ЯДЕРНАЯ ФИЗИКА В ФОТОГРАФИЯХ

СЛЕДЫ ЗАРЯЖЕННЫХ ЧАСТИЦ В ФОТОГРАФИЧЕСКИХ ЭМУЛЬСИЯХ *)

К. Ф. Поуэлл и Г. П. С. Оккиалини

ИСКУССТВЕННОЕ ПРЕВРАЩЕНИЕ ЭЛЕМЕНТОВ

Предыдущие фотографии иллюстрировали упругое столкновение быстрых частиц с ядрами различных элементов, причём падающая частица отклонялась от своего первоначального направления, не проникнув в ядро-мишень. Теперь мы рассмотрим столкновения, в которых быстрые частицы проникают внутрь ядер лёгких элементов и превращают их в ядра других элементов. Опыты этого типа впервые были осуществлены в 1919 г. Рёзерфордом, который для этой цели использовал быстрые α -частицы от радия С' и наблюдал частицы, образовавшиеся в результате расщепления, с помощью метода сцинтилляций.

Для тяжёлых элементов, вроде золота, Рёзерфорд и его сотрудники показали, что из-за больших сия электростатического отталкивания положительных зарядов даже наиболее быстрые α -частицы от естественных радиоактивных веществ не способны проникнуть в ядра. Для лёгких элементов, вследствие того, что их ядра обладают меньшим зарядом, величина этих сил (согласно закону Кулона) Меньше, и поэтому при благоприятных условиях столкновения быстрая α -частица может проникнуть в ядро и расщепить его. Вероятность того, что данная α -частица при прохождении через вещество вызовет ядерное расщепление, очень мала вследствие малых размеров ядер. Поэтому для получения немногих удачных столкновений приходится обстреливать слой вещества, играющий роль мишени, многими миллионами α -частиц.

Наши знания об искусственном превращении ядер были значительно расширены работой Кокрофта и Уолтона (1932 г.), которые впервые показали, что искусственно ускоренные протоны также могут проникать в лёгкие ядра и расщеплять их. Эти опыты были

^{*)} Окончание. См. УФН, т. XXXV, вып. 2, стр. 213 (1948).

повторены с использованием фотографических пластинок для обнаружения частиц, образующихся при расщеплении. Фотографии XVII — XIX (см. в конце выпуска) суть микрофотографии следов, полученных этим методом.

Аппаратура, использованная при экспонировании пластинок, схематически показана на рис. 7. Первичные частицы, — в данном случае дейтоны, т. е. ядра тяжёлого водорода, — ускоренные в высоковольтной установке Кокрофта, попадают на тонкую плёнку одного из лёгких элементов. В результате из тех ядер мишени, которые расщепляются потоком первичных дейтонов, вылетают про-

Рис. 7. Схема установки для получения в фотопластинках следов частиц, возникающих при бомбардировке мишени из лёгких элементов быстрыми дейтонами.

тоны и другие частицы. Частицы, образующиеся при расщеплении, выбрасываются во все стороны, причём часть из них останавливается в металлической подставке мишени или в стенках установки. Однако некоторая незначительная доля их испускается в таком направлении, что достигает окошечка из слюды или целлюлоида. Это последнее сделано достаточно тонким, чтобы частицы проходили через него без заметного замедления и попадали на фотопластинку, образуя в ней характерные следы.

фотография XVII — XIX являются типичными примерами картины, обнаруживаемой на экспонированных описанным способом пластинках, если их после обработки рассматривать под микроскопом. Они были получены для мишеней, приготовленных соответственно из окиси лития, бериллия и бора, причём материал мишени осаждался в виде тонкого слоя на поверхности охлаждённого металлического блока. На каждой фотографии видны следы от разных типов частиц, так как проникновение дейтона в ядро не всегда вызывает один и тот же тип расщепления. Кроме того, некоторые элементы, как литий и бор, содержат несколько изотопов и поэтому приходится одновременно изучать расщепления ядер различных типов. Эту трудность можно обойти, если доступны элементы, состоящие только из одного изотопа.

Как пример такого рода осложнений можно привести фотографию XVII, полученную при бомбардировке литиевой мишени; на нейвидны, среди прочих, следы α-частиц и протонов, возникающих при следующих реакциях:

$${}_{3}\text{Li}^{6} + {}_{1}\text{H}^{2} \rightarrow {}_{2}\text{He}^{4} + {}_{2}\text{He}^{4}, \qquad (3)$$

$${}_{3}\text{Li}^{7} + {}_{1}\text{H}^{2} \rightarrow {}_{2}\text{He}^{4} + {}_{2}\text{He}^{5},$$
 (4)

$${}_{3}\mathrm{Li}^{6} + {}_{1}\mathrm{H}^{2} \rightarrow {}_{3}\mathrm{Li}^{7} + {}_{1}\mathrm{H}^{1}.$$

$$\tag{5}$$

Очень важной чертой этих реакций является то, что энергия частиц, испускаемых при расщеплениях, больше энергии первичных дейтонов. Откуда же берётся эта энергия?

В настоящее время относительные значения масс ядер лёгких элементов определены с большой точностью. Если подставить эти значения в уравнение (3), то окажется, что масса двух начальных ядер будет больше массы двух α -частиц. Фактические значения этих величин следующие:

$${}_{3}\text{Li}^{6} = 6,016917, \\ {}_{1}\text{H}^{2} = \frac{2,014725}{8,031642 \text{ ед. массы,}} \qquad {}_{2}\text{He}^{4} = \frac{4,003860,}{8,007720 \text{ ед. массы}}$$
(6)

Таким образом, при этом превращении исчезло некоторое количество массы покоя, которое должно быть заменено эквивалентным количеством энергии. Тщательное определение количества энергии, выделяемой при расщеплениях, показывает, что её значение E с большой точностью определяется уравнением $E = c^2m$, где m — величина исчезнувшей массы покоя. Опыты подобного рода — обычное явление в современных физических лабораториях. Они дают наиболее убедительное подтверждение правильности теории относительности. Более подробное описание методов интерпретации наблюдений этого типа даётся в приложении Е.

РАСЩЕПЛЕНИЕ ЯДЕР АТОМОВ ЭМУЛЬСИИ

Экспериментальный метод, описанный в предыдущем параграфе, предназначался для обнаружения и измерения энергии только одной из частиц, получающихся при расщеплении данного ядра. В тех случаях, когда имеется только два продукта расщепления, например, протон и ядро отдачи, применение закона сохранения импульса позволяет произвести анализ данного расщепления по наблюдениям над одним следом (см. приложение F). Если, однако, при расщеплении ядра испускается несколько частиц, то это уже становится невозможным. Следовательно, при изучении таких расщеплений важно иметь возможность регистрировать все испускаемые частицы. Для этой цели можно с успехом применять камеру Вильсона. Однако такие эксперименты очень трудны, так как приходится делать много тысяч фотографий следов быстрых частиц, прежде чем удастся получить одну фотографию, показывающую расщепление. Если же быстрые дейтоны направлять на фотографическую эмульсию, то за один день её исследования под микроскопом можно обнаружить много сотен случаев таких процессов.

Обычная эмульсия состоит из ограниченного числа элементов, из которых наиболее распространёнными являются водород, углерод, азот, кислород, бром, серебро и иод. Следовательно, в обычных пластинках можно ожидать расщеплений ядер только этих атомов. В особых случаях можно, однако, различными методами вводить в эмульсию и другие элементы.

Мы уже встретились с одним методом решения этой задачи в опытах по радиоактивности, а именно, когда радиоактивные вещества вводились в эмульсию путём обработки пластинки в подходящем растворе. После просушки пластинки соль остаётся распределённой в желатине. Подобный же результат можно получить, если на поверхность просушенной эмульсии нанести тонкий слой «зарядного» материала и затем покрыть его вторым слоем эмульсии. Зарядное вещество, таким образом, оказывается заключённым между двумя слоями эмульсии. Возможно, что в будущем удастся при изготовлении эмульсии вводить в неё мелкие нерастворимые частицы желаемого элемента, причём эти частицы будут таковы, что их можно будет отличить под микроскопом от проявленных зёрен серебра по их размеру или цвету. До сих пор, однако, наиболее часто применяемый способ состоит во введении в эмульсию в процессе её изготовления соли зарядного материала. Иногда такая процедура приводит к нежелательным результатам, так как влияет на фотографические свойства получающихся пластинок.

Благодаря разнообразию элементов, присутствующих в эмульсии, не всегда удаётся идентифицировать ядро, подвергшееся расщеплению. Подобная трудность встретилась при обсуждении фотографии XV, где невозможно было определить, был ли дейтон упруго рассеян ядром углерода, азота или кислорода. В следующих примерах, однако, экспериментальные результаты позволяют определить характер происходившей ядерной реакции или же дать объяснение, являющееся, по всей вероятности, правильным.

НЕЙТРОНЫ

До сих пор мы рассматривали только такие ядерные расщепления, которые приводят к испусканию заряженных частиц. Наблюдения подтверждают точку зрения, вытекающую уже из опытов по радиоактивности тяжёлых элементов, согласно которой ядро следует считать состоящим не из некоего одчородного вещества, а из отдельных частиц, причём деление ядра на его составляющие может быть вызвано в результате достаточно сильного возмущения ядра.

До открытия нового типа частиц — нейтронов — предполагали, что ядра состоят из протонов и электронов. Согласно этому взгляду масса ядра почти полностью определялась бы его протонами, причём число последних должно было бы равняться массовому числу ядра. Так как зарядное число меньше массового числа, то предполагали, что эта разница обусловлена отрицательными зарядами электронов, заключённых в ядре. Например, предполагалось, что ядро бора ${}_5B^{10}$ содержит 10 протонов и (10—5)=5 электронов. Аналогично считалось, что у ${}_{92}U^{285}$ имеется 235 протонов и 143 электрона. Присутствие электронов позволяло дать простое объяснение некоторых особенностей β распада радиоактивных ядер, т. е. испускания ядрами электронов.

Однако в течение многих лет эта теория встречала ряд серьёзных затруднений. Например, можно было произвести грубую оценку размера электрона. Полученные таким образом значения оказались почти равными значениям размеров тяжёлых ядер, полученным из опытов по упругому рассеянию α -частиц. Трудно было себе представить такую структуру как ядро $_{92}U^{235}$, которая содержала бы 143 электрона, диаметр каждого из которых сравним с диаметром самого ядра, частью которого они являются. Значительно более серьёзные трудности возникали при попытке описать свойства ядер на основе волновой механики.

