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This clear and concise introduction to nuclear physics provides an excel-

lent basis for a `core' undergraduate course in this area.

The book opens by setting nuclear physics in the context of elemen-

tary particle physics and then shows how simple models can provide an

understanding of the properties of nuclei, both in their ground states and

excited states, and also of the nature of nuclear reactions. The book

includes chapters on nuclear ®ssion, its application in nuclear power

reactors, and the role of nuclear physics in energy production and nucleo-

synthesis in stars.

This new edition contains several additional topics: muon-catalysed

fusion, the nuclear and neutrino physics of supernovae, neutrino mass

and neutrino oscillations, and the biological effects of radiation.

A knowledge of basic quantum mechanics and special relativity is

assumed. Appendices deal with other more specialised topics. Each chap-

ter ends with a set of problems for which outline solutions are provided.
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Preface to the second edition

The main structure of the ®rst edition has been retained, but we have

taken the opportunity in this second edition to update the text and clarify

an occasional obscurity. The text has in places been expanded, and also

additional topics have been added. The growing interest of physics stu-

dents in astrophysics has encouraged us to extend our discussions of the

nuclear and neutrino physics of supernovae, and of solar neutrinos. There

is a new chapter devoted to neutrino masses and neutrino oscillations. In

other directions, a description of muon-catalysed fusion has been

included, and a chapter on radiation physics introduces an important

applied ®eld.

We should like to thank Dr John Andrews and Professor Denis

Henshaw for their useful comments on parts of the text, Mrs Victoria

Parry for her secretarial assistance, and Cambridge University Press for

their continuing support.

W. N. Cottingham

D. A. Greenwood

Bristol, March 2000
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Preface to the ®rst edition

In writing this text we were concerned to assert the continuing importance

of nuclear physics in an undergraduate physics course. We set the subject

in the context of current notions of particle physics. Our treatment of

these ideas, in Chapters 1 to 3, is descriptive, but it provides a unifying

foundation for the rest of the book. Chapter 12, on þ-decay, returns to

the basic theory. It also seems to us important that a core course should

include some account of the applications of nuclear physics in controlled

®ssion and fusion, and should exemplify the role of nuclear physics in

astrophysics. Three chapters are devoted to these subjects.

Experimental techniques are not described in detail. It is impossible in

a short text to do justice to the ingenuity of the experimental scientist,

from the early discoveries in radioactivity to the sophisticated experi-

ments of today. However, experimental data are stressed throughout:

we hope that the interdependence of advances in experiment and theory

is apparent to the reader.

We have by and large restricted the discussion of processes involving

nuclear excitation and nuclear reactions to energies less than about

10 MeV. Even with this restriction there is such a richness and diversity

of phenomena that it can be dif®cult for a beginner to grasp the under-

lying principles. We have therefore placed great emphasis on a few simple

theoretical models that provide a successful description and understand-

ing of the properties of nuclei at low energies. The way in which simple

models can elucidate the properties of a complex system is one of the

surprises of the subject, and part of its general educational value.

We have tried to keep the mathematics as simple as possible. We

assume a knowledge of the basic formulae of special relativity, and

x



some basic quantum mechanics: wave-equations, energy levels and the

quantisation of angular momentum. A few topics which may not be

covered in elementary courses in quantum mechanics are treated in

appendices. We consider the technicalities of angular momentum algebra,

phase shift analysis and isotopic spin to be inappropriate to a ®rst course

in nuclear physics. Equations are written to be valid in SI units; results are

usually expressed in MeV and fm. Each chapter ends with a set of pro-

blems intended to amplify and extend the text; some refer to further

applications of nuclear physics. We have covered the bulk of the material

in this book in 35 lectures of the core undergraduate curriculum at

Bristol; these are given in the second and third years of the honours

physics course.

We thank colleagues and students who read drafts of the text and

drew our attention to errors and obscurities, which we have tried to

eliminate. We are grateful to Margaret James and Mrs Lilian Murphy

for their work on the typescript.

There is a less obvious debt: to the sometime Department of

Mathematical Physics of the University of Birmingham where, under

Professor Peierls, we ®rst learned about physics.

