучения распада $K_s^o \to 2\mu$ в ИФВЭ /Серпухов/ создан новый канал нейтральных частиц, на котором восстановлена экспериментальная установка бесфильмовый искровой спектрометр. После запуска спектрометра на магнитные ленты записано 430 тыс. запусков установки, из них 300 тыс. по поиску $K_s^o \to 2\mu$.

В работе участвуют сотрудники ОИЛИ, ЦИФИ /Будапешт/, ФИ ЧСАН /Прага/, ИФВЭ /Берлин/.


10. При из учении взаимодействия протонов с энергией 70 ГэВ и пионов с
энергией 50 ГэВ с ядрами фотоэмульсии
проведено сравнение совокупности экспериментальных данных с теоретическими моделями. Особенно близкое совпадение имеется с моделью Б.Н.Калинкина
и В.Л.Шмонина. Сделан вывод о двух-

тактном механизме взаимодействия адрон-нуклон, связанном с образованием кластера с последующим его распадом. Оценено, что сечение взаимодействия адронного кластера в ядре сравнительно мало. Лаборатории Алма-Аты, Дубны, Душанбе, Еревана, Москвы, Ташкента начали исследовать взаимодействие пионов с энергией 50 ГэВ с ядрами фотоэмульсии, облученных в импульсном магнитном поле 200 кГс.

Электромагнитная структура элементарных частиц

1. Завершен анализ данных по определению электромагнитного радиуса пиона путем прямого рассеяния пионов с импульсом 50 ГэВ на электронах в водородной мишени с помощью магнитного искрового спектрометра на линии с ЭВМ на ускорителе 70 ГэВ/Серпухов/.

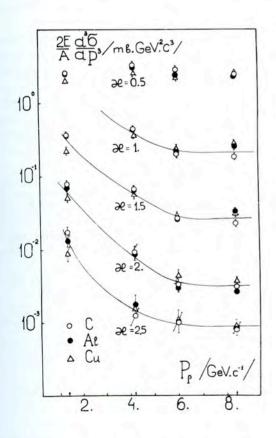
В результате обработки было выделено около 40 000 случаев упругого перассеяния. Формфакторы были вычислены в интервале переданных импульсов /t/ = = 0,014÷0,035 ГэВ /рис. 13/. При малых

13. Зависимость / $F_{\pi}/^2$ от переданного импульса. Приведенные ошибки являются полными. Горизонтальная линия характеризует поведение формфактора точечного пиона, нуклонная - результат фитирования экспериментальных точек.

значениях переданных импульсов /t/ получено, что среднеквадратичный раднус пиона равен $< r_{-}^{2} > ^{\frac{1}{2}} = 0,78\pm0,10 \ \Phi$ м.

Величина радиуса не противоречит ожидаемому результату из модели векторной доминантности и согласуется с данными других экспериментов.

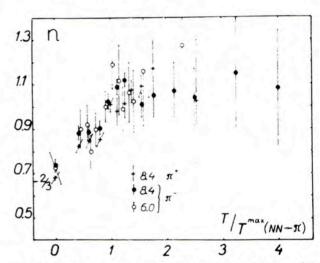
была проведена физиками Работа ОИЯИ и Калифорнийского университета.


2. Проведен поиск распада $\eta^0 \rightarrow \pi^0$ e+e-и $X^{\circ} \rightarrow \pi^{\circ} e^{+}e^{-}$ на пленках, полученных при облучении 30-литровой ксеноновой пузырьковой камеры ОИЯИ в пучке п+-мезонов с импульсом 2,34 ГэВ/с. Поиск проводился с целью обнаружения эффекта нарушения С-инвариантности в электромагнитном или в сильном взаимодействин адронов. На статистике 1,3 млн. случаев п+Хе-взаимодействий не найдено ни одного события, совместимого с распадом $\eta^0(X^0) \to \pi^0 e^+ e^-$. В предположении распределения Пуассона на 90%-ном доверительном уровне получены оценки пределов для относительной вероятности рас-

$$R = \frac{\Gamma (\eta^0 \to \pi^0 \, e^+ \, e^-)}{\Gamma (\eta^0 \to \pi^0 \, e^+ \, e^-)} < 1,6.10^{-4}$$

$$R = \frac{\Gamma (X^0 \to \pi^0 \, e^+ \, e^-)}{\Gamma (X^0 \to \pi^0 \, e^+ \, e^-)} < 0,8.10^{-3}$$
 для X^0 мезона.

