

O T Y E T

о деятельности

Объединенного
 института

с. ядерных исследований

$$
\text { в } \quad 1967 \quad \text { году }
$$

KHM SUZOTERA
Д У Б Н А

Лаборатория В ЫС ОКИX

энергий

Основу научно-исследовательской деятельности Лаборатории высоких энергий, проводимой в тесном контакте с лабораториями стран-участниц, в 1967 году составляли исследования упругого рассеяния частиц высоких энергий и некоторых аспектов физики частиц-резонансов.

Исследования упругого рассеяния элементарных частиц
$\pi p-$ рассеяние в области малых углов. Завершены измерения упругого $\pi^{-} \mathbf{p}$ - рассеяния в области интерференции кулоновской и ядерной амплитуд, проводившиеся методом регистрации протонов отдачи. Измерения импульсов протонов отдачи по пробегу обеспечили разрешение по квадрату четырехмерного переданного импульса

$$
\Delta t \approx 10^{-4}\left(\text { Гэв }^{4} / \mathrm{c}\right)^{2} .
$$

Анализ полученных дифференциальных сечений упругого $\boldsymbol{\pi}^{-} \mathbf{p}$ - рассеяния при импульсах начальных $\pi^{- \text {- }}$ мезонов 3,48 и 6,13 Гэв/с показал, что в диапазоне величин $1,22 \cdot 10^{-3} \leq-t \leq 4,22 \cdot 10^{-3}$ (Гэв/с) ${ }^{2}$ имеет место деструктивная интерференция кулоновской и ядерной амплитуд. Результаты из-

мерений фазы ядерной амплитуды, представленные на рис.2, получены при учете относительного сдвига кулоновской и ядерной амплитуд по формуле Л.Д.Соловьева.

Рис.2. Зависимость отношения вещественной и мнимой частей для ядерной амплитуды упругого π^{-}р -рассеяния вперед от энергии пионов в лабораторной системе. Теоретическая кривая - Барашенкова/9/. © - данные настоящей работы; - данные /1/; - данные /12\%. (Ссылки из работы А.А.Номофилова и др. Письма ЖЭТФ, 3, 546 (1967)).

Обработка этих же данных по формуле Бете дала следующие результаты:

$$
\begin{gathered}
a_{\pi-p}=\frac{\operatorname{Re~A~}_{\text {яд }}}{\operatorname{Im} A_{\text {яд }}}=-(0,17+0,07) \text { при } p=3,48 \text { Гэв } / \mathrm{c}, \\
a_{\pi-\mathrm{p}}=-(0,22+0,09) \text { при } \mathrm{p}=6,13 \text { Гэв } / с .
\end{gathered}
$$

Эти измерения показали, что в пион-нуклонном рассеянии дисперсионные соотношения выполняются вплоть до импульсов 6 Гэв/с.

1 m

Рис.3. Схема эксперимента по измерению π_{p}-рассеяния методикой бесфильмовых искровых камер на линии с БЭСМ-ЗМ. Упругие события выделяются посредством измерения импульса рассеянной частицы с помощью ИК 4*্் и магнита М. Установка запускается антисовпадениями (Cit $S_{1}+$ $\left.+S_{2}\right)-C_{2} . S_{1} ; S_{2}$ - сцинтилляционные счетчики, $\check{C}_{1} ; C_{2}$ - газовые дифференциальные счетчики Черенкова для селекции пучковых пионов, имеюших угол относительно оси \check{c}_{1} и $\quad \check{c}_{2}$ меньше $1,5.10^{-3}$ рад и 3.10^{-3} рад, соответственно.

В 1967 году начаты исследования упругого π - -рассеяния на малые углы с использованием новой методики бесфильмовых искровых камер на линии с БЭСМ-3М. На рис. 3 приведена схема этого эксперимента. Запуск

бесфильмовых искровых камер осуществляется мониторной системой, состоящей из газовых дифференциальных черенковских и сцинтилляционных счетчиков. Это позволяет в 5 раз ускорить набор экспериментального материала по сравнению с его набором обычным методом детектирования только искровыми камерами. С этой установкой была успешно проведена экспозиция при импульсе $\pi^{\text {- }}$-мезонов 4,6 Гэв/с. Полученный экспериментальный материал анализируется.
2. pp-и pd-рассеяние на малые углы. В лаборатории завершено создание новой установки для исследования на внутреннем пучке 70 - Гэвного протонного ускорителя ИФВЭ упругого $p p-$ и $p d$-рассеяния на малые углы. Эта установка состоит из полупроводникового спектрометра протонов отдачи на линии с БЭСМ-3М. На синхрофазотроне были проведены исследования с помощью этой установки. Полученные данные o pp-и pdрассеянии на малые углы в интервале импульсов $2-5$ Гэв/с в настоящее время обрабатываются.

