ДУБНА•I972 ОБЪЕАИНЕННЫЙ ИНСТИТУТ ЯАЕРНЫХ ИССАЕАОВАНИЙ

JOINT INSTITUTE FOR NUCLEAR RESEARCH 1972. DUBNA

Лаборатория высоких энергий

В лаборатории выполнялись исследования в области физики элементарных частиц, в области релятивистской ядерной физики, велись разработки новых приборов для физических экспериментов, производилось совершенствование и создание методики проведения экспериментов, улучшение параметров и модернизация основной ускорительной базы лаборатории - синхрофазотрона. Существенная часть усилий коллектива лаборатории приходилась на реализацию серпуховской программы научных работ.

Большая часть исследований проводилась с помощью Лаборатории вычислительной техники и автоматизации и на основе широкого международного сотрудничества с лабораториями и институтами стран-участниц ОИЯИ.

Научно-
 исследовательские работы

Поведение
амплитуд рассеяния
в зависимости
от энергии взаимодействующих частиц
Завериен анализ результатов по изучению упругого $p p-$, $p d-\quad$ и. $p n-$ рассеяний на малые углы в интервале энергий 10-70 Гэв. В результате установлено, что при описании параметра наклона $b_{p p}$ формулой $b_{p p}(S)=b_{0}+2 b_{1} \ln \left(S / S_{0}\right)$ из экспериментальных данных следует:
$b_{0}=/ 7,32 \pm \mathrm{O}, 25 / /$ Гэв $/ \mathrm{c} /^{-2}$
и
$b_{1}=/ \mathrm{O}, 41_{ \pm} \mathrm{O}, \mathrm{O} 6 / /$ Гэв $^{2} / \mathrm{c}^{-2}$
при $S_{0}=1$ Гэв ${ }^{2} /$ здесь S-квадрат

полной энергии в с.ц.м./. Параметр b_{1} является "эффективным" наклоном дающих вклад в амплитуду данной реакции траекторий полюсов. Основной вклад в эту величину вносит наклон траектории полюса Померанчука a_{p}^{\prime}. Прямая,проведенная через экспериментальные точки по формуле для $b_{p p}(S)$, приведена на рис. 1.

На рис. 2 показана энергетическая зависимость параметра наклона упругого

1. Параметр наклона упругого $р р$-рассеяния при $/ t / \leq 0,1 \quad /$ Гэв/2.

2. Параметр наклона упругого $p d$-рассеяния при $0,02 \leq / t / \leq 0,05 /$ Гэв $/ 2$.
$p d$-рассеяния в интервале энергий 10-70 Гэв. Эта зависимость подтвержда ет величину наклона траектории Померанчука, следующую из эксперимента по $p p$-рассеянию.

При использовании экспериментальных данных о параметрах наклона и вели чинах действительной части амплитуд упругого $p p-, p d-$ и $p n$ - рассеяний рассчитаны сечения этих реакций / рис. 3,

3. Сечения ynpyгого $p p^{-} u$ pп-pacсеяния. Систематические ошибки: $3,5 \%, \Delta-15 \%$, \quad - 6%. Нанесена эмпирическая кривая вида $\sigma_{e \ell}(p)=\sigma_{0}+\sigma_{1} p^{-n}$, проведенная через указанные точки $\sigma_{\text {еl }}(p)$. $\sigma_{0}=5,36 \pm 0,29 \quad$ мбарн; $\sigma_{1}=16,1 \pm$ $\pm 1,7$ мбарн, $\quad n=0,545 \pm 0,061$.
$4,5 /$. С ростом энергии сечения упругого $p p-$, $p d-$ и $p n$-рассеяний уменьшаются, что вызвано ростом параметра наклона, а также уменьшением действительной части амплитуды рассеяния.

На основе теории Глаубера из экспериментальных данных о дифференциальных сечениях упругого $p p-, p d-$ и $p n$ рассеяний в интервале энергий 10-26 Гэв вычислена сумма квадратов формфакторов для S - и D-состояний дейтрона при значениях квадрата переданного четырехимпульса $/ t / \leq 0,2 /$ Гэв $^{2}{ }^{2}$. Из числа рассмотренных волновых функций наилучшее согласие с экспериментом дает волновая функция Брессела и Кермана /рис. 6/.