W. N. Cottingham

D. A. Greenwood

Bristol, August 1985
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Constants of nature, conversion factors
and notation

Velocity of light c 2:997 92� 108 m sÿ1

Planck's constant » � h=2� 1:054 57� 10ÿ34 J s

Proton charge e 1:602 18� 10ÿ19 C

Boltzmann's constant kB 1:380 7� 10ÿ23 J Kÿ1

� 8:617� 10ÿ5 eV Kÿ1

Gravitational constant G 6:67� 10ÿ11 m3 kgÿ1 sÿ2

Fermi coupling GF 1:166� 10ÿ11� »c�3 MeVÿ2

constant

Electron mass me 9:109 4� 10ÿ31 kg

� 0:511 00 MeV=c2

Proton mass mp 1:007 276 amu

� 938:27 MeV=c2

Neutron mass mn 1:008 66 amu

� 939:57 MeV=c2

Atomic mass unit (mass 12C atom)/12 1:660 54� 10ÿ27 kg

� 931:49 MeV=c2

Bohr magneton �B � e »=2me 5:788 38� 10ÿ11 MeV Tÿ1

Nuclear magneton �N � e »=2mp 3:152 45� 10ÿ14 MeV Tÿ1

Bohr radius a0 � 4�"0 »2=mee
2 0:529 177� 10ÿ10 m

Fine-structure e2=4�"0 »c 1/137.036

constant

»c � 197:327 MeV fm; e2=4�"0 � 1:439 96 MeV fm

1 MeV � 1:602 18� 10ÿ13 J

1 fm � 10ÿ15 m; 1 barn � 10ÿ28 m2 � 102 fm2

(Source: Review of Particle Physics (1998), Eur. Phys. J. C3, 1±794.)

Notation

r, k, etc., denote vectors �x; y; z�; �kx; ky; kz�, and r � jrj, k � jkj,
d3r � dx dy dz; d3k � dkx dky dkz.

r2 � @2

@x2
� @2

@y2
� @2

@z2
� 1

r

@2

@r2
r� 1

r2 sin �

@

@�
sin �

@

@�
� 1

r2 sin2 �

@2

@�2
,

dþ � sin � d� d� denotes an in®nitesimal element of solid angle.



Glossary of some important symbols

A nuclear mass number �� N � Z�
A�r; t� electromagnetic vector potential

a }4.1 nuclear surface width; }4.5 bulk binding coef®cient

B�Z;N� binding energy of nucleus

B�r; t� magnetic ®eld

b }4.5 surface tension coef®cient; }14.1 impact parameter

E�r; t� electric ®eld

E energy; En, Ep neutron energy, proton energy; EF
n , E

F
p

neutron, proton Fermi energy, measured from the bot-

tom of the shell-model neutron potential well; EG }8.3
F�Z;Ee� }12.3 Coulomb correction factor in þ-decay

f �Z;E0� }12.3 kinematic factor in total þ-decay rate

G }6.2 exponent in the tunnelling formula

Gw }12.2 weak interaction coupling constant �� GFVud�
g }8.1 statistical factor in Breit±Wigner formula

gL; gs }5.6 orbital and intrinsic magnetic moment coef®cients

gA }12.5 axial coupling constant

G�rs=rc� }6.2 tunnelling integral

J }C.3 total angular momentum operator

j quantum number associated with J2

jz quantum number of Jz
k wave vector

kF value of k � jkj at the Fermi energy

L }C.1 orbital angular momentum operator

l quantum number associated with L2; Chapter 9,

Chapter 14 mean free path

xiii



m quantum number of Lz; reduced mass

ms quantum number of sz
m� mass of �-particle; ma, mnuc mass of atom, nucleus

N number of neutrons in nucleus

n�E� density of states

N�E� integrated density of states

p momentum

Q }5.7 nuclear electric quadrupole moment; }6.1 kinetic

energy release in nuclear reaction

q }9.4 ®ssion probability

R }4.3 nuclear radius; }12.3 reaction rate

rs; rc }6.2 potential barrier parameters

Sn�N;Z� }5.2 neutron separation energy

S�E� }8.3 parameter of nuclear reaction cross-section for

energies below the Coulomb barrier

S0�E�;Sc�E� }12.3 electron (positron) energy spectrum without and

with Coulomb correction

s }C.2 intrinsic angular momentum operator

s quantum number associated with s; }4.5 symmetry

energy coef®cient

T kinetic energy

T1=2 decay half life

tnuc }5.2 nuclear time scale

tp }9.4 prompt neutron life

U potential energy; �U mean proton±neutron potential

energy difference in nucleus

ul�r� radial wave-function

V normalisation volume; }3.3 V�r� nucleon±nucleon

potential

Vud }12.5 element of Kobayashi±Maskawa matrix

v velocity

Z atomic number (number of protons in nucleus)

ÿ;ÿi width, partial width, of an excited state

ÿ }14.1 relativistic factor �1ÿ v2=c2�ÿ1
2

� }4.4 coef®cient of pairing energy

"0 permittivity of free space

"F }11.1 Fermi energy of electron gas

� }13.3 neutrino mixing angle

�w }13.1 Weinberg angle

l }5.5 magnetic dipole operator
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�n; �p neutron, proton magnetic moment