Исследования резонансов

Исследования по физике частиц-резонансов проводились с использованием как электронных устройств, так и пузырьковых камер - жидководородных, пропановой и ксеноновой.
3. Исследования лептонных распадов и векторных мезонов. Эксперименты, проводившиеся в 1967 году, позволили существенно увеличить число зарегистрированных событий с распадами векторных мезонов на $\mathrm{e}^{+} \mathrm{e}^{-}$-пары. В частности, получены новые данные о распадах $\phi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$, доказавшие сушествование этого типа распада и позволившие оценить его парциальную ширину (см. таблицу 1), если использовать гипотезу об $\omega^{0} \phi^{0}$ смешивании в рамках $\operatorname{SU}(3)$ - симметрии.

Таблица 1

4

Рис.4. В Лаборатории высоких энергий готовится эксперимент по изучению рр -взаимодействия в диапазоне энергий до 70 Гэв. Впервые в практике физического эксперимента взаимодействие частиц будет изучаться при помощи струи газообразного водорода, вводимой в камеру ускорителя. На снимке: отладка струйной мишени в криогенном отделе лВЭ. Научный сотрудник В.Никитин (слева) и аппаратчик А.Перов.

Рис. 5. Монтаж установки для исследования рр-рассеяния.

Рис.6. Зависимость дифференциального сечения упругого $\boldsymbol{\pi}_{\boldsymbol{p}}^{\boldsymbol{+}}$-взаимодействия от квадрата передаваемого 4-импульса.

Из приведенных данных следует, что величина константы перехода $\rho \rightarrow \boldsymbol{\gamma}$, играюшей важную роль в ряде проблем физики элементарных частиц, имеет значение

$$
\frac{\gamma_{\rho}}{4 \pi}=0,65+0,14
$$

2. Генерация ρ^{+}- мезона и $\Delta_{12 з я}^{++}$- изобары в $\boldsymbol{\pi}^{+}$р -взаимодей ствиях. Завершена обработка двухлучевых событий, полученных при облучении 40 -сантиметровой жидководородной пузырьковой камеры в пучке $\boldsymbol{\pi}^{+}$мезонов с импульсом 2,34 Гэв/с.

На рис. 6 представлено распределение дифференциального сечения в зависимости от квадрата передаваемого 4 -импульса для упругих $\boldsymbol{\pi}^{+} \mathbf{p}$-процессов. Сечение упругого взаимодействия равно $8,5 \pm 0,2$ мб, экспериментальные данные можно аппроксимировать экспонентой:

$$
\frac{\mathrm{d} \sigma}{\mathrm{dt}}=C \exp (-A t)
$$

где

$$
\begin{gathered}
A=(6,5 \pm 0,2) \quad\left(\frac{\Gamma_{\ni в}}{c}\right)^{-2}, \\
C=(53,2 \pm 2,1) \mathrm{m} \sigma /\left(\Gamma_{\ni в} / с\right)^{2} .
\end{gathered}
$$

Сечение реакции $\pi^{+} p \rightarrow \pi^{+} \pi^{0} p$ оказалось равным $3,8 \pm 0,2$ мб. Сечения образования ρ^{+-}мезона и изобары Δ_{1238}^{++}равны соответственно $(1,4 \pm 0,15)$ мб и $(0,3 \pm 0,04)$ мб.

Получено дифференциальное сечение рождения ρ^{+}- мезона.
Были определены также элементы спиновой матрицы плотности $\rho^{+}{ }^{+}$ и Δ_{1238}^{++}- частиц. На рис. 7,8 представлены их значения в зависимости от переданного 4-импульса.

Рис.7. Зависимость элементов спиновой матрицы плотности рождения ρ^{+} мезона от переданного 4-импульса для реакции $\pi^{+}{ }_{p} \rightarrow \rho^{+} p$.