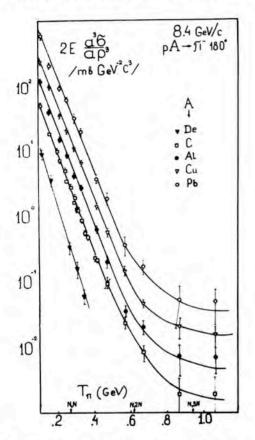
Релятивистская ядерная физика


1. На синхрофазотроне ОИЯИ проведено исследование свойств кумулятивного мезонообразования. С помощью электронной аппаратуры в антилабораторной системе координат медленно выведенным пучком протонов и дейтронов с импульсами 4,2,6 и 8,4 ГэВ/с на нуклон облучены ядра D, Li⁶, Li⁷, C, Al, Cu, Sm¹⁴, Sm^{154} W^{182} , W^{186} и Pb. Получены следующие экспериментальные результаты:

а/ Показано, что в адрон-адронных ядерных взаимодействиях, начиная с импульса на один нуклон ядра 4 ГэВ/с, имеется не исчезающая с ростом импульса часть, соответствующая многонуклонным взаимодействиям /до пяти/, т.е. кумулятивному рождению вторичных частиц /рис. 14/.

14. Зависимость инвариантного сечения, нормированного на атомный вес фрагментирующего ядра от импульса, приходящегося на один нуклон ядра, для разных значений отношения к. к - отношение энергии рожденного пиона к максимально возможной по кинематике нуклон-нуклонного взаимодействия.

6/ Выход пионов в зависимости от атомного веса фрагментирующего ядра пропорционален объему ядра /puc. 15/, т.е. $\sigma_{\text{KVM}} \sim \text{A}^n$,где n = 1.

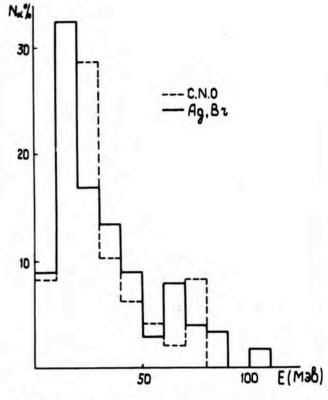

15. Зависимость показателя степени п для зависимости $\sigma_{KUM} \approx A^n$ от отношения энергии рожденного пиона к максимально возможной по кинематике NN-взаимодействия.

в/ Энергетические спектры кумулятивных мезонов имеют экспоненциальный характер, причем параметры описания спектров практически не зависят от энергии / puc. 16/.

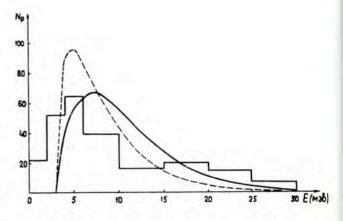
2. Исследование взаимодействий дейтронов с импульсом 9,4 ГэВ/с с ядрами фотоэмульсии проводилось с помощью совместного применения фотоэмульсий с обычным ядерным составом и с обогащением легкими ядрами. Это дает возможность разделять характеристики взаимодействий на ядрах группы (С, N, O) и группы ядер (Ag, Br).

Определен энергетический спектр медленных частиц / puc. 17/ и обнаружено, что критерий минимального пробега, основанный на величине кулоновского барьера ядра, который широко использо-

вался в международной практике, не может служить средством для разделения взаимодействий на группах ядер. Экспе-



 Экспоненциальная зависимость сечений от кинетической энергии рождения пионов.


риментальные данные также не согласуются с моделью испарения возбужденных ядер / рис. 18/.

Уточнены сечения взаимодействия а-частиц с импульсом 17 ГэВ/с с ядрами:

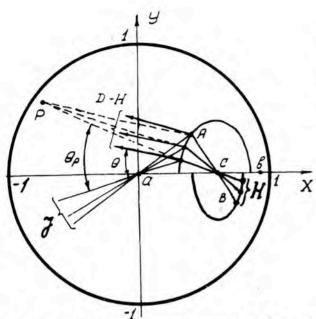
$$\sigma(\alpha C) = 380\pm38$$
 мбн,
 $\sigma(\alpha O) = 460\pm27$ мбн,
 $\sigma(\alpha A) = 1850\pm80$ мбн,
 $\sigma(\alpha B) = 1520\pm65$ мбн.