4. Отношение $\sigma_{\mathrm{e} \ell} / \sigma_{\text {tot }}$ для $p p-u \quad p п-$ взаимодействий. Представлена эмпирическая кривая вида

$$
\frac{\sigma_{e l}}{\sigma_{\text {tot }}}(p)=a_{0}+a_{1} p^{-n}
$$ рассчитанная для рр-взаимодейспвия: $a_{0}=0,157 \pm 0,007, \quad a_{1}=0,360 \pm 0,047$, $n=0,602 \pm 0,080$.

5. Сечение упругого pd-рассеяния.

6. Сумма квадратов формфакторов дейтрона в S - и D-состояниях: F (t) = $=S_{o}^{2}(t / 4)+S_{2}^{z}(t / 4)$. Показаны пеоретические значения $F(t)$ для различных волновых функиий дейтрона: 1 данные Брессела и Кермана, 2-ХамадыДжонстона, 3-Моравчика, 4-Хамбспона.

На основе снимков с метровой жидководородной камерь продолжа епся исследование неупругих взаимодействий пионов. Работа вьполняется совместно с институтами ГДР, МНР, СРР, ЧССР. Изучается экспериментальный материал, полученный при облучении камеры релятивистскими дейтронами.

Стримерная камера СКМ-2ОО установлена в пучке медленного вы вода частии из синхрофазотрона ЛВЭ.

Общий вид установки "Резонанс"

Двухкоординатная разборная пропорииональная камера размером $0,3 \times 0,6 \mathrm{~m}^{2}$.

Осуществлен медленный вывод пучка ускоренных протонов из камеры синхрофазотрона. Эффективность вывода превыयает 9О\%. Пучок транспортируется к экспериментальным установкам в измерительном павильоне с помощью системы магнитных линз.

Испытана установка с гелиевым детектором, предназначенная для экспериментов на синхрофазотроне.

Исследования асимптотического поведения амплитуд рассеяния нейтральных каонов на ядрах водорода, дейтерия и других проводятся на ускорителе 76 Гэв /ИФВЭ, Серпухов/ с помощью большого искрового спектрометра на линии с ЭВМ БЭСМ-3М. В состав спектрометра входят 18 двухкоординатных бесфильмовых искровых камер, анализирующий магнит, детектор электронов и мюонов и сцинтилляционный годоскоп - триггер. Изучается регенерация короткоживущих каонов долгоживущими каонами в мишени-регенеpaторе.

При исследовании регенерации с помощью трехметровой жидководородной мишени получены следующие результаты для интервала импульсов 14-42 Гэв/с. Найдено, что модуль разности амплитуд упругого рассеяния вперед $\boldsymbol{K}^{0}{ }_{p}$ и $\tilde{\boldsymbol{K}}^{0}{ }_{p}$ убывает с ростом энергии каонов, падающих на мишень-регенератор, приблизительно обратно пропорционально корню квадратному из энергии /рис. 7/, а фаза этой разности остается постоянной и равной $-131^{\circ} \pm 8^{\circ} /$ рис. $8 /$. Таким образом, нарушений теоремы Померанчука в области 10-50 Гэв/с не наблюдается.

Для опытов по регенерации на дейтерии в лаборатории была изготовлена уни кальная трехметровая жидкодейтериевая мишень. В ходе эксперимента на магнитные ленты записана обширная информация /около 2 млн. событий/. Организована ее обработка в странах-участницах: НРБ, ВНР, ГДР, ЧССР. Дополнительнок главной программе исследований регенерации каонов в BHP обработаны данные о 100 тыс. распадов $K_{\mu з}$ с целью изучения формфактора каонов.

После окончания измерений с дейтерием большой искровой спектрометр переносится на новый канал нейтральных частиц, создаваемый ИФВЭ, с цельюизучения электромагнитного формфактора каонов в экспериментах на ядрах.

7. Энергетическая зависимость модуля разности амплитуд упругого рассеяния вперед $K{ }^{\circ}{ }_{p} u \tilde{K}^{\circ}{ }_{p}$.
8. Энергепическая зависимость фазы разности амплитуд упругого рассеяния вперед $K^{\circ}{ }_{p} u \tilde{K}{ }^{\circ} p$.

\diamond в исследовании упругого рассеяния пионов на гелии при импульсах 3,48 и 6,13 Гэв/с завершена обработка данных для интервала малых передач О,007-$-\mathrm{O}, 100$ Гэв ${ }^{2}$. Результаты измерений дифференциальных сечений упругого рассеяния пионов на ядрах гелия оказались в удовлетворительном согласии с теоретическими расчетами, сделанными на основе глауберовской модели.
\diamond Исследование упругого $\pi^{-} p$-рассеяния на малые углы при энергии 40 и 50 Гэв ведется на ускорителе 76 Гэв в Серпухове. С помощью магнитного искрового спектрометра на линии с ЭВМ зарегистрировано около 5 млн. запусков установки.