Рис.8. Зависимость элементов спиновой матрицы плотности рождения \mathbf{N}^{*++} от переданного 4-импульса для реакций $\pi{ }^{+}{ }^{2} \rightarrow N^{*++} \pi^{0}$.
3. Мезон-нуклонные состояния с изотопическим спином $5 / 2$. Получены новые данные в экспериментах, где изучались мезон-нуклонные состояния с изотопическим спином $5 / 2$ в пр -взаимодействиях. На материале 3500 пятилучевых звезд удалось выделить следующие каналы реакции:

$$
\begin{array}{rlrl}
\mathrm{np} & \rightarrow p p \pi^{+} 2 \pi^{-} & 424 \text { события } \\
& \rightarrow p p \pi^{+} 2 \pi^{-\left(m \pi^{0}\right)} & 400 \text { событий } \\
& \rightarrow \mathrm{np} 2 \pi^{+2} \pi^{-\left(m \pi^{0}\right)} & 725 \text { событий } \\
& \rightarrow \operatorname{nn~} 3 \pi^{+2 \pi}-\left(\mathrm{m} \pi^{0}\right) & 158 \text { событий } \\
m=0,1,2 . &
\end{array}
$$

Предварительные результаты изучения реакции (3) представлены на рис. $9,10,11$. На рис. 9 приведено импульсное распределение нейтронов, вызвавших реакцию (3). На рис. 10 дано распределение эффективных масс $p \pi^{+} \pi^{+}$ комбинаций. Фоновая кривая рассчитана по статистической теории с учетом спектра нейтронов для реакции (3) с образованием и без образования π^{0} мезонов. Фоновая кривая не описывает экспериментального распределения. Другая кривая рассчитана с учетом образования изобары Δ_{1238}. Лучшее согласие достигается при предположении, что 62% событий идут с образованием этой изобары и 38% - без ее образования. Значение χ^{2} для кривой, учитывающей эту смесь двух состояний, лежит внутри доверительного интервала 90%. На рис. 11 дано распределение эффективных масс $p \pi^{+}$из этой

Рис.9. Импульсный спектр нейтронов, вызвавших реакцию $n p \rightarrow n p \pi^{+} \pi^{+} \pi^{-\pi^{-}\left(m \pi^{\circ}\right)}$.

Рис.10. Распределение эффективных масс ($p \pi^{+} \pi^{\dagger}$)-комбинаций из реакции $n p \rightarrow n p \pi^{+} \pi_{\pi} \pi_{\pi}-\left(m \pi^{o}\right)$.

Рис.11. Распределение эффективных масс ($p \pi^{+}$)-комбинаций из реакции $n P \rightarrow n p \pi_{\pi}+_{\pi} \pi^{-}\left(m \pi^{0}\right)$.

же реакции. Как видно из этого рисунка, изобара Δ_{1238} действительно образуется в 60% случаев. Из этих данных следует, что если изобара с $\mathrm{T}=5 / 2$ существует, то оцененная верхняя граница сечения ее образования составляет величину не более 80 мкб.

Лаборатория В ЫС ОКИX энергий

Искровые камеры и электроника

В 1967 году в лаборатории продолжалось развитие методики бесфильмовых искровых камер.

1. Разработан проект новой системы магнитострикционных искровых камер на линии с электронной вычислительной машиной. Эта система включает в себя унифицированные искровые камеры, регистрирующую электронную аппаратуру и электронную вычислительную машину типа БЭСМ-3 или БЭСМ-4. Искровые камеры - многотрековые. Планируется изготовление большой партии искровых камер (около 150 штук) для нескольких экспериментов. Электронная аппаратура построена на основе широкого применения интегральных микромодульных схем. Первый образец установки предполагается использовать для проведения \mathbf{K}^{0}-мезонного эксперимента в ИФВЭ.
2. Создана новая экспериментальная установка с искровыми камерами с ферритовым съемом информации, работающая на линии с электронной вычислительной машиной БЭСМ-3М. Установка подготовлена к проведению тестового эксперимента на синхрофазотроне.
3. Создан измерительный центр лаборатории, в котором сосредоточена следующая электронная аппаратура:
a) система регистрации координат для магнитострикционных искровых камер;
б) системы приема координат с ферритовыхискровых камер;
в) два 10 - канальных пересчетных устройства, работающих на линии c ЭВМ;
г) телетайп;

4
Рис.73. Измерительный центр ЛВЭ. У пульта электронной вычислительной машины - инженер Г.М.Сусова.