17. Энергетический спектр медленных частиц для групп ядер /С, N, O / u /Ag, Br /.

18. Сравнение энергетического спектра /гистограмма/ с моделью испарения возбужденного ядра /кривая линия/.

Получены предварительные данные о фрагментации α -частиц с вылетом p , d , T и He^{β} .

Работа проводится группами физиков Дубны, Варшавы, Кошице, Ленинграда, Гатчины, Москвы и Ташкента.


- 3. На стримерной камере СКМ-200 начался набор физической информации. В пучке а-частиц с импульсом 17 ГэВ/с при неоновом наполнении камеры сделано свыше 80 тыс. снимков, при гелиевом около 10 тыс. снимков.
- 4. Сделана оценка перспектив гиперонной физики и исследований многобарионных резонансов в столкновениях релятивистских ядер. В предположении справедливости импульсного приближения, с использованием известных из опыта сечений рождения A-гиперонов в NN-взаимодействиях, вычислены сечения рождения Λ -гиперонов в столкновениях релятивистских ядер H^1 , H^2 , He^4 , C^{12} , C ядрами H^2 , He^4 , B^{10} , C^{12} , Xe^{131} , Pt^{192} и U^{238} . Оценены сечения образования гиперядер и сверхстранных ядер, содержащих от одного до пяти А-гиперонов, а также сечения испускания /1-5/ А-гиперонов в этих реакциях. Рассмотрены перспективы исследований многобарионных, в том числе многогиперонных резонансов, сверхстранных ядер и сверхплотных состояний ядерного вещества. Оценки сечений получены для импульсов ядер 5,5 и 25 Γ $_{3}B/c$ на нуклон.

Теоретические исследования

1. Проведено рассмотрение фрагментации релятивистских ядер. Получена формула, дающая простое описание энергетических и угловых зависимостей выходов продуктов фрагментации и объясняющая факторизацию сечений. Введен реля-

- тивистский инвариантный параметр, позволяющий классифицировать реакции с релятивистскими ядрами, в частности, выделять кумулятивный эффект и "осколочные" процессы. Показана неправильность интерпретации данных по фрагментации ядер, предложенчая физиками из Беркли, и предсказаны некоторые закономерности.
- 2. При рассмотрении вопросов корреляции тождественных частиц в инклюзивных реакциях было показано, что между спектрами пар $\pi^+\pi^+$, $\pi^0\pi^0$ и $\pi^+\pi^-$ имеется однозначная связь, обусловленная изотопической инвариантностью; угловое распределение относительного импульса пары пионов определяется размерами области, в которой происходит образование частиц; было введено понятие функции взаимной когерентности пар пионов и разработан аппарат расчета интерференционных корреляций.
- лоренц- инвариантный Проведен анализ лучших из мировых данных о г зависимости элементов матрицы плотности для ρ , K^* и Δ_{33} -резонансов при начальных импульсах $P = 2.8 \div 17 \Gamma \ni B/c$. В области изменения переданных импуль- $\cos / t / = O \div 1 \ \Gamma \ni B^2$ обнаружено свойство сохранения в пространстве скоростей Лобачевского направлений "собственной оси" квантования спина этих резонансов при разных t на "собственный полюс квантования" Р. Определенный фитироваполюс Р резко отличается от задаваемых заранее /до опыта/ полюсов С для общепринятых в спиновом анализе направлений Джексона и направлений "спиральности" / рис. 19/. Это групповое свойство вращений вокруг полюса означает строгое отделение кинематики квантования спина от динамики /соб-

означает строгое отделение кинематики квантования спина от динамики /собственных значений матрицы плотности/ и указывает на неевклидову природу спина резонансов. Оно важно для четкой постановки проблемы распознавания в про-

19. Схема квантования спина резонанса доля бинарной реакции a+b→ A+B в модели Бельтрами неевклидовой плоскости рождения резонанса. На схеме показаны: эмпирические направления квантования Донахью-Хегассена/ стрелки ДН/, параметризующий их пучок прямых Лобачевского с полюсом Р, фиксированные пучки прямых ј - доля направлений Джексона и Н - доля направлений на точку С /ц.м. реакции/.