Механизм
рождения и распада частиц и резонансов. Поиск новых резонансов
 $\pi^{-} n-и \pi^{-} С$-взаимодействий при импульсе $4 O$ Гэв/с двухметровая пропановая пузырьковая камера была облучена на ускорителе 76 Гэв /Серпухов/ в пучке отрицательных пионов. В 1972 году на камере получено 200 тыс. кадров, а за все время ее работы - 300 тыс. кадров. После этого камера была демонтирована и возвращена в лабораторию.

Просмотр снимков по согласованным инструкциям ведется в 16 лабораториях 8 стран - участниц ОИЯИ. Просмотрено около 100 тыс. кадров, измерено 10 тыс. следов событий, вызванных γ-квантами, и около 2 тыс. звезд. Были определены вероятность образования событий в зависимости от числа вторичных лучей в звезде /рис. 9/, средние значения величин, характеризующих образование π^{+}мезонов, π^{-}мезонов и гамма-квантов в $\pi^{-} p-$

9. Распределение вероятности образования событий в зависимости от числа вторичных лучей при πN-взаимодействии.

Cped	ние характеристики		4 $\pi \boldsymbol{N}-40 \mathrm{rab} / \mathrm{c}$	
		$\pi^{-} \mathrm{p}$	$\pi{ }^{-} n$	
π^{-}	$\begin{aligned} & \left\langle P_{1}\right\rangle M_{3 b} \\ & 0 \div 1500 \end{aligned}$	362 ± 5 (M36)	351 \ddagger ? (M3b)	Ниело настии назад на
	$\begin{array}{\|c\|} \hline\left\langle p_{1}^{*}\right\rangle M_{3 b} \\ -2500 \div+2500 \end{array}$	200 ± 12 (M36)	265 522 (${ }_{3} 6$)	1000 зbesz b π
	$\begin{array}{r} \left.<\cos \theta^{\circ}\right\rangle \\ -1.0 \div+10 \end{array}$	0.236 ± 0.12	10.280 ± 0.020	51 ± 7
π^{+}	$\begin{aligned} & \left\langle p_{p}\right\rangle M_{2 b} \\ & 0 \div 1500 \end{aligned}$	368 55 (M3b)	369 ± 9 (M36)	
	$\begin{gathered} \left\langle p_{1}^{*}\right\rangle M>b \\ -250 \div+2500 \end{gathered}$	$-36 \pm 12(\mathrm{Mab})$	162 ± 25 (M3b)	48 ± 7
	$\begin{array}{r} \left\langle\cos \theta^{\circ}\right\rangle \\ -1.0 \div+1.0 \end{array}$	0.001 ± 0.013	0.186 ± 0.025	
γ	$\begin{aligned} & \left\langle P_{1}\right\rangle M>b \\ & 0 \div 1500 \end{aligned}$	168 ± 3 (M36)	164 56 (M36)	
	$\begin{gathered} \left\langle p_{11}^{*}\right\rangle \\ -2500 \div+2500 \\ -250 \end{gathered}$	25 ± 8 (M36)	$53 \pm 18(M 36)$	
	$\begin{array}{r} \left\langle\cos \theta^{*}\right\rangle \\ -1.0 \div+1.0 \end{array}$	0.057 ± 0.015	0.129 ± 0.024	
π°		$\leqslant 50 \pm 13$ примято, нто $\left\langle n_{\pi}{ }^{\text {¢ }}\right\rangle>=2.32$		

1O. Таблииа средних величин, характеризующих образование $\pi^{+}-, \pi^{-}$мезонов и гамма-квантов в с.и.м. реакиии
 $4 О$ Гэв/с.

11. Зависимость $\frac{1}{\sigma_{\text {in }}} \cdot \frac{d \sigma}{d y^{*}}$ от y^{*} для $\gamma-$ квантов в $\pi^{-} p^{-i n}$ и $\pi^{-} n$-взаимодействиях.