� }5.5 magnetic dipole moment; }11.1 stellar mass per

electron; }14.3 photon linear attenuation coef®cient

�0 permeability of free space

�,�d }9.3 mean number of prompt neutrons, delayed

neutrons, per ®ssion

� }2.1 electric charge density; }14.1 mass density

�ch }4.1 electric charge density in units of e

�0 }4.3 nucleon number density in nuclear matter

�nuc; �n; �p number density of nuclei, neutrons, protons

r }C.2 Pauli spin matrices

� cross-section; �tot, �e, �f total, elastic, ®ssion cross-

section

� mean life; �E1, �M1 electric, magnetic, dipole transition

mean life; }7.4 ��i�ÿ1 partial decay rate

� }3.4 meson ®eld

� electromagnetic scalar potential

ý�r� single particle wave-function

ým }D.1 general wave-function

þS0;þT }3.3 angular terms in the nucleon±nucleon potential

! angular frequency
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1

Prologue

More than 100 elements are now known to exist, distinguished from each

other by the electric charge Ze on the atomic nucleus. This charge is

balanced by the charge carried by the Z electrons which together with

the nucleus make up the neutral atom. The elements are also distin-

guished by their mass, more than 99% of which resides in the nucleus.

Are there other distinguishing properties of nuclei? Have the nuclei been

in existence since the beginning of time? Are there elements in the

Universe which do not exist on Earth? What physical principles underlie

the properties of nuclei? Why are their masses so closely correlated with

their electric charges? Why are some nuclei radioactive? Radioactivity is

used to man's bene®t in medicine. Nuclear ®ssion is exploited in power

generation. But man's use of nuclear physics has also posed the terrible

threat of nuclear weapons.

This book aims to set out the basic concepts which have been devel-

oped by nuclear physicists in their attempts to understand the nucleus.

Besides satisfying our appetite for knowledge, these concepts must be

understood if we are to make an informed judgment on the bene®ts

and problems of nuclear technology.

After the discovery of the neutron by Chadwick in 1932, it was

accepted that a nucleus of atomic number Z was made up of Z protons

and some number N of neutrons. The proton and neutron were then

thought to be elementary particles, although it is now clear that they

are not but rather are themselves structured entities. We shall also see

that in addition to neutrons and protons several other particles play an

important, if indirect, role in the physics of nuclei. In this and the follow-

ing two chapters, to provide a background to our subsequent study of the

1



nucleus, we shall describe the elementary particles of nature, and their

interactions, as they are at present understood.

1.1 Fermions and bosons

Elementary particles are classi®ed as either fermions or bosons. Fermions

are particles which satisfy the Pauli exclusion principle: if an assembly of

identical fermions is described in terms of single-particle wave-functions,

then no two fermions can have the same wave-function. For example,

electrons are fermions. This rule explains the shell structure of atoms and

hence underlies the whole of chemistry. Fermions are so called because

they obey the Fermi±Dirac statistics of statistical mechanics.

Bosons are particles which obey Bose±Einstein statistics, and are

characterised by the property that any number of particles may be

assigned the same single-particle wave-function. Thus, in the case of

bosons, coherent waves of macroscopic amplitude can be constructed,

and such waves may to a good approximation be described classically.

For example, photons are bosons and the corresponding classical ®eld is

the familiar electromagnetic ®eld E and B, which satis®es Maxwell's

equations.

At a more fundamental level, these properties are a consequence of

the possible symmetries of the wave-function of a system of identical

particles when the coordinates of any two particles are interchanged. In

the case of fermions, the wave-function changes sign; it is completely anti-

symmetric. In the case of bosons the wave-function is unchanged; it is

completely symmetric.

There is also an observed relation between the intrinisc angular

momentum, or spin, of a particle and its statistics. The intrinsic spin s

is quantised, with spin quantum number s (see Appendix C). For a fer-

mion, s takes one of the values 1
2,

3
2,

5
2, . . .; for a boson, s takes one of the

values 0, 1, 2, . . . . A theoretical explanation of this relationship can be

given within the framework of relativistic quantum ®eld theory.

1.2 The particle physicist's picture of nature

Elementary particle physics describes the world in terms of elementary

fermions, interacting through ®elds of which they are sources. The parti-

cles associated with the interaction ®elds are bosons. To take the most

familiar example, an electron is an elementary fermion; it carries electric

charge ±e and this charge produces an electromagnetic ®eld E, B, which

2 Prologue



exerts forces on other charged particles. The electromagnetic ®eld, quan-

tised according to the rules of quantum mechanics, corresponds to an

assembly of photons, which are bosons. Indeed, Bose±Einstein statistics

were ®rst applied to photons.