странстве скоростей Лобачевского статистических образов возбужденных адронов и поиска оптимальных путей решения ее.

Совершенствование действующих и разработка новых физических приборов и установок

1. На пучке отрицательных пионов с импульсом $P = 3,65\pm0,04$ ГэВ/с смон-

тирована большая многоцелевая установка - черенковский масс-спектрометр "Фотон" на 90 каналов. Установка состонт из: а/ шести пропорциональных камер, работающих на линии с ЭВМ НР2116В;

6/32 проволочных искровых камер размером 1х1 м²с магнитострикционным

съемом информации;

в/ сцинтилляционных счетчиков /длиной до 100 см/;

- г/ 90 черенковских спектрометров;
 - д/ жидководородной мишени;
- е/ системы газораспределения и газоочистки искровых и пропорциональных камер;

ж/ ЭВМ НР2116В.

На установке проведено 6 методических запусков и осуществлен комплексный запуск установки "Фотон" в полном объеме.

- 2. На стримерной камере СКМ-200 отлажена система выделения а -частиц и включена в триггер, смонтирована мишень с изотопом Li⁸, сокращено время памяти камеры до 5-6 мс. и проведены другие мероприятия по улучшению характеристик камеры.
- 3. На двухметровой жидководородной пузырьковой камере "Людмила" проведены работы по усовершенствованию холодной части механизма расширения, подключения системы пневмоавтоматики для строгого поддержания режима в камере, по изготовлению и испытанию опытных образцов лентопротяжных механизмов на 2 срабатывания за 1 цикл работы ускорителя, по созданию системы прецизионных измерений магнитного поля камеры в рабочих условиях. Эффективность работы камеры поднялась до 75% на пучке частиц.
- 4. Двухметровая пропановая пузырьковая камера полностью смонтирована, сдана в эксплуатацию и получены фотографии со следами частиц космического излучения.

5. Создание искровых и пропорциональных камер:

а/ разработаны, испытаны на стенде и переданы в эксплуатацию 3 пропорциональные камеры размером 900х300 мм²,

6/ подготовлены и испытываются на стенде 8 проволочных искровых камер размером 2x1 м 2 ,

в/ изготовлено 20 пропорциональных камер размером 200х200 мм² для диагностики пучков,

г/ изготовлены и испытаны на стенде дрейфовые камеры размером 200х х 200 мм²с различной длиной дрейфа,

д/ вводится в эксплуатацию стенд для испытания бесфильмовых детекторов размером до 4 м,

е/ установлена и введена в эксплуатацию ЭВМ ЕС-1010 для испытания детекторов на стенде.

6. Разработки вычислительной техники и автоматизации измерений:

а/ для установки "Фотон" отлажено 96 каналов наносекундной спектрометрической электроники, сопряжение ЭВМ с установкой,

б/ изготовлены и отлажены блоки для регистрации событий с 400 каналов пропорциональных камер для установки "Альфа",

в/ созданы и сданы в эксплуатацию многовходовые мажоритарные схемы совпадений с цифровым отбором событий для установки БИС, начата работа по созданию системы управления считыванием данных с установки,

г/ осуществлено управление медленным выводом частиц из синхрофазотрона на основе ЭВМ ТРА.

7. Разработка и внедрение электроники детекторов:

а/ завершена разработка системы программно-управляемых блоков наносекундной электроники,

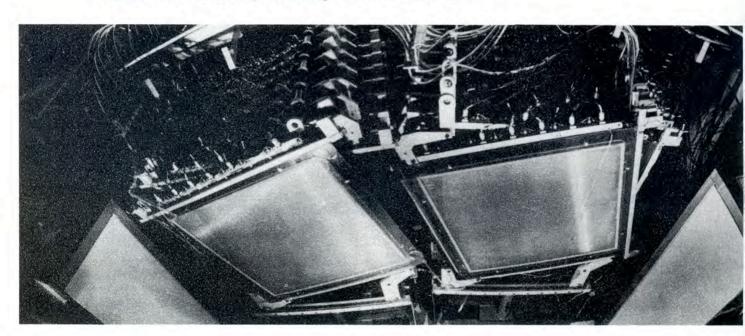
б/ развита многоканальная аппаратура для измерения зарядов, амплитуд и временных интервалов на интегральных схемах со средней степенью интеграции,

в/ совместно с ИЯФ СОАН СССР завершена разработка и изготавливается в промышленности гибридная интегральная схема "усилитель-формирователь", разработан канал регистрации сигналов с этим усилителем, имеющий высокую плотность упаковки - 73О каналов в крейте КАМАК.