и $\pi^{-} n$-взаимодействиях /рис. $10 /$, а также некоторые характеристики инклюзивных реакций

$$
\pi^{-} p \rightarrow \pi^{ \pm}+\ldots, \pi^{-} n \rightarrow \pi \pm+\ldots, \pi^{-} p \rightarrow \gamma+\ldots
$$

Сравнение полученных данных об инклюзивных реакциях с результатами других экспериментов указывает на проявление масштабной инвариантности в $\pi^{-} N$-взаимодействиях при импульсе $40 Г э в / с$ в центральной области ($\mathbf{y}^{*} \sim 0$) /рис. 11/.

Ввзимодействие отрииательных пионов с протонами при импульсе 5 Гэв/с исследуется с помощью однометровой водородной пузырьковой камеры на синхрофазотроне ЛВЭ. Получены следующие физические результаты.

Дөухлучевые события. На статистике около 2 тыс. событий $\pi^{-} p \rightarrow \pi^{+} \pi^{-} n$ из мерены сечения рождения резонансов и определены элементы матрицы плотности

Reaction	RE SONANCE	MASS MeV	WIDTH MaV	$\begin{gathered} \text { FRACTION } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { CROSS SECTION } \\ \text { in mb } \end{gathered}$
$\pi \bar{\rho}-\rho \pi^{+} 2 \pi^{-}$	$\begin{aligned} & \Delta^{++}(1236) \\ & \rho^{\circ} \end{aligned}$	$\begin{gathered} 1207 \pm 3 \\ 775 \pm 4 \end{gathered}$	$\begin{aligned} & 83 \pm 6 \\ & 121 \pm 10 \end{aligned}$	$\begin{aligned} & 27 \pm 2 \\ & 40 \pm 3 \end{aligned}$	$\begin{aligned} & 0.52 \pm 0.04 \\ & 0.76 \pm 0.06 \end{aligned}$
$\pi^{\bar{\rho}}-\rho \pi^{+} 2 \pi^{-\pi^{*}}$	$\begin{aligned} & \Delta^{++}(1236) \\ & \rho^{\circ} \\ & \rho^{-} \\ & \omega^{\circ} \\ & \eta^{0} \end{aligned}$	$\begin{aligned} & 1207 \pm 6 \\ & 718 \pm 7 \\ & 772 \pm 7 \\ & 786 \pm 2 \\ & 556 \pm 4 \end{aligned}$	$\begin{gathered} 123 \pm 19 \\ 131 \pm 20 \\ 120 \pm 21 \\ 38 \pm 3 \\ 5 \pm 29 \end{gathered}$	$\begin{aligned} & 18 \pm 2 \\ & 22 \pm 3 \\ & 19 \pm 3 \\ & 21 \pm 3 \\ & 1.5 \pm 0.5 \end{aligned}$	$\begin{aligned} & 0.35 \pm 0.04 \\ & 0.43 \pm 0.06 \\ & 0.37 \pm 0.06 \\ & 0.41 \pm 0.06 \\ & 0.02 \pm 0.009 \end{aligned}$
$\pi{ }^{-}+n 2 \pi^{+} 2 \pi^{-}$	$\begin{aligned} & \Delta^{*-(1236)} \\ & \rho^{*} \end{aligned}$	$\begin{array}{r} 1232 \pm 5 \\ 758 \pm 7 \end{array}$	$\begin{aligned} & 56 \pm 14 \\ & 113 \pm 20 \end{aligned}$	$\begin{aligned} & 16 \pm 3 \\ & 40 \pm 4 \end{aligned}$	$\begin{aligned} & 0.176 \pm 0.035 \\ & 0.44 \pm 0.07 \end{aligned}$

12. Таблииа сечений образования резонансов в 4-лучевых $\pi-p$-взаимодействиях при 5, О Гэв/с.
$\rho_{i j}$. Их значения показывают, что образование ($n \pi^{+} \pi^{-}$) нельзя объяснить чистым однопионным обменом. Проводится обработка треков этих событий с целью изучения $\rho \omega$-интерференции.

Четырехлучевые события. На статистике около 15 тыс. событий определены сечения каналов реакций и рождения не которых резонансов /рис. 12/. Для этих событий выполнен анализ по методу Ван Хова. Работа ведется в сотрудничестве с лабораториями стран-участниц ОИЯИ: ГДР, МНР, СРР, ЧССР.

Шестилучевые события. Измерены сечения каналов реакций и сечения образования некоторых резонансов. В канале, где кроме шести заряженных частиц образуется еще один нейтральный пион, обнаружен избыток комбинации, соответствующий ϕ-мезону $/ M=1019$ Мэв/ /рис. 13/. Установлено также, что среди образованных ω_{0}-мезонов некоторая их часть летит назад в с.ц.м. реакции. Проводится дальнейшее изучение шестилучевых событий в сотрудничестве с ИФВЭ /Цойтен, ГДР/.