Эта теория строения ядер была полностью подорвана и её противоречия разрешены после открытия Чадвиком в 1932 г. новой, испускаемой при ядерных превращениях частицы, названной нейтроном *).

Теперь известно, что нейтрон имеет массу, почти равную массе протона, но, как показывает его название, он лишён заряда. Эта частица поэтому обозначается символом n^{1} .

Утверждение, что частица не обладает зарядом, означает просто, что на неё не действуют электрические поля и электрические заряды соседних частиц. Отсутствие заряда приводит к некоторым удивительным свойствам нейтрона.

При рассмотрении прохождения α-частицы через атомы мы пользовались аналогией с движением быстрой звезды через солнечную систему. Если при этом звезда движется с достаточно малой скоростью, то благодаря действию гравитационных сил может оказаться, что одна или несколько планет будут выбиты из пределов солнечной системы. Аналогично, электроны могут быть выбиты при прохождении быстрой заряженной частицы через атом, вследствие действия электростатических сил между частицами. Атомы при этом ионизируются, и энергия быстрой заряженной частицы, летящей через вещество, постепенно уменьшается. Быстрые нейтроны, однако, проходят через электронную оболочку атомов совершенно свободно, не сообщая им энергии. Вследствие этого они способны проходить через

^{*)} Общепринятое ныне представление о том, что ядра не содержат электронов, а состоят из протонов и нейтронов, впервые было высказано Д. Д. Иваненко. (Прим. ped.)

толщи вещества, в тысячи раз превышающие те, через которые проходят заряженные частицы. Обнаружить частицу удаётся только постольку, поскольку она взаимодействует с веществом, а так как нейтроны не ионизуют газ, их невозможно обнаружить обычным электрическим методом или по их следам в камере Вильсона. Этим объясняется некоторое запоздание их открытия.

Другое важное следствие отсутствия заряда у нейтрона состоит в том, что, в отличие от положительно заряженных частиц, он не подвергается действию значительных сил отталкивания при приближении к ядру. Поэтому нейтрон, даже обладающий незначительной скоростью, но движущийся в соответствующем направлении, может проникнуть в ядро и вызвать расщепление с испусканием заряженных частиц. Другая возможность состоит в том, что нейтрон упруго или неупруго при этом столкнётся с ядром, меняя при этом своё направление и сообщая ядру некоторую отдачу. В случае неупругого столкновения ударяемое ядро переходит в возбуждённое состояние, причём необходимая для этого энергия получается за счёт запаса кинетической энергии нейтрона. Последний поэтому после столкновения имеет меньшую скорость, а возбуждённое ядро возвращается в нормальное или нижнее состояние, испуская квант излучения.

Быстрые нейтроны могут быть получены при самых разнообразных ядерных превращениях. Так, при падении пучка *α*-частиц на металлический бериллий имеет место следующая реакция:

$${}_{4}\operatorname{Be}^{6} + {}_{2}\operatorname{He}^{4} \rightarrow {}_{6}\operatorname{C}^{12} + {}_{0}n^{1}.$$

$$\tag{7}$$

Как и в ранее рассмотренных примерах ядерных превращений, можно вычислить энергию, выделяемую при реакции, зная массы соответствующих ядер и массу нейтрона.

Две другие важные реакции, приводящие к испусканию быстрых нейтронов, изображаются уравнениями:

$$_{5}B^{11} + _{1}H^{2} \rightarrow _{6}C^{12} + _{0}n^{1}$$
 и $_{1}H^{2} + _{1}H^{2} \rightarrow _{2}He^{3} + _{0}n^{1}$, (8)

где дейтоны служат бомбардирующими частицами, а мишени состоят соответственно из бора и дейтерия.

ОБНАРУЖЕНИЕ НЕЙТРОНОВ

Каждая заряженная частица, проходящая через фотографическую эмульсию, оставляет в последней след, и поэтому рассмотрение пластинки позволяет определить число и пробеги частиц, попадающих на данную площадь. В случае нейтронов, однако, только малая доля частиц, проходящих через эмульсию, реагирует с ядрами, создавая продукты расщеплений или ядра отдачи, указывающие в свою очередь на присутствие нейтронов. При этих обстоятельствах для обнаружения нейтронов и для определения их энергии используются следующие методы. Медленные нейтроны, имеющие скорости, по порядку величины равные скоростям атомов при обычных температурах, называются «тепловыми нейтронами» и получаются при прохождении быстрых нейтронов через вещество. Быстрые нейтроны, сталкиваясь с ядрами атомов, сообщают им энергию, теряя при этом свою скорость. В случае столкновений с ядрами таких лёгких элементов, как водород или углерод, нейтрон теряет заметную долю своей энергии уже при одном столкновении. На протяжении всего нескольких сантиметров своего пробега нейтрон испытывает достаточное количество столкновений, чтобы его энергия снизилась до значений, характерных для атомов при обычных температурах, т. е. порядка 0,03 eV. Вещества, служащие для замедления нейтронов этим способом, называются «замедлителями» и играют важную роль в урановых котлах.

Тепловые нейтроны имеют большую вероятность проникновения в ядра некоторых изотопов лёгких элементов лития и бора, а именно — в ₃Li⁶ и ₅B¹⁰. Эти ядра ведут себя так, как будто для медленных нейтронов они представляют собой мишень большой площади, причём эта площадь имеет диаметр, значительно больший диаметра, соответствующего обычному «размеру» ядер. При проникновении медленных нейтронов в эти ядра имеют место следующие реакции:

$${}_{3}\text{Li}^{6} + {}_{0}n^{1} \rightarrow {}_{1}\text{H}^{3} + {}_{2}\text{He}^{4},$$
 (9)

$${}_{5}B^{10} + {}_{0}n^{1} \rightarrow {}_{3}Li^{7} + {}_{2}He^{4}.$$
 (10)

Поскольку нейтрон имеет малую скорость, его импульс будет мал и оба конечных ядра реакции разлетаются с равными и противоположными импульсами. Частицы могут быть обнаружены методами электрического счёта по ионизации, которую они производят в газе, или, если реакция произошла в фотографической эмульсии или в газе камеры Вильсона, — по получающимся следам. Для опытов, в которых применяется фотографический метод, литий или бор вводится в эмульсию при её изготовлении путём добавления подходящих солей.

Мы видим, что в случае быстрых нейтронов их столкновения с ядрами приводят к образованию частиц отдачи. Если последние являются ядрами большой массы, то они получают только малую долю энергии первичной частицы, подобно тому, как это имеет место при столкновении быстрого протона с ядром. Если, однако, взаимодействующие частицы имеют одинаковые массы, то в среднем начальная энергия распределится между ними поровну. Механическая задача о столкновении нейтрона с протоном почти тождественна с задачей о столкновении протона с протоном. В обоих случаях массы частиц равны *), и после столкновения они движутся по взаимно перпендикулярным направлениям. Поэтому после проявления фотоэмульсии,

^{*)} Массы нейтрона и протона не совсем равны; их значения, отнесённые к О¹⁶ = 16,0000 равны соответственно 1,00894 и 1,00813. Для обсуждаемого вопроса эта разница роли не играет.

ЯДЕРНАЯ ФИЗИКА В ФОТОГРАФИЯХ

через которую прошли нейтроны, можно заметить следы протонов отдачи. В случае «лобового» удара нейтрона с протоном, первый останавливается, а последний получает всю кинетическую энергию падающего нейтрона. Поэтому если измерить пробеги протонов отдачи, имеющих следы, примерно параллельные направлению движения падающих нейтронов, то можно найти распределение нейтронов по их энергиям. Следует заметить, что для успешного применения этого метода требуется знание направления движения нейтронов в пластинке.

РАСЩЕПЛЕНИЯ, ВЫЗЫВАЕМЫЕ БЫСТРЫМИ НЕЙТРОНАМИ

Предыдущий метод определения энергии группы быстрых нейтронов страдает тем недостатком, что кроме пробегов выбитых протонов, необходимо знать направление движения падающих частиц, так как иначе невозможно определить углы движения частиц после столкновения. Эту трудность можно обойти, если проводить наблюдения над расщеплениями, производимыми быстрыми нейтронами при прохождении их через пластинки, содержащие литий или бор. Мы видели на фотографии XXIII, что проникновение медленного нейтрона в ядро ${}_5B^{10}$ приводит к реакции ${}_5B^{10} + {}_0n^1 \rightarrow {}_2He^4 + {}_3Li^7$. Быстрый нейтрон, однако, создаёт расщепления с вылетом трёх частиц, согласно уравнению:

$$_{5}\mathrm{B}^{10} + _{0}n^{1} \rightarrow _{2}\mathrm{He}^{4} + _{2}\mathrm{He}^{4} + _{1}\mathrm{H}^{3}.$$

Полная масса всех трёх получающихся ядер меньше массы двух начальных частиц и поэтому при этой реакции выделяется энергия порядка 0,35 MeV. Следовательно, если E — энергия двух α -частиц и тритона, вылетающих при рассматриваемой реакции, то энергия первичного нейтрона равнялась E— 0,35 MeV. Далее, по закону сохранения импульса векторная сумма импульсов всех трёх частиц должна равняться импульсу падающего нейтрона. Отсюда можно определить направление движения первичного нейтрона. Величина его импульса даёт вторую возможность определить скорость, а следовательно, и энергию нейтрона, и полученное таким образом значение должно совпадать со значением, полученным первым методом.

Два примера такой реакции показаны на фотографии XXVIII; меньшая звезда создана нейтроном с энергией 13 MeV, возникшим в результате бомбардировки мишени из бора дейтонами с энергией 900 KeV. В этом случае направление падающего нейтрона было известно. Значения энергии и импульса, выведенные из наблюдений, согласуются с теми значениями, которых следовало бы ожидать в предположении, что расщепление было вызвано нейтроном с энергией в 13,4 MeV, испускаемым таким источником и вошедшим в эмульсию в определённом направлении. Большая звезда была получена в результате действия космических лучей на большой высоте; измерение энергии и импульса трёх частиц показывает, что эта звезда создана при расщеплении того же типа, как и в случае малой звезды, с тем, однако, отличием, что нейтрон имел более высокую энергию, а именно 35 MeV.

Расщепления в литии, вызываемые как медленными, так и быстрыми нейтронами, приводят к образованию всего двух частиц: ${}_{3}L^{i^{6}} + {}_{0}n^{1} \rightarrow {}_{2}He^{4} + {}_{1}H^{3}$. Однако в отличие от случая медленных нейтронов импульс быстрого нейтрона оказывается достаточным для того, чтобы оба ядерных осколка не разлетались точно в противоположных направлениях и поэтому удаётся определить точку возникновения обоих следов.