Рис.74. В зале БЭСМ-ЗМ измерительного центра ЛВЭ во время проведения эксперимента с бесфильмовыми искровыми камерами. На снимке - младший научный сотрудник И.М.Ситник.
∇

мелтах по изучению $\pi-p$ - рассеяния на малыкровых камер, работающая на линии с БЭСМ-ЗМ, используется в экспери-
д) последовательная линия связи экспериментальной аппаратуры с электронной вычислительной машиной БЭСМ-3M;
e) параллельная линия связи с БЭСМ-3М;
ж) коммутатор, обеспечивающий работу на линии с ЭВМ нескольких экспериментальных установок;
з) блоки питания фотоумножителей, используемых в экспериментах.
4. Система блоков быстрой электроники на 100 Мгц разработана и передана на изготовление в Центральные экспериментальные мастерские. Система предназначена для использования в экспериментах со сцинтилляционными и черенковскими счетчиками.
5. Бесфильмовая искровая камера, работающая в магнитном поле до 15 кгаусс, разработана и испытана в пучке π^{-}- мезонов синхрофазотрона. Исследования в этом направлении продолжаются.

Большие пузырьковые камеры

В соответствии с договором о сотрудничестве Объединенного института с ИФВЭ продолжались работы по подготовке экспериментов на больших пузырьковых камерах ЛВЭ в пучках ускорителя на 70 Гэв. Выполнены следующие наиболее важные работы:

1. Двухметровая пропановая камера. На фотографиях, полученных при облучении камеры в пучке π^{-}-мезонов, отобрано несколько сотен со-

Рис.76. Подготовка 2-метровой пропановой камеры к экспериментам в ИФВЭ. На снимке: начальник отдела Н.М.Вирясов, ст.техник Г.В.Покидова, руководитель группы М.П.Баландин, начальник отдела М.И.Соловьев обсуждают проблему улучшения эксплуатационных характеристик камеры.

Рис.77. Для экспериментов на ускорителе ИФВЭ создается 2-метровая жидководородная камера. На снимке: инженер-технолог А.И.Староверов и руководитель группы В.А.Русаков обсуждают рабочие чертежи камеры.

бытий с $\quad \mathrm{V}^{0}$ - частицами и $\quad \gamma$-квантами для отработки программ на ЭВМ. Разработан проект эксперимента и размешения камеры в Институте физики высоких энергий . Начаты работы по модернизации ряда узлов двухметровой пропановой камеры: системы расширения, оптической системы камеры для пленки размером 50 мм и др.
2. Двухметровая жидководородная пузырьковая камера. Завершена доработка "теплой" части и значительно переработана "холодная" часть механизма расширения. Изготовлены чертежи и опытный образец нового пневмоклапана, проведены его испытания. Разработана и изготовлена значительная часть электронных систем управления и индикации режима работы камеры. Испытаны на вакуум корпус камеры, вакуумный кожух и башня теплообменников. Выданы все необходимые данные для разработки проектного задания и начала строительства павильона в ИФВЭ.

Рис.78. Изготовление растра для 2-метровой жидководородной камеры.

Работы по синхрофазотрону

1. Основные показатели работы синхрофазотрона.

Показатели	Часы	\%
Запланированное время работы	4674	100
В том числе:		
1. Время работы на экспериментальные исследования по физике	3280	70,2
2. Время работы по усовершенствованию ускорителя	780	16,9
3. Затрата времени на подготовку к работе физической аппаратуры и на технологическую подготовку ускорителя	253	5,4
4. Эксплуатационные простои	361	7,7
Средняя интенсивность 4,5 P 10^{10} прот/имп	альна	$\left.10^{11}\right)$

В пучках вторичных частиц от синхрофазотрона были проведены экспозиции следующих пузырьковых камер:
a) на метровой жидководородной камере в пучке i- ${ }^{-}$-мезонов с им пульсом 5 Гэв/с получено более 95 тысяч фотографий;
б) на 55 -сантиметровой ксеноновой камере в процессе наладки сепарированного пучка K^{+}-мезонов с импульсом 0,6 Гэв/с сделано около 150 тысяч фотографий;
в) на 2 -метровой пропановой камере в пучке π^{-}-мезонов с импульсом 2,76 Гэв/с получено более 20 тысяч фотографий;
г) на метровой пропановой камере в пучке π-мезонов с импульсом 5 Гэв/с получено 63 тыс. фотографий.