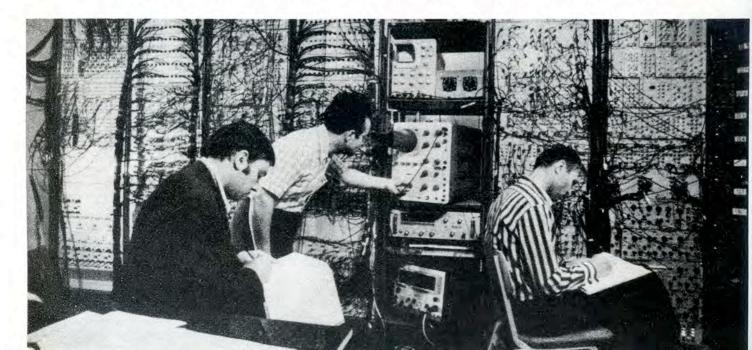
За год построено и передано в эксплуатацию 12О блоков быстрой электроники в стандарте КАМАК и 7О блоков регистрирующей электроники на интегральных схемах.

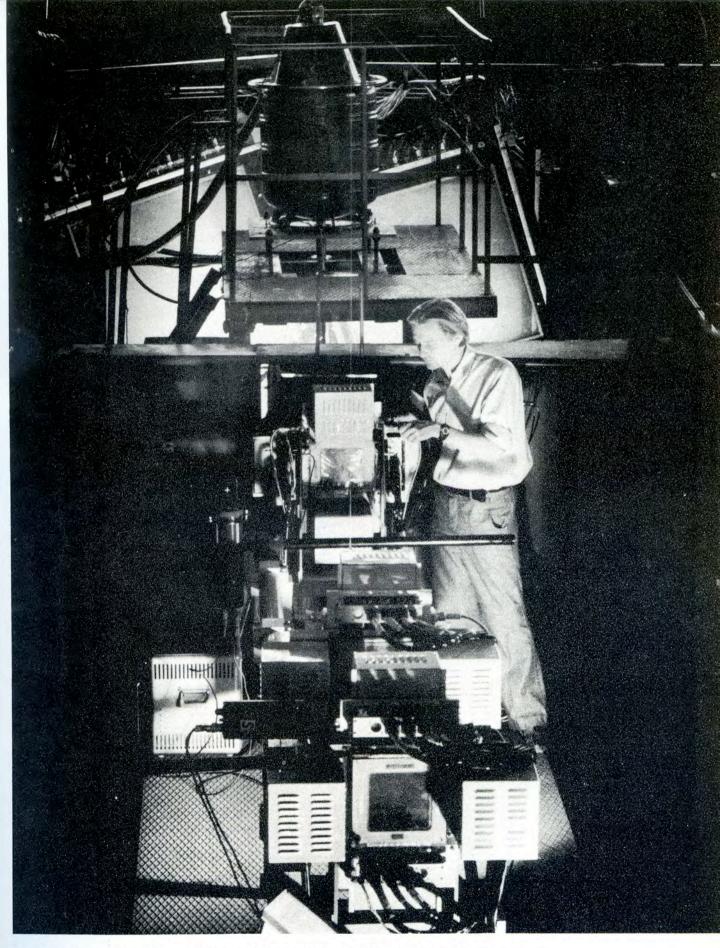
8. Опубликованы физическое обоснование и технические предложения по сооружению жесткофокусирующего криогенного усилителя релятивистских ядер "Нуклотрон". Проведены расчеты магнитного поля, системы ввода и вывода, допусков на магнитные поля, на точность установок элементов "Нуклотрона".