ДЕЛЕНИЕ

Проникновение медленного нейтрона в ядро ${}_{3}Li^{6}$ приводит к его делению на две части с почти одинаковыми массами, разлетающиеся в противоположных направлениях с большой скоростью. В некотором ограниченном смысле этот процесс может рассматриваться как прототип знаменитого процесса деления, на котором основаны современные возможности освобождения ядерной энергии. Фотография XXIX даёт примеры следов, получающихся при проникновении медленных нейтронов в ядро урана ${}_{92}U^{235}$; последний вводился в эмульсию путём специальной её обработки.

Как и в случае лития, ядро урана при проникновении в него медленного нейтрона делится на две почти равные части. Кинетическая энергия обоих осколков велика—порядка 200 MeV, но благодаря большому заряду, который несёт каждый из них, они быстро расходуют свою энергию и проходят в эмульсии расстояние всего в несколько микронов.

Важная особенность процесса деления урана, которую невозможно заметить на фотографиях, состоит в том, что в среднем в процессе деления распадающееся ядро испускает больше двух нейтронов высокой энергии.

В достаточно большой толще содержащего уран вещества нейтроны будут замедляться столкновениями с ядрами и могут в свою очередь привести к дальнейшему делению ядер U²³⁵. Это создаёт возможность «цепной реакции», в которой число нейтронов быстро растёт и вместе с ним растёт и скорость выделения энергии в результате расщеплений, вызываемых нейтронами.

нуклоны

Открытие нейтрона привело к полному перевороту в наших взглядах на строение ядер. В настоящее время мы считаем, что каждое ядро состоит из нейтронов и протонов, причём общее число их равно массовому числу A, число протонов равно зарядному числу Z и число нейтронов — (A - Z). Удобно иметь один термин для обозначения обоих типов частиц, т. е. протонов и нейтронов, так как мы теперь не предполагаем, что они сохраняют в ядре свою индивидуальность. Мы считаем, что между нейтронами и протонами происходит обмен зарядами, некая быстрая и непрерывная перемена

Рис. 8. Состав изотопов первых пяти элементов периодической системы. Эта диаграмма чисто схематическая и показывает лишь число протонов и нейтронов в различных ядрах. О фактическом расположении нуклонов в ядрах пока ничего не известно.

ролями, и поэтому об обеих частицах говорим как о «нуклонах» (т. е. ядерных частицах). Состав ядер первых пяти элементов периодической системы, включая и обычно встречаемые изотопы, схематически изображён на рис. 8. В настоящее время мы очень мало знаем об истинном распределении нуклонов в ядре, и приведённый

30.30

Литий в

рисунок даёт только число протонов и нейтронов в различных ядрах.

Согласно современным представлениям, ядерное превращение с участием тяжёлых частиц сводится лищь к перераспределению нуклонов. Так, в реакции медлен-

участием тярис. 9. Диаграмма, иллюстрирующая переводится лищь распределение нуклонов при расщеплении лению нукло-ядра ₃Li⁶ медленным нейтроном.

1п

Нейтоон

2a+2n

a-yacmuua

10+21

Тритон

ных нейтронов с литием мы изображаем превращение следующей схемой (рис. 9).

Новый взгляд о составе ядер устранил трудности, связанные с предполагаемым присутствием электронов. Когда ядро распадается и испускает отрицательный электрон, то считают, что последний рождается при этом превращении, причём число протонов увеличивается, а число нейтронов одновременно уменьшается на единицу. Таким образом, электрон не рассматривается как постоянная составная часть испускающей его структуры. Мы видели раньше, что анало-

5 УФН, т. XXXV, вып. 3

гичным способом мы представляем себе и создание кванта излучения, при переходе атома от одного уровня энергии к более низкому.

Примером процесса β -испускания может служить ядро ${}_{5}B^{12}$, которое, распадаясь, даёт ${}_{6}C^{12}$, в соответствии со схемой на рис. 10. Особо интересным случаем является ${}_{3}L^{18}$, который при испускании электрона распадается на две α -частицы, разлетающиеся в противо-

Рис. 10. Два примера изменения состава ядер при бета-распаде.

положные стороны, с равными скоростями (см. рис. 10 и фотографии XL и XLI).

Новая теория строения ядер всё же оставила неразрешённым целый ряд проблем. Одной из наиболее важных является вопрос о силах связи. Необходимо выяснить природу сил, ответственных за устойчивость системы нуклонов, составляющих любое ядро.

Массы отдельных протонов и нейтронов настолько малы, что силами гравитационного притяжения между ними можно пренебречь. С другой стороны, единственными электростатическими силами, действующими между протонами, являются силы отталкивания их положительных зарядов и поэтому, если бы действовали только эти силы, ядра разлетались бы на свои составные части. При указанных обстоятельствах необходимо предположить, что между нуклонами существуют силы нового типа, которые получили название мезонных сил. Делая широкое обобщение можно сказать, что в мире звёзд, в небесной механике, преобладающими являются гравитационные силы притяжения; в мире атомов преобладают электростатические силы, а в мире ядер — мезонные силы. Наше знание мезонных сил ни в коем случае нельзя считать таким полным, как наши знания о двух других типах сил, и впереди остаётся очень много работы, прежде чем можно будет сказать, что ядро наконец-то понято.

Мезонные силы

Из общего изучения ядер можно заключить, что мезонные силы между двумя нуклонами не подчиняются закону обратных квадратов, характерному как для гравитационных, так и для электростатических сил. Когда расстояние между двумя нуклонами превышает некоторое весьма малое значение, силы притяжения должны уменьшаться гораздо быстрее, чем это бы для закона обратных квадратов. Эгот вывод следует из того факта, что энергия связи протона или нейтрона в ядре порядка 8 MeV и не зависит существенно от того, является ли ядро лёгким или тяжёлым. Так, например, в случае тела вроде Земли (и если считать при этом, что его плотность всюду одинакова), чем больше масса тела, тем больше сила притяжения, с которой оно действует на другое тело, находящееся на его поверхности, и тем больше должна быть кинетическая энергия последнего, чтобы оно могло выйти из поля гравитацюнного притяжения. Точно так же, если бы мезонные силы подчинялись закону обратных квадратов, энергия связи нейтрона в тяжёлом ядре была бы больше его энергии связи в лёгком ядре. Наблюдённое приблизительное постоянство энергии связи тяжёлых и лёгких ядер может быть объяснено, если предположить, что в связывании частицы с ядром играет роль только притяжение соседних протонов и нейтронов, т. е. что силы в ядре действуют на очень малые расстояния. Мы встречаемся с подобными силами близкодействия при изучении молекул. Так, в молекуле водорода атомы связываются за счёт обмена электронами между ними. Аналогично этому считают, что мезонные силы тесно связаны с обменом зарядами между нейтронами и протонами ядра.

ЯДЕРНЫЕ РАСЩЕПЛЕНИЯ. СОПРОВОЖДАЕМЫЕ ИСПУСКАНИЕМ МНОГИХ ЧАСТИЦ

Расщепления, с которыми мы знакомились до сих пор, вызывались частицами, имеющими в ядерном масштабе сравнительно малую энергию — порядка 10 MeV. Работа, которую необходимо произвести, чтобы удалить нуклон из ядра — так называемая энергия связи частицы различна для разных ядер, но в среднем равна примерно 8 MeV. Таким образом, имея первичные частицы с энергией, меньшей 30 MeV, не следует ожидать, что в результате расщепления ядра будет испущено более трёх или четырёх частиц, причём часть из них может быть нейтронами, которые не оставляют следов в эмульсии. В настоящее время, однако, удаётся получать заряженные частицы и фотоны, имеющие энергии выше 100 MeV, и, следовательно, производить расщепления с испусканием восьми или десяти частиц.

Фотографии XXXI—XXXIV показывают расщепления, вызванные частицами от большого синхро-циклотрона Калифорнийского университета, а также ү-лучами высокой энергии от бетатрона в Скенектеди.

Первая из этих установок даёт дейтоны с максимальной энергией в 200 MeV или α -частицы с энергией в 400 MeV. Бетатрон даёт поток быстрых электронов, испускающих при столкновении с веществом γ -лучи, максимальная энергия которых равна энергии электронов. т. е. 100 MeV.

При попадании частиц от циклотрона на фотопластинку, в поле зрения микроскопа можно заметить параллельные следы большого числа частиц. Энергия этих частиц настолько велика, что ионизация на единице пути получается очень малой даже для α -частиц, и поэтому плотность зёрен следов также оказывается малой.

Для частиц с наибольшей достижимой энергией этот эффект настолько резко выражен, что их следы уже не могут быть обнаружены.

Полный анализ расщеплений, производимых частицами с энергиями такого порядка, затруднителен, ибо нейтроны, которые при этом должны испускаться, остаются вне регистрации. Поэтому исследование, подобное тому, которое было произведено для расщепления азота, вызванного дейтонами (см. фотографию XXII), невыполнимо. 5* Другая трудность состоит в том, что вообще говоря, невозможно определить тип ядра, испытавшего расщепление.

При фотографировании пришлось составлять мозаики, так как большинство следов наклонено к плоскости эмульсии. Это—единственный способ получения удовлетворительного изображения трёхмерного события на плоской поверхности.

РАСЩЕПЛЕНИЯ, ВЫЗЫВАЕМЫЕ КОСМИЧЕСКОЙ РАДИАЦИЕЙ

Для изучения ядерных расщеплений, вызываемых частицами с энергиями, превышающими те, которые можно получить искусственно, приходится обращаться к естественным источникам. Как известно. на высокие слои атмосферы непрерывно падает слабый дождь частиц, приходящих из мировых глубин и называемых космическими лучами. Согласно современным взглядам по крайней мере часть из этих частиц является протонами с энергиями выше 108 MeV. Взаимодействуя в высоких слоях атмосферы с ядрами атомов, быстрые первичные частицы создают вторичные лучи, вследствие чего на меньших высотах имеет место сложный поток протонов, нейтронов, фотонов и других частиц. Эти излучения легко могут быть обнаружены и на уровне моря, однако их интенсивность и средняя энергия быстро увеличиваются с высотой. Для обнаружения этих частиц и расщеплений атомов эмульсии, которые они вызывают, достаточно в течение небольшого промежутка времени экспонировать фотографические пластинки на большой высоте.

События, о которых пойдёт речь ниже, были обнаружены в пластинках, оставленных на Пик дю Миди, на высоте в 2800 *м*; обычно не приходится даже вынимать пластинки из упаковочных коробок, так как большинство лучей легко проходит через упаковочный материал. Обычно пластинки оставляются в таком положении, чтобы поверхность эмульсии лежала в вертикальной плоскости.