Каналы пучков частиц
За 1967 год смонтированы и сданы в эксплуатацию два новых π-мезонных канала:

1. Канал на 2-7 Гэв/с:

Длина	-	45 m
Интервал импульсов	-	$\pm 1 \%$
Входная апертура	-	3.10^{-4} стерад
Расходимость	-	$1,5 \cdot 10^{-3}$ стерад
Интенсивность		$1,5 \cdot 10^{4}$ на 10^{11} протонов, сбрасы- $($ вс $=4,75$ Гэв $)$

Размеры пучка в месте установки водородной мишени

- $\quad 40 \times 40 \mathrm{~mm}^{2}$

2. Канал на 5 Гэв/с:

Длина	50 m
Интервал импульсов	$\pm 1 \%$
Расходимость	- 10^{-2} стерад
Размеры пучка в месте установки водородной мишени	- $70 \times 70 \mathrm{~mm}^{2}$
$\begin{aligned} & \text { Интенсивность } \\ & (\mathrm{pc}=4,5 \text { Гэв }) \end{aligned}$	- $3 \cdot 10^{4}$ на 10^{11} протонов, сбрасываемых на мишень.

3. Для проведения работ по повышению эффективности электростатистических сепараторов разработан, смонтирован и находится в стадии наладки каскадный генератор на ± 400 кв постоянного тока. Разработана документация на изготовление электростатического сепаратора

Рис.79. Каскадный генератор на ± 400 кв постоянного тока, разработанный и созданный в Лаборатории высоких энергий.

на 800 кв и на высоковольтные вводы напряжения в вакуумную камеру сєпаратора на 400 кв постоянного тока.
4. Система формирования мощных импульсов тока (установка ИК-1-2) на токи в сотни килоампер введена в эксплуатацию. С помощью этой системы проведены испытания образцов катушек, изготовленных в ЧССР и предназначенных для получения импульсных магнитных полей с напряженностью до 200 кгс.

Создан проект и выполнен макет соленоида другого типа (большой объем магнитного поля) с необходимой системой питания. Испытания этого образца, проведенные при напряженности поля 130 кгс, дали положительные результаты.
5. Система дозировки пучка π-мезонов при работе метровой жидководородной камеры введена в эксплуатацию. Это позволило в процессе экспозиции поддерживать нужное число частиц с точностью не хуже 10%.
6. Разработан проект и выполнена действующая модель электроста тического генератора с дисковым ротором на напряжение до 300 кв, при этом точность поддержания напряжения (до 150 кв) составляет $5 \cdot 10$-3.

Усовершенствование синхрофазотрона

1. Продолжались исследования и разработки, связанные с проектированием и изготовлением нового инжектора - линейного ускорителя на 20 Мэв. Завершено изготовление резонатора линейного ускорителя, изготовлено и испытано более 60% дрейфовых трубок, изготовлена и испытана система охлаждения и стабилизации температуры реэонатора линейного ускорителя. Закончены теоретические исследования по выбору оптимального варианта системы ввода пучка из линейного ускорителя в камеру синхрофазотрона. Сконструирован отклоняющий магнит.
2. В 1967 году успешно осуществлен быстрый вывод пучка протонов (10 Гэв) из синхрофазотрона (рис. 80,81). Эффективность вывода составила 50%. Начата разработка системы медленного вывода пучка протонов из ускорителя.

Рис.80. Импульсный выводной магнит с полем до 10 кгаусс для быстрого вывода протонного пучка. На снимке: руководитель группы И.Б.Иссинский, механик М.Д.Ершов и ст. техник Ю.Ф.Кусатин снимают характеристики магнита.

Рис.81. Гидромеханизм, с помощью которого выводной магнит поднимается в рабочее положение внутри вакуумной камеры ускорителя.

Рис.82. Осциллограммы выпрямленного напряжения и тока преобразователя системы питания при работе в режиме "стула" с площадкой то- ка на уровне 11,5 ка.

Существенным методическим новшеством, осуществленным на синхрофазотроне, явилосв введение в эксплуатацию режима "стула в кривой главного тока" (рис.82). Такой режим работы ускорителя является особенно эффективным при работе физической аппаратуры на линии с эле-ктронно-вычислительной машиной.