Four types of interaction ®eld may be distinguished in nature (see

Table 1.1). All of these interactions are relevant to nuclear physics,

though the gravitational ®eld becomes important only in densely aggre-

gated matter, such as stars. Gravitational forces act on all particles and

are important for the physics on the large scale of macroscopic bodies. On

the small scale of most terrestrial atomic and nuclear physics, gravita-

tional forces are insigni®cant and except in Chapter 10 and Chapter 11 we

shall ignore them.

Nature provides an even greater diversity of elementary fermions

than of bosons. It is convenient to divide the elementary fermions into

two classes: leptons, which are not sources of the strong ®elds and hence

do not participate in the strong interaction; and quarks, which take part

in all interactions.

The electron is an example of a lepton. Leptons and their interactions

are described in Chapter 2. Quarks are always con®ned in compound

systems which extend over distances of about 1 fm. The term hadron is

used generically for a quark system. The proton and neutron are hadrons,

as are mesons. The proton and neutron are the subject matter of

Chapter 3.

1.3 Conservation laws and symmetries: parity

The total energy of an isolated system is constant in time. So also are its

linear momentum and angular momentum. These conservation laws are

derivable from Newton's laws of motion and Maxwell's equations, or

from the laws of quantum mechanics, but they can also, at a deeper

1.3 Conservation laws and symmetries: parity 3

Table 1.1. Types of interaction ®eld

Interaction ®eld Boson Spin

Gravitational ®eld `Gravitons' postulated 2

Weak ®eld W+, Wÿ, Z particles 1

Electromagnetic ®eld Photons 1

Strong ®eld `Gluons' postulated 1



level, be regarded as consequences of `symmetries' of space and time.

Thus the law of conservation of linear momentum follows from the

homogeneity of space, the law of conservation of angular momentum

from the isotropy of space; it does not matter where we place the origin

of our coordinate axes, or in which direction they are oriented.

These conservation laws are as signi®cant in nuclear physics as else-

where, but there is another symmetry and conservation law which is of

particular importance in quantum systems such as the nucleus: re¯ection

symmetry and parity. By re¯ection symmetry we mean re¯ection about

the origin, r ! r0 � ÿr. A single-particle wave-function ÿ�r� is said to

have parity �1 if it is even under re¯ection, i.e.

ÿ�ÿr� � ÿ�r�;

and parity ÿ1 if it is odd under re¯ection, i.e.

ÿ�ÿr� � ÿÿ�r�:

More generally, a many-particle wave-function has parity �1 if it is even

under re¯ection of all the particle coordinates, and parity ÿ1 if it is odd

under re¯ection.

Parity is an important concept because the laws of the electromag-

netic and of the strong interaction are of exactly the same form if written

with respect to a re¯ected left-handed coordinate system �0x0; 0y0; 0z0� as
they are in the standard right-handed system �0x; 0y; 0z� (Fig. 1.1). We

shall see in Chapter 2 that this is not true of the weak interaction.

Nevertheless, for many properties of atomic and nuclear systems the

weak interaction is unimportant and wave-functions for such systems

can be chosen to have a de®nite parity which does not change as the

wave-function evolves in time according to SchroÈ dinger's equation.

1.4 Units

Every branch of physics tends to ®nd certain units particularly congenial.

In nuclear physics, the size of the nucleus makes 10ÿ15 m � 1 fm (femto-

metre) convenient as a unit of length, usually called a fermi. However,

nuclear cross-sections, which have the dimensions of area, are measured

in barns; 1 b � 10ÿ28 m2 � 100 fm2. Energies of interest are usually of the

order of MeV. Since mc2 has the dimensions of energy, it is convenient to

quote masses in units of MeV/c2.
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For order-of-magnitude calculations, the masses me and mp of the

electron and proton may be taken as

me � 0:5 MeV=c2

mp � 938 MeV=c2

and it is useful to remember that

»c � 197 MeV fm; e2=4�"0 � 1:44 MeV fm;

e2=4�"0 »c � 1=137; c � 3� 1023 fm sÿ1:

The student will perhaps be surprised to ®nd how easily many expressions

in nuclear physics can be evaluated using these quantities.

Problems

1.1 Show that the ratio of the gravitational potential energy to the Coulomb

potential energy between two electrons is � 2:4� 10ÿ43.

1.2(a) Show that in polar coordinates �r; �; �� the re¯ection

r ! r0 � ÿr is equivalent to r ! r0 � r

� ! � 0 � �ÿ �; � ! �0 � �� �.