Если частица с энергией порядка 1000 MeV сталкивается с ядром, то последнее может быть полностью разбито на свои составные нуклоны, причём часть из них может быть испущена в виде сложных групп, вроде α -частиц или ещё более тяжёлых осколков. Примеры таких расщеплений показаны на фотографиях XXXV—XLI. Первичная частица такой энергии не оставляла бы следа в эмульсии даже в том случае, если бы она была заряжена, и поэтому трудно определить тип частицы, ответственной за такое расщепление. Разумно предположить, однако, что независимо от природы частиц, вызывающих расщепления, их действия будут очень сходны, так как протоны, нейтроны и γ -лучи такой энергии имеют импульс одного порядка величины. В одном или двух редких случаях расщеплений, вызванных частицами заметно более низкой энергии, определение типа первичного излучения пли природы образуемых при расщеплениях тяжёлых осколков оказалесь возможным.

мезоны

Уже много лет известно, главным образом, благодаря работам Андерсона и Блэкетта и Вильсона с камерой Вильсона, что проникающая или «жёсткая» компонента космических лучей состоит в основном из частиц с массой порядка 200 m_e . Из-за их массы, промежуточной между массами электрона и протона, эти частицы получили название мезонов или мезотронов. Отклонением быстрых мезонов в магнитных полях было показано, что часть из них заряжена положительно и примерно такая же часть — отрицательно.

Теоретические соображения приводят к выводу, что мезон должен обладать очень малым временем жизни и при исчезновении испускать быстрый электрон. Энергия этого электрона и, одновременно, некоторой другой частицы, которая не оставляет следа в камере Вильсона, но существование которой необходимо для выполнения при распаде закона сохранения импульса, берётся за счёт исчезновения массы покоя мезона. Малое время жизни мезонов экспериментально подтверждалось электрическими методами, причём получалось значение порядка двух микросекунд. Считают, что мезоны тесно связаны с теми силами, существование которых было постулировано для объяснения связи нуклонов в ядре.

Кроме многочисленных «звёзд» и одиночных следов от протонов и α-частиц, в пластинах, подвергавшихся облучению космическими лучами на больших высотах, можно заметить и относительно малое число следов, подобных тем, которые показаны на фотографиях XLII—XLVII. Эти следы выделяются своей малой плотностью зёрен и частыми изменениями направления, которые частицы испытывают при прохождении через эмульсию. Оказывается далее, что если подобная частица останавливается в эмульсии, то в непосредственной близости от конца пробега наблюдается очень резкое увеличение плотности зёрен.

Все эти особенности указывают, что масса этих частиц значительно меньше массы протона. Ведь частица малой массы испытывает бо́льшие отклонения при столкновении с ядрами, чем тяжёлая частица с той же скоростью. Далее, начальная скорость такой частицы будет больше, чем у протона с тем же пробегом, и она поэтому в среднем создаёт меньшую ионизацию, а, следовательно, и меньшее число проявленных зёрен при своём прохождении через эмульсию. Подробное изучение свойств большого числа следов этого типа позволило оценить массу этой частицы в 230 m_e, что составляет примерно восьмую часть массы протона. Естественно поэтому считать, что по крайней мере часть частиц малой массы, наблюдавшихся в фотопластинках, принадлежит к тому же типу, что и мезоны, обнаруживаемые в камерах Вильсона.

Д. Х. Перкинс обнаружил, что иногда с конца следа мезона, остановившегося в фотографической эмульсии, вылетает несколько тяжёлых заряженных частиц. Считают, что при этом процессе мезон проникает в ядро и там исчезает, сообщая ядру энергию своей массы покоя, т. е. приблизительно 100 MeV, и вызывая расщепление с вылетом нескольких тяжёлых частиц. Так как эти мезоны попадают в ядро, имея при этом только малую скорость, то считают, что они обладают отрицательным зарядом, так как иначе ядро отталкивало бы их как и любые другие положительно заряженные частицы. Эта точка зрения, однако, ещё не окончательно установлена. Как бы то ни было, но, повидимому, мезоны являются однам из наиболее эффективных из числа известных агентов, способных вызвать расщепления ядер тяжёлых элементов. Имеющиеся в настоящее время эмульсии не позволяют регистрировать быстрых электронов и поэтому по фотографиям невозможно определить, действительно ли те мезоны, которые, останавливаясь, распадаются без образования ядерных расшеплений. испускают электроны.

Изучение поведения мезонов и их связи с ядерными силами является одной из наиболее актуальных задач ядерной физики. Современное состояние наших знаний не позволяет делать никаких окончательных выводов.

ИСПУЩЕННЫЕ МЕЗОНЫ

Мезоны не могут быть первичными частицами космических лучей, так как их время жизни мало, и они распались бы при своём полёте в пространстве. Считается, что они создаются при прохождении очень быстрых протонов и нейтронов космических лучей через ядра. Фотография XLVIII показывает мезон малой энергии, испущенный распадающимся ядром. Невозможно определить природу частицы, вызвавшей расщепление, но подобные фотографии иллюстрируют способ образования мезонов, который, возможно, является наиболее распространёным в верхних слоях атмосферы. В данном случае мезон остановился в эмульсии и поэтому оказалось возможным определить тип частицы. Следует думать, что на больших высотах мезоны будут испускаться в таких процессах со значительно большими энергиями.

До сих пор на пластинках, исследованных в Бристольской лабораторин, было обнаружено восемь таких случаев. В некоторых случаях мезон после своей остановки реагирует с ядром эмульсии, образуя вторичные тяжёлые частицы.

вторичные мезоны

В нескольких случаях было обнаружено (фотографии XLIX, L) что остановившийся в эмульсии мезон испускает другой мезон со значительной энергией, порядка 4 MeV. Число наблюдённых событий такого рода слишком мало, чтобы можно было делать окончательный вывод, но тем не менее кажется вероятным, что вторичный мезон испускается всегда с одной и той же скоростью. Это следует из того факта, что, как до сих пор найдено, вторичные мезоны имеют почти одинаковые пробеги — 610 µ, причём малые отклонения от этого значения могут быть приписаны «разбросу». Эти наблюдения являются сильным доводом в пользу того взгляда, что существуют разные типы мезонов, а именно, первичные, которые назовём π-мезонами и которые, самопроизвольно распадаясь, испускают вторичные, так называемые и-мезоны.

Для соблюдения закона сохранения импульса необходимо предположить, что при распаде π -мезона импульс испущенного р-мезона должен уравновешиваться импульсом некоторой другой частицы, испущенной в противоположном направлении. Этой второй частицей может быть фотон или, возможно, нейтральный мезон, который, не обладая зарядом, проходит через эмульсню без следа. Подсчёт числа зёрен показывает, что масса π -мезона значительно больше массы р-мезона. Можно поэтому считать, что кинетическая энергия вторичных частиц получается в результате исчезновения некоторой доли массы покоя первичного мезона.

Вероятно, п и р-мезоны обладают зарядами обоих знаков. Все наблюдённые до сих пор р-мезоны, которые образовались в эмульсии в результате распада п-мезонов, останавливались в эмульсии не производя расщеплений. Возможно поэтому, что только положительные п-мезоны распадаются с образованием р-мезона в то время, как отрицательные п-мезоны захватываются атомами и вызывают расщепления с испусканием тяжёлых частиц.

ПРИЛОЖЕНИЕ А

Метод обработки ильфордовских эмульсий «Nuclear Research».

Проявление и фиксирование этих эмульсий связано с некоторыми специфическими трудностями, вследствие их значительной толщины и очень высокой концентрации галоида серебра по сравнению с обычными фотопластинками.

Для эмульсий толщиной 50 µ удовлетворительные результаты даёт процедура, описанная ниже. Для более толстых эмульсий необходимо существенно увеличить время фиксирования, особенно, если пластинка была перепроявлена. При проявлении и фиксировании следует непрерывно покачивать ванны, размеры которых должны быть значительно больше размеров пластинки. Если необходимо обработать много пластинок, то желательно для покачивания использовать механическое приспособление, которое обеспечивало бы равномерное обмывание эмульсии растворами. Эти операции можно производить при свете 40-ваттной газонаполненной лампочки, закрытой светофильтром №2 «Wratten safe-light». Проявление. Проявлять следует в течение 33 минут при температуре в 18°С в следующем растворе:

Основной раствор:

Метол	5	,5 г
Безводный серинсто-кислый натрий	180	г
Гидрохинон	22	г
Безводный углекислый натрий	120	г
Бромистый калий	10	г
Вода	до 2500	см8

При работе надо разбавлять основной раствор водой в отношении 1:4.

Для получения удовлетворительных пластинок время проявления не является существенной величиной, но оно должно лежать в пределах от 20 до 40 минут.

Выбор времени проявления зависит от желаемой степени различия между следами частиц разной ионизирующей способности; чем меньше время проявления, тем слабее получаются следы, но тем заметнее различие между ними.

«Стоп»-ванна: пластинку опускают на 10 минут в раствор безводной уксусной кислоты в воде (2 % по объёму).

Фиксирование. Закрепление производится в следующем растворе до тех пор, пока помутнение от галоида серебра не исчезнет полностью и пластинка не станет прозрачной. В случае эмульсий толщиной 50 µ для этого требуется не больше 30 минут.

Фиксаж:

Насы	ЦЦ	eH	H	ый	P	ac	ΤB	op	r	'n	10(c y i	ЛЬ	фи	ta	ł	•	•	٠	•	•	• :	2	части
Осно	BH	oi	ł	КН	сл	ot	HF	ЯЙ	1	1 y (бя	Щ	łЙ	p	ac	T B	ор		•		•	•	1	часть
Вода			٠	•	•	•			•	•		•	•	•			•	•				•	8	частей

Состав основного кислотного дубящего раствора:

Еезводный углекислый натрий 125 г Уксусная кислота 188 см ⁸ Оба эти вещества растворяют в 650 см ⁸ воды	раст в ор	A
Квасцы калия	раствор	Б

Оба раствора А и Б смешивают при температуре ниже 21°С и добавляют воды до 2500 см³.

Промывание. Отфиксированную пластинку промывают в течение часа в медленном потоке проточной воды, осторожно протирают поверхность эмульски, для её очистки, кусочком мягкой замши и оставляют сохнуть в комнатном воздухе в течение ночи.

ЯДЕРНАЯ ФИЗИКА В ФОТОГРАФИЯХ

приложение в

Соотношение между пробегом и энергией заряжённых частиц в ильфордовских эмульсиях марки «Nuclear Research»

Соотношение между средним пробегом однородной группы протонов или α -частиц и их энергией для значений последней в интервале от 0 до 15 MeV было показано на рис. 2 и 5.