В Взаимодействие дейтронов с пропонами при импульсе 3,3 Гэв/с изучается с помощью однометровой водородной пу-

13. Pаспределение $M\left(\pi^{+} \pi^{-} \pi^{0}\right)$ в 6-лучевых π-р-взаимодействиях при импульсе 5,О Гэв/с.

зырьковой камеры, облучаемой в пучке сепарированных дейтронов на синхрофазотроне ЛВЭ. В 1972 году в сеансах облучения камеры получено 133 тыс. рабочих фотографий в пучке дейтронов 3,3 Гэв/с. Ведется обработка около $2 О$ тыс. событий.

Предложенная редакция эксперимента, когда дейтрон падает на протон ($d p$), имеет преимущества перед классическим (pd) -вариантом, что связано с хорошими условиями выделения протонов-спектаторов и с тем, что протон-мишень до взаимодействия покоится, а это позволяет восстановить кинематику $d p$-столкновения.

Получены следующие физические результаты по наиболее статистически обеспеченному каналу $d p \rightarrow p p n$.
a/ При сопоставлении в с.ц.м. дейтрона импульсов нуклонов и их $\cos \theta^{*}$ хорошо выделяется изотропная часть при малых импульсах, соответствующая нуклонамспектаторам, и ход квазиупругого рассеяния /рис. 14/.
б/ Оценены сечения процессов:

$$
\begin{array}{ll}
d_{p \rightarrow p p n}, & \sigma=(40,5 \pm 1,2) м б а р н, \\
d_{p \rightarrow p p p \pi^{-}}, & \sigma=(2,2 \pm 0,2) м б а р н, \\
d_{p \rightarrow p p n}, & \sigma=(12,7 \pm 0,3) м б а р н, \\
d_{p \rightarrow p \pi^{+} n n,}, & \sigma=(20,8 \pm 0,9) \text { мбарн },
\end{array}
$$

в/ Выяснено, чтоиз данныхо $d p$-взаимодействии можно извлекать сведения об элементарных актах $n p$ - или $p p^{-}$
$\operatorname{Cos} \theta$

14. Зависимость $\operatorname{Cos} \theta$ от импульсов нуклонов в с.ц.м. дейтрона для $d p$ взаимодействий при импульсе 3,3 Гэв/с.

15. Энергетическая зависимоспь сечения пр -перезаряоки.

взаимодействий. В частности, было оценено сечение $n р$-перезарядки /рис. 15/:

$$
\sigma_{e x}(n p)=/ 5,8 \pm \mathrm{O}, 3 / \text { м барн }
$$

Работа проводится совместно с Польской Народной Республикой.

Взаимодейспвие пропонов с пропонами при импульсе 35 Гэв/с. При облучении двухметровой водородной пузырьковой камеры "Людмила" протонами с им пульсом 35 Гэв/с получено около 17 тыс. кадров. На части материала $/ 2$ тыс.событий/ найдено распределение по множественности, определена средняя множественность: $\bar{n}_{3 а р .}=5, \mathrm{Ol}_{ \pm} \mathrm{O}, 07$. Обработка данных продолжается.

Ввзаиодействия пропонов и отрииапельных пионов с нуклонами и яорами при энергии 4О-7О Гэв. Продолжалось изучение взаимодействий $\pi^{\text {- - мезонов }}$ 60 Гэв и протонов 67 Гэв с помощью ядерных фотоэмульсий, облученных на ускорителе 76 Гэв/Серпухов/. Показано, что зависимость средней множественнос-

ти образования частиц для $\pi^{-} p-$ и $p p-$ взаимодействий можно описать в виде $\langle n\rangle \sim E^{0,66}$ в с.ц.м. реакции, но кривая зависимости $\langle n\rangle$ для $\pi^{-} p$-взаимодейст вий несколько сдвинута к более высоким значениям при одинаковой полной энергии в с.ц.м. Для $\pi^{-} p$-взаимодействий при 60 Гэв $\langle n\rangle=5,7 \pm О, 2$, для $p p$-взаимодействий при 67 Гэв $\langle п\rangle=5, \mathrm{O} \pm \mathrm{O}, 2$.

Впервые установлено /в отличие от теоретических моделей Янга и др./, что парциальные сечения не достигают насыщения, а с ростом энергии проходят через максимум и убывают. При исследовании когерентной генерации пионов на ядрах фотоэмульсии обнаружено существенное превышение, при равных энергиях, сечений когерентной генерации π^{-}мезонами по сравнению с протонами /рис. 16/.