9. В области разработок криогенной техники создан стенд со струйной мишенью, вакуумной системой и имитатором кольца ускорителя для изучения вопросов, связанных с созданием газовой струйной гелиевой мишени. Мишень будет использована в эксперименте на ускорителе в Батавии, готовящемся в рамках советско-американского соглашения с участием ученых ОИЯИ.

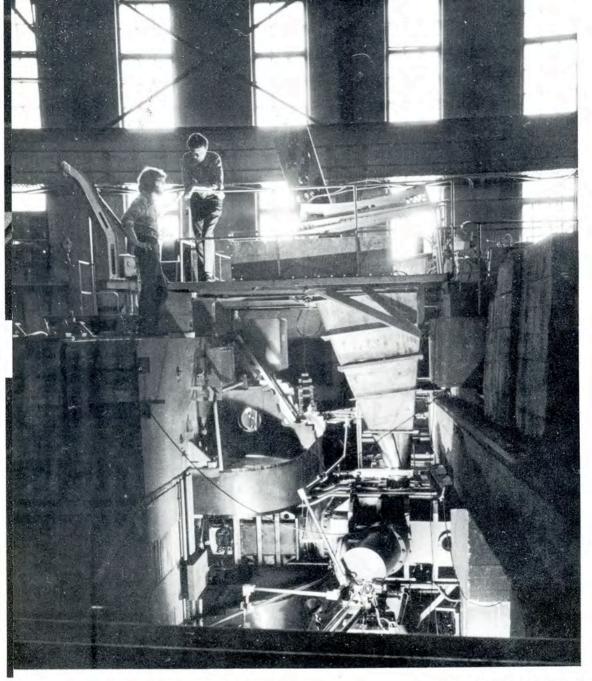

Разработана и изготовлена модель сверхпроводящего выключателя на критический ток 0,92 кA, сопротивление 2,5 мA, минимальное время 0,35 мс.

Разработаны, изготовлены и испытаны в различных криогенных средах электроизоляционные конструкции вводов в жидкий гелий. С помощью установки ИСКРИЗ изучены характеристики поведения около 3О моделей проходных изоляторов.


Закончена работа по исследованию сопротивления вязкому течению вихрей

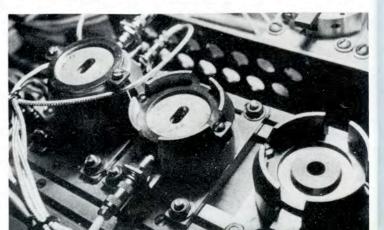


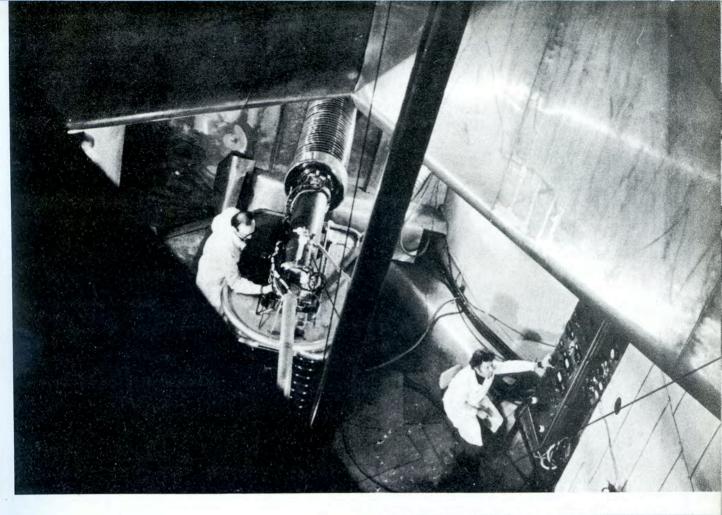
В установке используется современная мини-ЭВМ.


Набор из 32 искровых камер. Быстродействующая электроника установки.

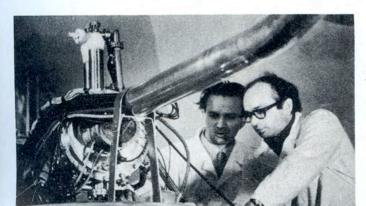
Головная часть установки - детекторы частиц пучка пионов.