Для более высоких энергий получены только приближённые значения, приведённые в следующей таблице (по У. Камерини и К. М. Г. Латтесу):

Энергия	Пробег протонов (в микронах)	Пробег а-частиц (в микронах)					
10	565	58					
15	1135	117					
20	1870	201					
25	2750	315					
30	3760	464					
35	4925	553					

Соответствующие значения для дейтонов можно вывести методом, основанным на следующих соображениях. При прохождении заряженной частицы через любую среду потеря энергии на единице пути зависит только от её заряда и скорости.

Рассмотрим протон и дейтон, имеющие одну и ту же скорость; энергия протона тогда составит только половину энергии дейтона.

Так как обе частицы имеют одинаковый заряд +e, то потеря энергии дейтона будет в два раза больше соответствующего значения для протона, если обе частицы испытали одинаковое уменьшение скорости. Отсюда следует, что расстояние, пройденное дейтоном, будет в два раза больше соответствующего значения для протона при данном уменьшении скорости, и этот результат не зависит от частных значений скорости. Следовательно, пробег дейтона в два раза больше пробега протона с той же скоростью, т. е. в два раза больше пробега протона, имеющего половину энергии дейтона. Аналогично, пробег тритона в три раза больше пробега протона, имеющего одну треть его энергии.

Таким образом по кривой пробег — энергия протонов в данной среде можно получить соответствующую кривую дейтонов и тритонов в той же среде.

к. Ф. ПОУЭЛЛ И Г. П. С. ОККИАЛИНИ

ПРИЛОЖЕНИЕ С

Столкновение протона с протоном

Обозначим через *m* массу падающего протона и через v — его скорость. Пусть после столкновения его скорость равна v_1 , и направление движения образует угол Θ с направлением первоначально-

го движения; аналогично, пусть для ударяемого протона скорость и направление движения даются v, и Ф.

Так как при упругом столкновении кинетическая энергия сохраняется, то можно писать

$$rac{1}{2}$$
 $mv^2=rac{1}{2}mv_1^2+rac{1}{2}mv_2^2$
или

Рис. 11. Диаграмма импульсов.

$$v^2 = v_1^2 + v_2^2,$$
 (a)

кроме того, сохраняется импульс в направлении начального движения, т. е.

$$mv = mv_1 \cos \Theta + mv_2 \cos \Phi$$
 или $v = v_1 \cos \Theta + v_2 \cos \Phi$. (b)

Далее, сохраняется и импульс, перпендикулярный первоначальному направлению движения, т. е.

$$0 = mv_1 \sin \Theta - mv_2 \sin \Phi$$
 или $v_1 \sin \Theta = v_2 \sin \Phi$. (c)

Возведя в квадрат (b) и (c), получаем:

$$v^2 = v_1^2 \cos^2 \Theta + v_2^2 \cos^2 \Phi + 2 v_1 v_2 \cos \Theta \cos \Phi, \qquad (d)$$

$$0 = v_1^2 \sin^2 \Theta + v_2^2 \sin^2 \Phi - 2v_1 v_2 \sin \Theta \sin \Phi; \qquad (e)$$

складывая (d) и (e), имеем:

$$v^{2} = v_{1}^{2}(\sin^{2}\theta + \cos^{2}\theta) + v_{2}^{2}(\sin^{2}\theta + \cos^{2}\theta) + + 2 v_{1}v_{*}(\cos\theta\cos\phi - \sin\theta\sin\phi)$$

или

$$v^2 = v_1^2 + v_2^2 + 2 v_1 v_2 \cos{(\theta + \Phi)}.$$
 (f)

Но, по (а),

$$v^2 = v_1^2 + v_2^2.$$

Следовательно, $\cos(\Theta + \Phi) = 0$ и $\Theta + \Phi = \frac{\pi}{2}$. Направления движения после столкновения образуют друг с другом прямой угол.

' Энергии частиц после столкновения $\frac{1}{2}mv_1^2 = E_1$ и $\frac{1}{2}mv_2^2 = E_2$ просто связаны с энергией падающей частицы E_0 .

Из уравнения (с):

 $v_1 \sin \theta = v_2 \cos \theta$, откуда $v_2 = v_1 \operatorname{tg} \theta$.

Поскольку $v^2 = v_1^2 + v_2^2$,

$$E_0 = E_1 + E_1 \operatorname{tg}^2 \Theta = E_1 \operatorname{sec}^2 \Theta.$$

Следовательно, $E_1 = E_0 \cos^2 \theta$. Аналогично, $E_2 = E_0^2 \sin^2 \theta$.

На фотографии XII направления движения обоих протонов сразу после столкновения суть $\theta = 33,6^{\circ}$ и $\Phi = 56,8^{\circ}$ так, что ($\theta + \Phi$) = = 90,4°. Далее, пробеги обоих протонов после столкновения равны 138,6 µ и 41,8 µ, и их энергии, в соответствии с соотношением пробег-энергия для протонов, равны 4,35 MeV и 2,06 MeV.

Так как $E_2 = E_1 tS^2 \theta$, то можно вычислить значение θ , соответствующее наблюдённым значениям E_1 и E_2 . Так, $E_2/E_1 = 0.4736 = tS^2 \theta$, $tS \theta = 0.6882$, и поэтому $\theta = 34.5^\circ$, наблюдалось же непосредственно значение 33.6° .

Наблюдения подобного рода показывают, что направление движения следа в эмульсии может быть определено с точностью порядка <u>- 0</u>,5°.

Следует заметить, что оба протона неотличимы и поэтому невозможно определить, какой из них первоначально покоился в эмульсии. По аналогии со столкновениями двух биллиардных шаров можно говорить о «центральном» или «лобовом» и о «нецентральном» ударе. В почти центральном ударе ударяемый протон будет выброшен вперёд (угол Φ мал) и он получает почти всю энергию падающего протона, который отклоняется под углом почти в 90° к начальному направлению движения, имея при этом только малую скорость. Этот случай неотличим от случая нецентрального удара, при котором протон сохраняет почти всю энергию и испытывает только малое отклонение.

ПРИЛОЖЕНИЕ D

Столкновение дейтона с протоном

Пусть частица, имеющая скорость v и массу M_1 , сталкивается с другой частицей массы M_2 , которая первоначально покоилась. Пусть, далее, в результате столкновения M_1 отклоняется на угол Θ , а M_2 на угол Φ (см. рис. 12).

Применяя принципы элементарной динамики, можно показать, что

$$\mathrm{tS}^2 \; \Theta = \frac{\sin^2 \Phi}{M_1/M_2 - \cos^2 \Phi}.$$

Если M_1 есть масса дейтона и M_2 — масса протона, то вместо истинных масс можно просто подставить массовые числа ядер, т. е. соответственно 2 и 1; получаем тогда

$$\operatorname{tg} \Theta = \frac{\sin^2 \Phi}{2 - \cos^2 \Phi}$$
.

Если построить кривую $tg \theta$ в функции Φ , начиная с $\Phi = 0$, то окажется, что при $\theta = 30^{\circ}$ достигается максимум, равный $1/\sqrt{3}$. Отсюда следует, что при столкновении дейтона с покоящимся протоном дейтон не может быть рассеян на угол, больший 30° . Поэтому длинный след на фотографии XIV необходимо отнести к упруго рассеянному дейтону. Измерения показывают, что для этого частного

Рис. 12. Диаграмма импульсов.

случая $\theta = 23,5^{\circ}$ и $\Phi = 52,5^{\circ}$. Подставив последнее значение в вышеприведённую формулу, получаем значение $\theta = 23,2^{\circ}$.

Остаточный пробег дейтона после столкновения оказывается равным 104,8 µ. Так как пробег дейтона в два раза больше пробега протона с энергией в два раза меньшей, то

мы можем определить из рис. 5 энергию протона, имеющего пробег 52,4 µ. Получается значение 2,43 MeV, откуда заключаем, что энергия рассеянного дейтона была 4,86 MeV. Пробегу ударяемого протона в 57,0 µ соответствует энергия 2,50 MeV. Если столкновение было упругим, то непосредственно перед столкновением энергия дейтона равнялась 7,36 MeV.

Количество движения частицы, Мv, равно

$$\sqrt{2ME}$$
, где $E = \frac{1}{2} Mv^2$

есть её кинетическая энергия. Удобно выбрать такие единицы, чтобы для ядерной частицы с массовым числом N и энергией E (в MeV), количество движения равнялось $\sqrt{2NE}$. Для ударяемого протона N = 1 и E = 2,50 MeV, следовательно его количество движения равно

 $\sqrt{2 \cdot 1 \cdot 2,50} = 2,236$ единиц.

Аналогично, количество движения рассеянного дейтона равно

$$V2 \cdot 2 \cdot 4,86 = 4,409$$
единиц.

Составляющие импульса в направлении, перпендикулярном первоначальному направлению движения, равны для протона:

$$2,236 \times 0,7934 = 1,775$$
единиц

и для дейтона:

4,409 × 0,3987 = 1,760 единиц,

причём расхождение между этими двумя значениями лежит в пределах экспериментальных ошибок.

Энергия дейтона непотредственно перед столкновением, как было показано, равнялась 7,36 MeV. Пробег такой частицы в эмульсии равен 229,2 µ. Наблюдённая длина траектории дейтона в эмульсии до точки рассеяния равняется 69,4 µ и, следовательно, можно оценить начальный пробег дейтона в 298,4 µ. Соответствующее этому пробегу значение энергии в 9,10 MeV можно сравнить со средней энергией дейтонов, попадающих на пластинку, равной 8,90 MeV.

Согласие между экспериментальными и теоретическими значениями, которое наблюдается во всех случаях, показывает, что столкновение было правильно интерпретировано.

приложение е

Столкновение α-частицы с протоном

Если α -частица с массовым числом 4 сталкивается с протоном, имеющим массовое число 1 и первоначально находившимся в покое, то углы рассеяния Θ и Φ (см. рис. 12) связаны соотношением

$$\operatorname{tg} \Theta = \frac{\sin^2 \Phi}{4 - \cos^2 \Phi}$$
.

Можно анализировать событие, показанное на фотографии XVI, методом, подобным тому, который был использован при рассмотрении столкновения дейтона с протоном; получающиеся при этом углы рассеяния и пробеги частиц следующие:

> $\theta = 8,0^{\circ}$, остаточный пробег α -частицы 6,75 μ , $\Phi = 16,5^{\circ}$, пробег выброшенного протона 101,0 μ .