16. Энергетическая зависимость длинь свободного пробега для трехлучевых когерентных событий на ядрах фопоэмульсии.

Получено указание на процесс многочастичных взаимодействий, когда несколько вторичных частиц, рожденных в первичном столкновении π^{-}-мезона 60 Гэв с ядром, коллективно взаимодействуют с нуклонами этого ядра. Выяснено, что под действием протонов 69 Гэв с вероятностью $3,8 \pm О, 7 \%$ происходит полный распад ядер $A g$ и $B r$ преимущественно на отдельные нуклоны. Среднее число частиц /помимо рожденных/ равно 30 ± 1.

В 1972 году на ускорителе 76 Гэв /Серпухов/ облучено около 40 стопок фотоэмульсии в магнитном поле $\sim 22 \mathrm{O}$ ксс пучком π^{-}-мезонов с импульсом 50 Гэв/с.
\checkmark Исследование резонансов в двух$и$ многобарионньх системах дало следующие физические результаты:
$\mathrm{a} /(\Lambda \Lambda)$-система / 53 события/. В спектре эффективных масс вблизи суммы масс покоя двух Λ-гиперонов имеется концентрация событий, которая может быть объяснена взаимодействием ($\Lambda \Lambda$) в конечном состоянии. Оценка параметров

17. Распределение эффективных масс (Λ) .

18. Распределение эффективных масс (Λ р) из нейтронной экспозиции /964 события с одним протоном и Λ - гипероном/.

рассеяния ($\Lambda \Lambda$) при низких энергиях согласуется с данными по двойным гиперфрагментам /рис. 17/. Особенность в спектре масс при ~ 237 О Мэв, вероятнее всего, вызвана резонансом с параметрами $\quad M=/ 2365,3 \pm 9,6 /$ Мэв, $\quad \Gamma=$ $=/ 47,2 \pm 15,1 /$ Мэв.
б/($\Lambda p)$-система $/ 1818$ событий в $n C-$ взаимодействиях, 1091 событие в πC взаимодействиях/. Пик при массе 2058 Мэв вызван взаимодействием (Λp) в конечном состоянии / рис. 18/. В рам ках теории Ватсона, в предположении $a_{S}=a_{t} \quad$ и $r_{S}=r_{t}$, параметры рассеяния (Λp) при низких энергиях имеют следующие значения: ${ }^{a} \Lambda_{p}=-/ 2, \mathrm{O} \pm \mathrm{O}, 6 / \cdot 1 \mathrm{O}^{-13}$ см, ${ }^{r} \Lambda_{p}=/ 2,5 \pm \mathrm{O}, 8 / \cdot 1 \mathrm{O}^{-13}$ см, что находится в согласии с результатами опытов по упругому рассеянию (Λp).

Пик при массе -2127 Мэв может быть вызван взаимодействием (ΣN) в конечном состоянии с последующей конверсией $\Sigma N \rightarrow \Lambda p$ или резонансом (Λp) с па-

19. Распределение эффективных масс (Λ р) при облучении пропановой камеры пионами.

раметрами $\quad M=/ 2125,2 \pm 2,5 /$ Мэв, $\quad \Gamma=$ $=/ 2 \mathrm{O}, 6 \pm 5,2 /$ Мэв. Не исключено, что пик при 2127 Мэв вызван обеими этими причинами.

Пик при ~2252 Мэв, согласно анализу, вызван резонансом (Λp) с параметрами \quad м $=/ 2251,4 \pm 3,9 /$ Мэв, $\quad \Gamma=$ $=/ 21,1 \pm 5,4 /$ Мэв.

Распределение эффективных масс (Λp), полученное в пионной экспозиции /рис. 19/, качественно согласуетсяс распределением масс (Λp) из нейтронной экспозиции /рис. 18/.
в/ В распределении эффективных масс систем ($\Lambda p p$) и ($K^{\circ} p$) значимых особен ностей не обнаружено.

Для систем $(2 p),(3 p),(4 p),(5 p)$ и $(6 p) / 12500$ событий/ при величине интерввала гистограммы $\geq 1, О$ Мэв значи мых особенностей не обнаружено.

Если в этих системах отсутствуют резонансы с ширинами $\Gamma<1$, О Мэв, то возможно, что необходимым, но недостаточным условием существования адронных резонансов является неравенство по гиперзаряду $Y \leq 1$.