На пучке отрицательных пионов синхрофазотрона смонтирована многоцелевая установка "Фотон" - черенковский масс-спектрометр для изучения процессов с участием гамма-квантов, электронов и позитронов.

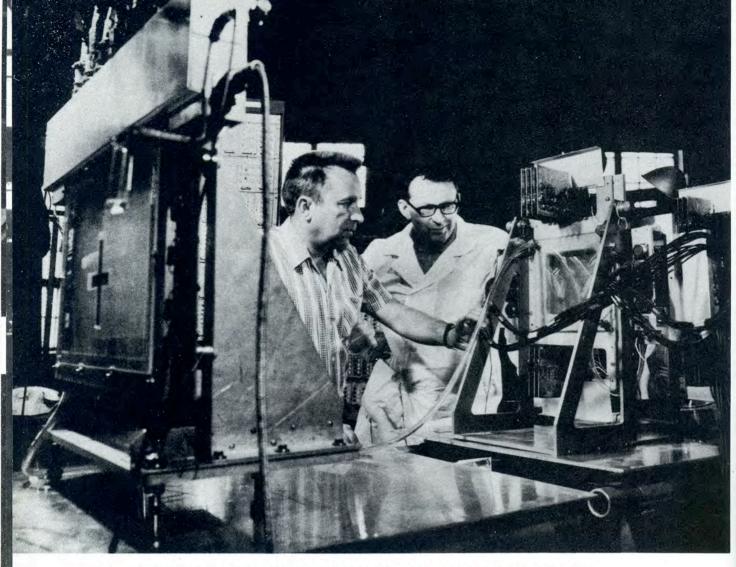



Монтаж установки на пучке синхрофазотрона.

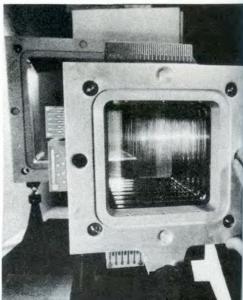
Создан спектрометр частиц отдачи для изучения упругого рассеяния легких ядер на протонах и на ядрах.

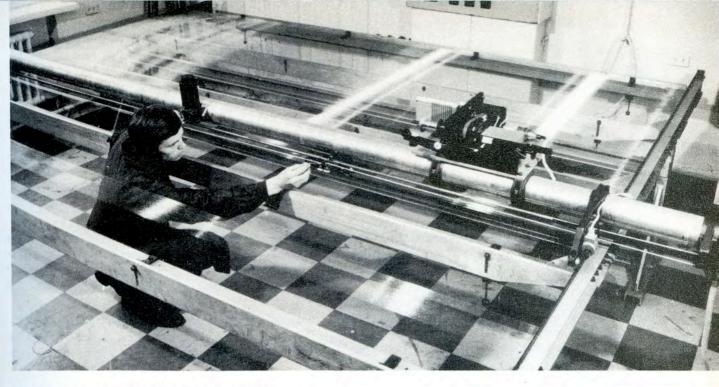

Подготовка каретки с полупроводниковыми детекторами частиц отдачи.

Детекторы частиц отдачи.



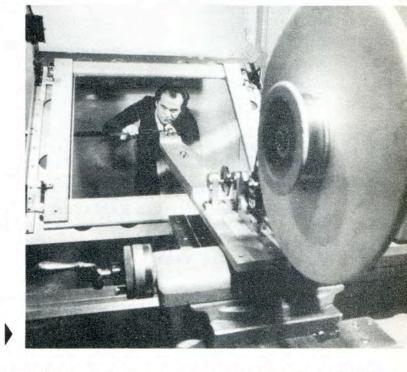
Для ускорения легких ядер на синхрофазотроне создан электронно-лучевой ионный источник - установка КРИОН /криогенный ионизатор/. Источник смонтирован на инжекторе синхрофазотрона ЛУ-9М. С помощью КРИОНа и инжектора ускорены ядра гелия и азота.



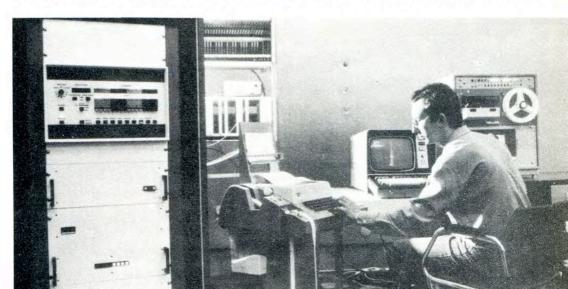


Для исследования упругого рассеяния адронов на синхрофазотроне создана аппаратура, включающая пропорциональные и дрейфовые камеры /установка "Альфа"/.