Таким образом, энергия α-частицы в точке рассеяния оказывается равной 5,64 MeV. Расстояние в эмульсии между точкой возникновения звезды и точкой рассеяния частицы равно 7,4 μ. Отсюда начальная энергия α-частицы получается равной 6,73 MeV, что указывает, что она возникла в результате распада ядра тория А.

ПРИЛОЖЕНИЕ Е

Интерпретация опытов по расщеплению ядер

Фотографии XVII — XIX представляют собой окончательное доказательство превращения лёгких элементов под действием быстрых дейтонов. Вслед за первыми опытами Кокрофта и Уолтона в 1932 г., дальнейшие опыты подобного типа, но с применением электрических методов обнаружения частиц, составляли одну из основных областей исследования в ядерной физике. Для иллюстрации методов, используемых при анализе подобных фотографий, рассмотрим данные, полученные с пластинкой, на которую падали частицы, возникшие при расщеплении бериллия под действием дейтонов с энергией в 900 KeV (см. фотографию XVIII).

Длины всех следов, возникших на данной площади эмульсии, сначала были измерены под микроскопом с помощью окулярного масштаба; результаты, полученные этим способом одним наблюдателем в течение 8 часов, представлены на рис. 13. Эта блок-диаграм-

Рис. 13. Распределение по пробегам следов, получающихся при расщеплении бериллия дейтонами с энергией 900 KeV

а) $Be_4^9 + H_1^2 \rightarrow Be_4^{10} + H_1^{1};$ b) $Be_4^9 + H_1^2 \rightarrow *Be_4^{10} + H_1^1,$ ядро Be^{10} остаётся в возбуждённом состоянии; e) $Be_4^9 + H_1^2 \rightarrow Be_4^8 + H_1^3;$ d) $Be_4^9 + H_1^2 \rightarrow Li_3^7 + He_2^4;$ c) $H_1^2 + H_1^2 \rightarrow H_1^3 + H_1^1;$ Короткие следы образованы: дейтонами, упруго рассеянными ядрами мишени, тритонами от реакции (e) и ядрами отдачи лития от реакции (d).

ма даёт распределение частиц по пробегам: по оси абсцисс отложен пробег в микронах, по оси ординат — число следов с данной длиной пробега. Ось абсцисс разбита на интервалы в один микрон.

Рис. 13 показывает, что следы распределяются по отдельным группам. Изучая плотность зёрен следов любой из этих групп, мы можем определить природу соответствующих частиц. Так, один из следов группы (а), показанный на фотографии XVIII, легко отождествить с протоном. Эта группа частиц могла появиться только при расщеплении бериллия дейтонами. Так как этот элемент в естественных условиях встречается в виде единственного изотопа с массовым числом 9, то тип расщеплённого ядра однозначно определяется, и превращение, приведшее к образованию протонов, можно изобразить следующим уравнением:

$${}_{4}\mathrm{Be}^{9} + {}_{1}\mathrm{H}^{2} \rightarrow \mathrm{X} + {}_{1}\mathrm{H}^{1},$$

где X является одним из получающихся ядер и подлежит определению. Для уравнивания полного заряда и массовых чисел в обеих частях равенства необходимо положить массовое число X равным 10 и его зарядное число — 4. Таким образом X представляет собой изотоп бериллия с массовым числом 10 и поэтому уравнение может быть переписано в следующем виде:

$$_{4}\text{Be}^{9} + _{1}\text{H}^{2} \rightarrow _{4}\text{Be}^{10} + _{1}\text{H}^{1}$$
.

Следующий вопрос, который необходимо разобрать — это определение величины энергии, выделяющейся при превращении. Сначала определяем среднюю энергию протонов группы (*a*), исходя из соотношения между пробегом и энергией. Этим способом получается 4,76 <u>—</u> 0,02 MeV, но это значение не даёт всей энергии, освобождаемой при реакции, так как ядро ₄Be¹⁰ получает некоторую кинетическую энергию отдачи от протона. Хотя следы этих ядер отдачи и не заметны на фотографии, их энергию всё же можно оценить, применяя принцип сохранения импульса.

На рис. 14 ОА изображает импульс падающего дейтона и ОВ импульс выброшенного протона. Так как начальные и конечные импульсы должны быть

равны, то необходимо приписать ядру $_4Be^{10}$ такой импульс, который, будучи векторно сложен с *OB*, даёт результирующий, равный *OA*, т. е. импульс па-

Рис. 14. Диаграмма импульсов.

дающего дейтона. Таким образом, импульс ядра отдачи изображается по направлению и величине отрезком OC, который параллелен и равен по длине отрезку AB. Зная массу и импульс ядра Ве, можно определить его скорость, а следовательно, и энергию. Этим способом получается значение $0,66 \pm 0,01$ MeV и поэтому полное количество выделяемой энергии равно $4,52 \pm 0,03$ MeV. Можно заметить, что подобно винтовке при выстреле тяжёлая частица получает только малую долю энергии. Спрашивается, чем же вообще обусловлено наблюдаемое выделение энергии, почему получается именно такое наблюдаемое значение энергии, а не какое-нибудь другое?

Мы раньше отметили, что истинные массы в отличие от зарядного и массового чисел, не представляют собой целых чисел, если масса протона принята равной единице. Благодаря работе Астона и других массы ядер были измерены с большой точностью. Принято выражать массу данного типа ядра в таких единицах, чтобы масса обычного изотопа кислорода, имеющего массовое число 16, получилась равной также 16. Тогда в этих единицах массы четырёх ядер, участвующих в рассматриваемом нами превращении, равны

$$_{4}\text{Be}^{9} = 9,014958, \quad _{4}\text{Be}^{10} = 10,016622, \\ _{1}\text{H}^{2} = 2,014725, \quad _{1}\text{H}^{1} = 1,008131.$$

Легко видеть, что полная масса начальных ядер равна 11,029683, а для конечных ядер она равна 11,024753. Таким образом исчезла масса в 0,00493 <u>+</u> 0,00012 единиц *).

Согласно уравнению Эйнштейна, такое исчезновение массы должно сопровождаться появлением эквивалентного количества энергии. Используя определяемую выше единицу в качестве единицы массы и 1 MeV в качестве единицы энергии, мы получаем, что исчезновение 0,001 единицы массы соответствует появлению энергии в 0,9312 MeV. Следовательно, наблюдаемая потеря массы в 0,00493 \pm 0,00012 единиц должна сопровождаться появлением энергии в 4,59 \pm 0,11 MeV, что в пределах ошибок равно экспериментально полученному нами значению.

Аналогичное рассмотрение других групп частиц, показанных на рис. 13, указывает, что их можно приписать следующим реакциям. Группа (c) состоит из тритонов, получающихся в реакции

$$Be^9 + {}_1H^2 \rightarrow {}_4Be^8 + {}_1H^3.$$

 $_4Be^8$ в природе не встречается, и его масса почти в точности равна массе двух α -частиц. Вполне вероятно, что вскоре после образования он распадается в согласни с уравнением $_4Be^8 \rightarrow _2He^4 + _2He^4$, причём разность масс обеих частей уравнения настолько мала, что α -частицы разлетаются с очень малой кинетической энергией и поэтому не могут быть обнаружены.

Группа (d) состоит из а-частиц, получающихся при реакции

 $_{4}\text{Be}^{9} + _{1}\text{H}^{2} \rightarrow _{3}\text{Li}^{7} + _{2}\text{He}^{4}$.

Многочисленные короткопробежные частицы на фотографии XVIII являются преимущественно дейтонами, упруго рассеянными ядрами атомов мишени.

Остаётся объяснить группу (e). Рассмотрение следов показывает, что частицы этой группы суть протоны, появление которых можно приписать реакции

$$_{1}\text{Be}^{9} + _{1}\text{H}^{2} \rightarrow *_{4}\text{Be}^{10} + _{1}\text{H}^{1}.$$

Здесь символ *4Be10 означает, что изотоп бериллия образуется в

^{*)} Погрешности соответствуют ошибкам в определении масс участвующих в реакции ядер.

ЯДЕРНАЯ ФИЗИКА В ФОТОГРАФИЯХ

возбуждённом состоянии. Можно в этом случае подсчитать энергию, выделяемую при реакции, таким же методом, как и для случаев группы (a), и затем по соотношению Эйнштейна вычислить и массу возбуждённого ядра. Полученное этим способом значение оказывается больше массы ядра $_4Be^{10}$ в нормальном или нижнем состоянии, и по разнице масс можно вычислить энергию возбуждения ядра. Мы таким образом определили энергию возбуждённого состояния $_4Be^{10}$, образованного при рассматриваемой реакции. Подобными методами были определены энергетические состояния многих устойчивых и неустойчивых ядер и полученные результаты показывают, что подобно атомам ядра могут существовать только в некоторых дискретных состояниях энергии.

Как правило, возбуждённое ядро быстро возвращается в нижнее состояние, испуская избыток энергии в виде кванта излучения. Изменения энергии, однако, велики по сравнению с теми, которые наблюдаются для электронных систем атомов, и поэтому энергия фотонов оказывается соответственно более высокой. Это излучение способно проходить через значительные толщи вещества и получило название ү-излучения.

приложение G

Определение энергии быстрых нейтронов

Массы нейтрона и протона настолько мало отличаются друг от друга, что механическая задача столкновения между этими двумя частицами ничем не отличается от подобной задачи для столкновения протона с протоном. Поэтому энергия E_1 выбитого протона связана с энергией E_0 падающего нейтрона уравнением

$$E_1 = E_0 \cos^2 \theta$$
,

где θ есть угол между направлением движения выбитого протона и направлением падающего нейтрона. Протон, выбитый под малым углом, получает почти всю энергию нейтрона (cos² 5° == 0,992). Измеряя пробеги, а следовательно и энергии большого числа именно таких выбитых протонов, для которых $\theta < 5^{\circ}$, можно определить распределение падающих нейтронов по энергиям. Этот способ является одним из наиболее мощных для определения энергии быстрых нейтронов.

Схема одной из установок для опытов этого типа показана на рис. 15. Пучок быстрых дейтонов от высоковольтного генератора пропускается через круглое отверстие в металлической пластинке. Частицы, прошедшие через отверстие, попадают на мишень, которая помещается на охлаждаемой металлической подставке. Нейтроны, образованные при превращении вещества мишени, вылетают по всем направлениям, проходя через стенки вакуумного сосуда. Некоторое

6 уфн, т. ХХХУ, вып. 3

уменьшение в числе нейтронов произойдёт из-за столкновения малой доли нейтронов с ядрами твёрдого вещества установки, но интенсивность выходящего пучка нейтронов мало меняется в результате таких процессов.