Электромагнитная структура элементарных частиц

Abstract

人 Для определения электромагнитно$2 о$ размера пионапродолжается обработка материала, полученного ранее в эксперименте по $\pi е$-рассеянию при импульсе пионов 50 Гэв/с на ускорителе 76 Гэв /Серпухов/ с помощью бесфильмового искрового спектрометра на линии с ЭВМ. Около 1,8 млн. событий пропущено через геометрические и кинематические программы. Определена эффективность регистрации и нахождения $\pi е$-события. Обработка экспериментального материала проводится в сотрудничестве с американскими физиками.

- целью изучения электромагнитных свойств K^{0}-мезонов произведено облучение однометровой стримерной камеры СКМ-10О в пучке K^{0}-мезонов синхрофазотрона. Сделано свыше 150 тыс. снимков. На них найдено около $2 О$ тыс. распадов K^{0}-мезонов, среди которых - около 100 редких распадов K^{0} мезонов с испусканием пары Далитца. Ведется обработка данных с целью определения верхней границы распада $K^{0} \longrightarrow$ $\rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$. Получены предварительные результаты.

Релятивистская ядерная

физика

Проведено уточнение анализа образования пионов с помощью ядерного кумулятивного эффекта, обнаруженного ранее на синхрофазотроне при столкновении релятивистских дейтронов с импульсами 6-10 Гэв/с с ядрами меди. Обнаружено, что отношение сечения рождения мезонов ядрами дейтерия к сечению рождения пионов нуклонами при равных энерговыделениях не зависит ни от отношения

импульса пиона к максимально возможному по кинематике, ни от энергии первичных дейтронов и равно О,O6. Сама величина отношения и ее энергетическая зависимость не могут быть объяснены ферми-движением.

人 Исследование взаимодействий дейтронов и альфа-частиц с ядрами фотоэмульсии. Для дейтронов с импульсом 2,43 Гэв/с на среднем ядре фотоэмульсии определено:

полное сечение
взаимодействия $\quad \sigma_{t}=1425 \pm 110$ мбарн,
неупругое сечение $\sigma_{i n}=630 \pm 15$ мбарн,
упругое сечение $\quad \sigma_{e \ell}=465 \pm 70$ м барн,
сечение стриппинга $\sigma_{S}=330 \pm 80$ мбарн,
Для дейтронов с импульсом 9,4 Гэв/с измерено сечение стриппинга на среднем ядре фотоэмульсии / $A=47 /$, которое оказалось равным $\sigma_{S}=253 \pm 35$ мбарн. Получена кривая дифференциальных сечений стриппинга.

Теоретические

исследования

В исследованиях интерференционных явлений в физике элементарных частиц завершена разработка нового подхода к проблеме тождественности. Выполнялся анализ импульсно-энергетических корреляций тождественных частиц, имеющий целью развитие полученных ранее соотношений и их обобщение на случай движущихся источников.

Разработана теория нового типа ограничений на амплитуду рассеяния, вытекающих из требования релятивистской

макропричинности. Изучались новые методы моделирования реакций при высоких энергиях. Предложен метод восстановления импульсов π^{0}-мезонов по спектрам одиночных гамма-квантов.

Совершенствование действующих

и разработка новых физических приборов и установок

\diamond Для изучения свойств $К$-мезонов создана и прошла стендовые испытания двухметровая стримерная камера СКМ200 с рабочим объемом $200 \times 100 \times 60$ см ${ }^{3}$. При исследовании установки в разных режимах получено около 2 O тыс. снимков следов космических частиц. Камера установлена в пучке медленного вывода частиц из синхрофазотрона, и с ее помощью зарегистрированы первые следы частиц в магнитном поле камеры.

Ь Для исследования редких проиессов на синхрофазотроне построена стримерная камера с рабочей областью $120 \times 80 x$ x 46 см 3 с внутренней жидководородной мишенью, помещенная в магнитное поле /установка "Резонанс"/. При пробном запуске установки получены снимки от частиц космического излучения. Проводится усовершенствование частей установки.

Усовериенствован ряд узлов установки с двухметровой водородной пузырьковой камерой "Людмила". Совместно с сотрудниками ИФВЭ /Серпухов/проведен пробный запуск канала с сепарированным пучком антипротонов на эту камеру.