Изготовление каркасов дрейфовых камер и образец готовой камеры. Эти камеры создаются специалистами ОИЯИ для экспериментов по определению радиуса пиона на ускорителе в Батавии.



Намоточный станок для изготовления искровых камер больших размеров /до Зм/.


В ОИЯИ изготавливают большие проволочные искровые камеры, предназначен-

ные для различных экспериментов.

Идет процесс намотки камеры размером 1 м х 1 м.

Для испытания камер на стенде используется современная мини- ЭВМ.

в сверхпроводящих сплавах с невысокими критическими токами во всей области существования сверхпроводимости.

Усовершенствование синхрофазотрона

Сдан в эксплуатацию и работает как инжектор синхрофазотрона новый линейный ускоритель ЛУ-2О на энергию 20 МэВ.

Введена в опытную эксплуатацию система активной коррекции показателя спада магнитного поля синхрофазотрона с программным управлением.

В настоящее время осуществлена стабилизация размера и положения пучка на входе во второй выводной магнит путем управления токами отклоняющего магнита в начале и в конце вывода и током линзы. Согласование датчиков с ЭВМ осуществляется системой КАМАК на линии с ТРА 1001. Проведенная работа обеспечивает сокращение времени настройки системы вывода и стабильности пространственных характеристик вывеленного пучка.

Установка "КРИОН" изготовлена, прошла всесторонние испытания и смонтирована на линейном ускорителе ЛУ-9М. С помощью "КРИОНа" на ЛУ-9М ускорены ядра гелия и азота, интенсивности пучков составляют до 10 ⁹ Не/имп. и 10⁷N/имп. С помощью установки измерены сечения последовательной нонизации электронным ударом ядер углерода от C^{2+} до C^{6+} и ядер азота от N^{3+} до N^{7+} / мабл. 1,2, рис. 20/.

Таблица 1 Экспериментальные и теоретические сечения последовательной ионизации атомов и ионов углерода при $E_e = 2500 \ \textit{3B}$

Сечения (х10 ^{—20} см ²)		Экспе- римент	Расчёт по формуле Лотца/41/	Кванто- вомеха- нический расчёт
σ_{0}	→ 1		2500	2200[16-]
$\sigma_{\mathbf{l}}$	→ 2	800*/7/	810	700/55/
σ_2	→ 3	200 [±]	300	400/57/
σ_{3}	→ 4	57 <u>+</u> 12	120	140/57/
σ_4	→ 5	30 <u>+</u> 7	20	28/57/
σ_{5}	→ 6	14 <u>+</u> 2	6	9/57/

20. Зависимость вида спектров зарядносмей ионов ксенона от времени ионизации.


Таблица 2 теоретические Экспериментальные последовательной ионизации атомов и нонов азота при Е = 2100 эВ

Сечения (x10 ⁻²⁰ см ²)		Экспе- римент	Расчёт по формуле Лотца/41/	Кванто- вомеха- нический расчёт
σ_0	→ 1	4000*/56/	2800	4400*/16/
σ_1	→ 2	700*/17/	960	1100/55/
σ_2	→ 3	400*/7/	410	440/55/
σ_{3}	→ 4	125 <u>+</u> 22	180	250/57/
σ_4	→ 5	39 <u>+</u> 7	74	100/57/
σ ₅	→ 6	9 <u>+</u> 2	11	21/57/
σ_{6}	→ 7	4 ±	4	7/57/

Эксплуатация синхрофазотрона

Запланированное время работы ускорителя - 4734 часа.

Ускоритель работал:

а/ на экспериментальные исследования по физике элементарных частиц и ядра -2616 час со средней интенсивностью $1.7 \cdot 10^{11}$ ускоренных протонов, $2.5 \cdot 10^{10}$ ускоренных дейтронов и $2 \cdot 10^8$ ускоренных альфа-частиц за цикл ускорения;

б/ на совершенствование систем ускорителя - 1601 час.