Если расположить фотопластинки так, как это показано на рисунке, то часть испущенных нейтронов войдёт в эмульсию параллельно её поверхности. Можно определить направление потока нейтронов в любой точке эмульсии, если задана точная геометрическая ориентация пластинки во время экспозиции. Затем можно определить направление любого следа протона и его пробег, а отсюда и энергию нейтрона, ответственного за него.

Пример данных, получающихся этим способом, приведён на рис. 16, показывающем результаты измерений распределения по энергиям нейтронов, образованных при бомбарлировке бора дейтонами с энергией в 900 KeV. Как видно, существует несколько групп нейтронов с различными энергиями. Группы наибольшей энергии возникают при реакции, изображаемой уравнением

$$_{5}\mathrm{B}^{11} + _{1}\mathrm{H}^{2} \rightarrow _{6}\mathrm{C}^{12} + _{0}n^{1},$$

причём ядро образуется или в нижнем состоянии, или в возбуждённом состоянии с энергией 4,3 MeV. Некоторые из других групп обязаны реакции

$$_{5}B^{10} + _{1}H^{2} \rightarrow _{6}C^{11} + _{0}n^{1}$$

причём ядро ₆C¹¹ образуется в различных состояниях энергии. Группа с энергией в 2,2 MeV обязана своим происхождением реакции

$$_{1}H^{2} + _{1}H^{2} \rightarrow _{2}He^{3} + _{0}n^{1}$$
.

В этой реакции дейтоны, подвергающиеся расщеплению, получаются в результате остановки первичных частиц в мишени.

6*

- 40.07

ΦΟΤΟΓΡΑΦИЯ ΧΫΙΙ

«- частицы и протоны, получающиеся при расщеплении лития дейтонами

центонами Мозанка из 24 микрофотографий, показывающая следы α-частиц и протонов, получающихся п и бомбардировке мишени из лития дейтонами с энергией 900 KeV. Следы α-частиц имеют вид почти сплошных цепочек зёрен серебра. В этой змульсии следы протонов намного более тонкие и поэтому их можно отличить от следов α-частиц. Косо направленные линии на пластичке суть царапины или механические поврежденкя, которые получаются в результате трения. Их легко от личить от следов частиц, так как они создаются только на поверхности эмульски.

8 УФН, т. XXXV, вып.?

к. Ф. ПОУЭЛЛ И Г. П. С. ОККИАЛИНИ

Частицы от расщепления бериллия дейтонами

Мозанка микрофотографий, показывающая следы частиц, получающихся при бомбарди, овке тонкой мищени бериллия дейтонами с энергией 900 КеV. Большинство очень коротких следов обусловлено первичными дейтонами, упруго рассеянными ядрами атомов мишени. Видгы, также следы а-частип, прогонов и тригонов; реакции, в которых они возникают, обсуждаются в приложении F.

Частицы от расщепления бора дейтонам и

Мозаика микрофотографий поверхности пластинки, экспонированной и потоке частиц, появляющихся в результате расщепления борз дейтонами с энерглей 900 КеV. Число следов слишком велико для детального анализа из-за длительной экспозиции, но можи различить след фы α-частиц, часть из которых вознихает в реакции

$$_{5}B^{10} + _{1}H^{2} \rightarrow 3_{2}He^{4}$$
.

Если поставить в фокус более глубокие слои эмульсии, то можно обнавужить следы дли нопробежных протонов, которые одии лишь способны глубоко проникнуть в эмульсию. Примеры последних показаны на фотографиях VII, VIII и IX.

8*

ФОТОГРАФИИ ХХ и ХХІ

Расщепление ядер атомов эмульсии

На фотографии XX показано расшепление, вызванное дейтоном с энергией в 8,5 MeV и пги-водящее к выбрасыванию быстрого протона. Ядра отдачи оставляют очень коротьие следы. Применение законов сохранения импульса и энергии указывает, что это событие, вероятно, соответствует реакции

$$_{8}O^{16} + _{1}H^{2} \rightarrow _{8}O^{17} + _{1}H^{1}$$

причём ядро кислорода с массовым числом 17 образуется в нижнем состоянии. Можно также приписать это событие реакции , N¹⁴ + ₁H² → , N¹⁵ + ₁H¹, но тогда ядро , N¹⁵ образуется в од-ном из возбуждённых состояний с энергией в 7 MeV. Фотография XXI показывает вызываемое дейтоном с энергией порядка 8 MeV расщепление ₆C¹³ на ядро _вB¹⁰ и α-частицу, в соответствии с уравнением

$$_{6}C^{12} + _{1}H^{2} \rightarrow _{5}B^{10} + _{2}He^{4}$$

Ядро отдачи движется вперёд почти в направлении падающего дейтона.

ФОТОГРАФИЯ ХХІЬ

Расщепление азота на четыре α-частицы при бомбардировке дейтонами

Три дейтона с начальной энергией 8,9 MeV входят в эмульсию с верхней стороны фотографии под малым углом наклона к эмульсии. Один из них входит в ядро и приводит к выбрасыванию четырёх частиц, которые, судя по плотности зёрен следов, являются а-частицами. По пробену частиц можно определить их энергию и импульс. Векторная сумма импульсов оказывается гавным импульсу па зающего дейтона, и полная энергия соответствует той, которая получается при посероащения

$$_{7}N^{11} + _{1}H^{2} \rightarrow _{3}He^{4} + _{3}He^{4} + _{9}He^{4} + _{9}He^{4}$$

Никакая другая интерпретация не согласуется с наблюдениями и идентификация заведомо правильна. Этот пример хорошо иллюстрирует преимущество наблюдений, произведённых над расшеплети ми, произсодящими в самой эмульски. Если же, например, бомбардировать азот дейтонами в установке, подобной изображённой на рис. 7, то наблюдаться будет только одна «частица, появаяющаяся при любом расшеплении. Такие наблюдений не позволяют выясі игь детали предвидения.

100 .

ΦΟΤΟΓΡΑΦИЯ ΧΧΙΗ

23

Следы, получающиеся при расщеплении лития и бора медленными нейтронами

Следы, созданные прохождением медленных нейтронов через фотографическую эмульсию, содержащую борат лития, введённый в эмульсию при изготовлении последней. Следы получаются в результате двух реакций (9) и (10) (см. стр. 390), короткопробежные—от бора и два длиннопробежные — от лития. Отдельные составляющие каждого следа невозможно отличить. Оба ядра, образованные при каждом превращении, разлетаются в противоположные стороны, так как в ядерном масштабе начальный импульс нейтрона почти равск нулю. В отличие от заряженных частиц, которые оставляют собственный след эмульсии, только один из тысячи нейтронов вызывает расшепление и этим создаёт видимый след.

--- 50 μ - - - - → 1998 (P. 199

ΦΟΤΟΓΡΑΦИЯ ΧΧΙΥ

Расщепление лития медленными нейтронами

ΦΟΤΟΓΡΑΦИЯ ΧΧΥ

Следы протонов, возникающих при столкновении быстрых нейтронов с ядрами водорода

Протоны отдачи, образовалные нейгролами с энергией в 2,5 MeV в реакции

 $H^2 + {}_1H^2 \longrightarrow {}_2H^2 + {}_0n^2$. Нейтроны проходили через эмульсию пара ілельчо её поверхности в направлении, указанном стрелкой. Только протоны, выброшенные в направ јених дв зажен за нейтронов, имеют энергию, равную энергии падающих нейтронов. Из фотографии видно, что протоны, выброшенные под заметными углами, имеют меньшие пробеги.

ΦΟΤΟΓΡΑΦИЯ XXVI

След протона отдачи

Мозанка микрофотографий, показывающая протоя отдачи, получившийся в результате столкновения с быстрым нейтроном. С нед протона начинается в нижнем левом углу и кончается в верхнем правом углу фотографии. Нейтроны бы и получены бомбардировкой бора дейтонами с энергией 900 KeV; онл получаются в результате реакции

$$_{5}B^{11} + _{1}H^{2} \rightarrow _{6}C^{12} + _{6}n^{1}$$

Имезно эта ядерная реакция является особенно взжной, так как позволяет создать однородные группы быстрых нейтронов инвестной энергии, что имеет значение для опытов по ядерной физике. В отличне от быстрых заряженных частия мы не умеем генерировать быстрых нейтронов иначе, как в вяле вторичных частия, возчикающих при ядерных превращениях.

ФОТОГРАФИЯ XXVII

След протона и звёзды тория

Длинный след, идущий сверху вниз, получится в разультате столкновения чейтрона с энергией_ж9 МеV јс прогоном атома водорода элульски. След проходит через большое число звёзд радиотория, и фотография показыевает, что след протона на большей части своего пути более тонкий, чем «следы а-частиц. Возможность отличить следы частиц дазличной ионизующей способности по их плотности зёрен ! Азывают "анализирующей способностью" эмульсия.

Расщепление бора быстрыми нейтронами

Два примера расщепления ${}_{3}B^{10}$ на две α частицы и тригон. В обоих случаях тригоны двигаются снязу вверх. Распцепление с меньшей энергией было вызвано нейтролом с эпергией 13 MeV от высоковольтной установки, а второе — нейтроном космическах лучей с энергией. оценённой в 35 MeV.

к, Ф. ПОУЭЛЛ И Г. П. С. ОККИАЛИНИ

ΦΟΤΟΓΡΑΦΗЯ ΧΧΙΧ

Следы деления U235

Примеры следов, получающихся при дэлезии U²¹³, вызвачном медларными нейтронаки. Урань вводился в пластинку путём купания её в растворе лимовнокислого урана. Вообще говоря, невозможно определить, в какой точке следа произошло деление, а следовательно, и определить пробеги отдельных осколков. Можно заметить, что в ряде случаев осколки деления стоякнулись с ядром эмульсии, образовав разветвлённый стоа. В случае (а) два следа, получившиеся при таком стоякновении, образова разветвлённый угол друг с другом. Это событие, ве роятно, соответствует стоякновению с ядром серебра, имеющим массовое число 109, так как часть из осколков деления обладает массовыми числами, близкими к этой величине. фотография XXX

- Section

Следы деления ядра на три части, из которых одна является «частицей

На этой фотографии по хазач примэр редкого способа деления, впервые наблюдённого в фотографических пластинках Д. Л. Лизсеем. Ядро де шигся на три части. Дличный след более тонок, чем остальные два, и считается, что создан «частицей, хотя это обстоятельство ещё не окончательно уставляно. Второй след де тения, проходящий под слэдом длиннопробежчой частицы, не связан с первым случаем деления. ФОТОГРАФИЯ ХХХІ

Следы частиц, имеющих большую энергию

Следы а-частиц и дейтонов от 181 дюймового циклотрона; частицы входят в эмульсию почти параллельно её поверхности. Оба типа частиц имеют оцинаковые скорости и хорошо заметноразличие в их удельной ионизации: стеды а-частиц наиболее заметны, следы же дейтоновочень тонкие. Начальчая энергия была порядка 200 MeV для а-частиц и 100 MeV для дейтонов. В поле здения остановились две или три а-частицы.