На однометровой водородной пузырьковой камере осуществлен режим "два расширения за цикл работы ускорителя".
\diamond Завериен перевод системы блоков быстрой электроники в общую систему "КАМАК-Вишня". Начата разработка блоков быстрой электроники на интегральных схемах в системе КАМАК. Создан быстрый цифровой универсальный процессор для отбора событий рассеяния в физическом эксперименте. Ряд блоков быстрой электроники передан для производства в ЦЭМ.
\diamond Развитие вычислительной техники в лаборатории.
a/ Разработан набор из 12 основных блоков системы цифровой электроники в стандарте КАМАК для связи устройств физического эксперимента с ЭВМ /БЭСМ-4, НР2116B, TPA /: индикатор десятичный ИНД 521, блок сопряжения с печатью типа БЗ-15 БСП-541, блок сопряжения с перфоратором типа ПЛ15О/ пл. 80 БСП-542, контроллер печати КП-641 и другие.
б/ Созданы системы для вывода информации из установки "Фотон" в объеме четырех крейтов КАМАК, для контроля медленного вывода пучка из ускорителя в объеме 1 крейта и т.д.
в/Проведена модернизация ЭВМ БЭСМ-4. Совместно с сотрудниками Лаборатории вычислительной техники и автоматизации установлена фортранная станция для связи с ЭВМ БЭСМ-6.
\diamond Искровые и пропорииональные камеры.
a/ Создана и испытана в условиях физического эксперимента двухкоординатная разборная пропорциональная камера размером $0,6 \times 0,3$ м 2.

Эксплуатируется система индикации пучка частиц на основе двух пропорциональных камер. Разработан набор электронных блоков для пучковых пропорциональных камер.
б/ В Центральных экспериментальных мастерских налажено производство 14 типов блоков в системе КАМАК на инте-

гральных схемах для систем регистрации информации с проволочных искровых камер. Издан проспект с описанием параметров разработанных блоков.
\diamond Криогенная техника. Велись разработки, монтаж, наладочные работы, эксплуатация криогенных частей физических экспериментальных установок.

Проводились работы со сверхпроводящими установками, созданными в лаборатории. Совместно с сотрудниками ОНМУ и ЦЭМа производились сборка, наладка, испытание узлов "кольцетрона".

Ожижено газов: гелия - 25500Ω, водорода - 34000Ω.
\diamond Химическая обработка фотопленок и ядерных фотоэмульсий. В лаборатории запущена в эксплуатацию новая высокопроизводительная проявочная машина и комплекс оборудования, обеспечивающий ее работу.

С пузырьковых, стримерных и искровых камер ОИЯИ обработано 274 тыс. м пленки шириной от 35 мм до 80 мм .

Проводились испытания новых фотопленок.

Проявлена фотоэмульсионная камера "Интеркосмос" /50 л эмульсии/. Для ряда институтов СССР обработано 17 камер /6л эмульсии/, в том числе 2 камеры, облученные протонами 200 Гэв на ускорителе в Батавии.

Часть камер, облученных протонами 70 Гэв, отправлена в Ханой /ДРВ/, Гаухати /Индия/ и в институты СССР.

Усовершенствование синхрофазотрона

Осуществлен медленный вывод ускоренного пучка протонов из синхрофазотрона. Для этого был проведен монтаж и наладка системы резонансного возбуждения радиальных бетатронных колебаний пучка, внутри камеры ускорителя и вне

2O. Сечение пучка при медленном выводе частии из синхрофазотрона ЛВЭ.

ее установлена соответствующая аппаратура. С помощью резонанса $2 / 3$ на раскачке внутреннего пучка синхрофазотрона произведен за время 400 мсек с эффективностью больше 90% медленный вы вод протонов из ускорителя в измерительный павильон. Смонтирован канал

внешней транспортировки выведенного пучка, и установлена ловушка в конце измерительного павильона. На расстоянии 30 м от ускорителя пучок сфокусирован в пятно размером 4 мм х 18 мм /рис. 2О/. Проводятся работы по усовершенствованию узлов системымедленного вывода и подготовке экспериментов на выведенном пучке. Для диагностики выведенного пучка и управления процессом медленного вывода создается аппаратура.

Эксплуатация

синхрофазотрона

Запланированное время работы ускорителя - 4091 час.

Ускоритель работал:
a/ на экспериментальные исследования по физике элементарных частиц 1628 час со средней интенсивностью $5,5 \cdot 10^{10}$ ускоренных протонов или $1,5 \cdot 10^{10}$ ускорен ных дейтронов за цикл ускорения,
б/ на совершенствование систем ускорителя 1819 час.