ядерная физика в фотографиях

ФОТОГРАФИЯ ХХХИ.

States and an and a state of the states of t

Расщепления, вызванные частицами большой энергии от синхро-циклотрона

Три примера мозаик микрофотографий расщеплений, вызванных быстрыми дейтонами с энергией 160 MeV, полученными в 184 дюймовом циклотроне. Направление движеения дейтоков, указано стрелками; невозможно, однако, достоверно указать следы частиц, вызвавших расшепления.

фотография хххііі

Расщепления, вызванные частицами большой энергии

Расщепления, вызванные частицами от 184 дюймового циклотрона на фотографии справа; невозможно заметить след частицы, вызвавшей расщепление, но она, вероятно, была дейтоном с энергией в 160 MeV. Видеы следы и других частии, вероятно «частиц с энергией в 320 MeV. След первичной частицы на фотографии слева обозначен буквой d и может быть -сделан хорошо видимым, если наклонить страницу так, чтобы зёрга следа находились на линии зрегия. - ЯДЕРНАЯ ФИЗИКА В ФОТОГРАФИЯХ

ФОТОГРАФИЯ XXXIV

2

alere or

Примеры фоторасщепления ядер

Раслевление, вызванное у-излученисм высокой энергии от 100 МеV бетатрона в Скенектеди.

9 УФН, т. XXXV, вып. 3

К; Ф. ПОУЭЛЛ И Р. П. С. ОККИАЛИНИ

φοτογραφия ΧΧΧΥ

Расщепление ядра кислорода

Расщепление О¹⁶ на четыре α-частицы, вы ванное космической радиацией. Невозможно с уверенностью утверждать, что расшепление было вызвано фотоном, но это является наиболее вероятным объясчением. Полная энергия всех четырёх α-частиц, определённая по их пробегам, равна 26 MeV. Если считать, что расшепление опис "ввется уравнением

$_{8}O^{16} + h\nu \rightarrow 4_{9}He^{4}$

то энергия фотона должна была равняться 40 MeV. В пределах экспериментальных ошибок импульс такого, кванта равен векторной сумме импульсов четирёх «частиц. Результаты, однако, также могут быть согласованы с предположением, что расщепление было вызвано быстрым нейтооном, который не был захвачен и не изменил направления своего движения *). В рассматриваемом случае энергия нейтрона должна была бы равняться 400 MeV, и более вероятно, что именно фоторасщепление имело место.

:450

^{*)} Импульсфотона. При интерпретации рассматриваемого события необходимо было сравнивать энергию, выделяемую в реакции, с векторной сумм й импульсов четырёх а-часстиц. Масса добравна 16,0000, а масса четырёх а-частиц — 16,015410. Таким образом масса покоя пои этом превращении увеличилась на 0,0'544 единицы массы, что эквивалентно 14,4 MeV. Согласно измерениям пробегов а-частиц сумма их кинетических энергий оавнается 26 MeV и поэтому полная энергия, отданная падающей частицей, равняется 40,4 MeV.

Эту энергию можно сравнить с импульсом, от (анным частицей, ответственной за расшепление. Импульс кванта с энергией h» равен h»/c, где c — скорость света. Положив h»=40,4 M eV, находим, что в пределах ошибок измерений импульс фотона равен векторной сумме импульсов четырёх счастии.

В случае фотонов малой энергии, как в случае видимого из тучечия, импуль: отдельных фотонов очень мая и поэтому трудно измерить давление, которое он производит при паденица, на какую-либо поверхность, если использовать источник света обычной интерсидиности.

Расщепление тяжёлого ядра

Расщепление ядра, вероятно, серебра или брома, частицей космических лучей. Испускаются четыре «частицы с общей энергией в 64 MeV, две из «частиц испущены в противоположные стороны с почти равчыми эчергиями.

ные стороны с почти равтыми эчергиями. В настоящее время ещё невозможно определить природу первичной частицы, вызвавшей расщелление. Короткий след, выходящий из ядрз в Інаправлении стрелки, обладает очень малой плотностью зёрен. Ещё не усгачовлено, какой частицей был образован этот след,

451

к. Ф. ПОУЭЛЛ И Г. П. С. ОККИАЛИНИ

ΦΟΤΟΓΡΑΦИЯ ΧΧΧΥΙΙ

"Взрывное расщепление ядра"

Расщепление ядра, вероятно серебра, частицей космических лучей. Энергия частицы, высвавшей расщепление, повидимому, была порядка 1000 MeV. Можно отличить следы семи протонов, пяти «частиц и некоторого числа более тяжёлых ядерных осколков, Большинство частиц проходит из эмульсии в стекло или полностью выходит из пастинки, вследствие чего не удалось точно определить их пробеги, а следовательно, и энергию.

ЯДЕРНАЯ ФИЗИКА В ФОТОГРАФИЯХ

ΦΟΤΟΓΡΑΦИЯ ΧΧΧΥΙΙΙ

Следы частиц различных типов

Расщепление тяжёлого ядра космическими лучами и следы мезона справа, наверху) и тритона (слева, наверху). Примечательна резкая разница в рассеянии, испытывае-мом мезоном и тяжёлыми частицами, а также и более быстрое изменение плотности зёрен следа мезона. Длинный след от звезды создан а-частищей.

- 79

ΦΟΤΟΓΡΑΦИЯ ΧΧΧΙΧ

Звезда, образованная космическими лучами

1 ...

Расшепление тяжёлого ядра, при котором длиннопробежная α-частица (с энергией в 32 MeV) остаётся в эмульсии. В возгусе при нормальных условиях α-частица этой энергии имела бы пробег примерно в один метр.

ФОТОГРАФИИ XL и XLI

. "A

"Молотообразные следы"

Два примера расщеплений, вызванных космическими лучами, в которых испускаются тяжё-лые ядерные частицы. Эти последние, остагавливаясь, распадаются на две α -частицы, кото-рые разлатаются в противоположные стороны с равной скоростию. Данные фотографий указывают, что обе тяжёлые частицы были ялрами "Li». Известно, что воследние испускают одновременно β -частицу и две α -частицы в согласни с уравнением $Li_3^8 \rightarrow e - 1 + He \frac{4}{2} + He_2^4$.

к. ф. поуэлл и г. п. С. оккиалини

ФОТОГРАФИЯ XLII

.

Следы мезонов с частицами распада и без них

Следы мосонов с чистицани распада и осо них Следы двух различных мезонов, идущих сверху вниз. Один из мезонов приводит к растиев-лению ядра, при котором испускается две а частицы и проточ. Можно сравнить следы втих мезонов со следами протонов, показанных на фотографиях VII – IX. Так как мезон справа проник в ядро, имея малую скорость, то повидимому, оч был отрицательно заряжен, но это обстоятельство ещё не окончательно установлено.

1.5.5

ФОТОГРАФИЯ XLIII

След мезона

Мозаика микрофотографий следа мезона, вошедшего в эмульсию сверху и остановившегося в нижней части фотографии. Примечательны частые изменения и направления, которые в общем создают впечатление некоторой общей кривизны, а также и "тонкость" следа вдоль большей части траектории. Ясно видно увеличение ионизации у конца пробега.

К. Ф. ПОУЭЛЛ И Г. П. С. ОККИАЛИНИ

ΦΟΤΟΓΡΑΦИЯ XLIV

Расщепление, вызванное мезоном

Расщепление, вызванное мезоном, в котором испускаются две быстрые частицы, вероятно здра водорода. След мезона отмечен буквой *m*. Меньшая фотография была получена при одной экспозиции и иллюсгрирует необходимость построения мозаики, чтобы получить полное представление о рассматриваемом событии.

1 m - 50 µ - - - -

ФОТСГРАФИЯ XLV

Расщепление, вызванное мезоном

Мозаика микрофотографий расщепления, вызваниого мезоном, в котором испускается протов и «частица. Два более коротких следа созданы «частицами или, возможно, более тяжёлыми ядерчыми осколками. Во всех расщеплениях подобного типа, по всей вероятности, испускаются нейтрочы, которые остаются незамеченными.

к. Ф. ПОУЭЛЛ И Г. П. С. ОККИАЛИНИ

ΦΟΤΟΓΡΑΦИЯ XLVI

Расщепление, вызванное мезоном

Расшепление, вызванное мезоном и приведшее к испусканию четырёх заряженных частиц. Частицы (а) и (b)—ачастицы, (c) — протон. Вероятно, что и (d) — протон с энергией в 15 MeV. Мы не можем указать точно, какого типа ядро было расшепнею мезоном, но согласно современным взглядам это было ядро серебра или брома.

ΦΟΤΟΓΡΑΦΗЯ ΧΙΛΙΙ

Расщепление, вызванное мезоном

Расщепление, вызванное мезоном, при котором испускаются две быстрые частицы и короткопробежная сильно ионизующая частица. В этом случае также отчётливо заметно увеличение понизации мезона около конца следа.

ΦΟΤΟΓΡΑΦИЯ XLVIII

Выбрасывание медленного мезона из распадающегося ядра

Рассеяние на малые углы в следе *т*и и быстрое увеличение плотности зёрен около его конда позволяют с полнол определённостью идентифицировать мезон.

Первичные и вторичные мезоны

След т показывает, что частица двигалась сверху вниз и остановилась в нижней части фотографии. При этом она образовала вторую частицу µ, которая двигалась снизу вверх. Этотвторой мезон вышел из эмульсии и поэтому невозможно точно измерить его пробег, ноимеющиеся данные указывают на то, что он потерял большую часть своей кинетической энергии до выхода из эмульсии. Маленькая звезда от радиотория илиюстрирует малую. ионизацию в следах мезона по сравчению с ионизацией от α-частицы.

-

ФОТОГРАФИЯ L

Первичный и вторичный мезоны

Следы первичного мезона π и вторичной, более лёгкой частицы μ . След первичной частицы слишком короткий, чтобы можно было точно определить массу путём счёта числа зёрен. След вторичного мезона оканчивается в эмульсии, и, судя по плотности зёрен, начальная энергия частицы была порядка 4 MeV.

į