Problems 5

Fig. 1.1 The point P at r with coordinates �x; y; z� has coordinates �ÿx;ÿy;ÿz�
in the primed, re¯ected coordinate axes. �0x0; 0y0; 0z0� make up a left-handed set of

axes. In the ®gure, the 0z axis is out of the plane of the page.



(b) What are the parities of the following electron states of the hydrogen

atom:

(i) ÿ100 �
1���
�

p 1

a0

� �3
2

eÿr=a0 ,

(ii) ÿ210 �
1

4
����������2��p 1

a0

� �3
2 r

a0
eÿr=2a0 cos �,

(iii) ÿ21ÿ1 �
1

8
���
�

p 1

a0

� �3
2 r

a0
eÿr=2a0 sin � eÿi�?

(a0 � �4�"0� »2=mee
2 is the Bohr radius.)

1.3(a) Show that the wavelength of a photon of energy 1 MeV is � 1240 fm.

(b) The electrostatic self-energy of a uniformly charged sphere of total

charge e, radius R, is U � �3=5�e2=�4�"0R�. Show that if R � 1 fm,

U � 0:86 MeV.
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2

Leptons and the electromagnetic and weak
interactions

2.1 The electromagnetic interaction

The electromagnetic ®eld is most conveniently described by a vector

potential A and a scalar potential �. For simplicity, we consider only

the potential ��r; t�. Using Maxwell's equations, this may be chosen to

satisfy the wave-equation

r2�ÿ 1

c2
@2�

@t2
� ÿ ��r; t�

"0
: �2:1�

Here ��r; t� is the electric charge density due to the charged particles,

which in atomic and nuclear physics will usually be electrons and protons,

and c is the velocity of light.

In regions where � � 0, equation (2.1) has solutions in the form of

propagating waves; for example, the plane wave

��r; t� � �constant� ei�k�rÿ!t�: �2:2�

This satis®es

r2�ÿ 1

c2
@2�

@t2
� 0 �2:3�

provided

!2 � c2k2: �2:4�
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The wave velocity is therefore c, as we should expect. In quantum theory,

unlike classical theory, the total energy and momentum of the wave are

quantised, and can only be integer multiples of the basic quantum of

energy and momentum given by the de Broglie relations:

E � »!; p � »k: �2:5�

Such a quantum of radiation is called a photon. A macroscopic wave can

be considered to be an assembly of photons, and we can regard photons

as particles, each carrying energy E and momentum p.

Using (2.4) and (2.5), E and p are related by

E2 � p2c2: �2:6�

For a particle of mass m, the Einstein equation gives

E2 � p2c2 �m2c4:

We therefore infer that the photon is a particle having zero mass.

A second important type of solution of (2.1) exists when charged

particles are present. If these are moving slowly compared with the velo-

city of light, so that the term @2�=�c2 @t2� can be neglected, the solution is

approximately the Coulomb potential of the charge distribution. For a

particle with charge density �1, we can take

��r; t� � 1

4�"0

Z
�1�r0; t�
jrÿ r0j d

3r0: �2:7�

Another charged particle with charge density �2 will have a potential

energy given by

U12 �
Z

�2�r; t���r; t�d3r

� 1

4�"0

Z
�1�r0; t��2�r; t�

jrÿ r0j d3r d3r0:
�2:8�

Electric potential energy is basically responsible for the binding of

electrons in atoms and molecules. We shall see that, in nuclear physics, it

is responsible for the instability of heavy nuclei. If magnetic effects due to

the motion of the charges are included, equation (2.8) is modi®ed to

8 Leptons and the electromagnetic and weak interactions



U12 �
1

4�"0

Z
�01�2 � �1=c2�j01 � j2

jrÿ r0j d3r d3r0; �2:9�

where j � �v is the current associated with the charge distribution which

has velocity v�r�. Thus this magnetic contribution to the energy is of

relative order v2=c2.

The electromagnetic interaction also gives rise to the scattering of

charged particles. For example, for two electrons approaching each

other the interaction gives a mutual repulsion which leads to a transfer

of momentum between the particles. The process can be represented by a

diagram such as Fig. 2.1. In quantum electrodynamics, these diagrams,

invented by Feynman, have a precise technical interpretation in the the-

ory. We shall use them only to help visualise the physics involved. The

scattering of the two electrons may be thought of as caused by the emis-

sion of a `virtual' photon by one electron and its absorption by the other

electron. In a virtual process the photon does not actually appear to an

observer, though it appears in the mathematical formalism that describes

the process.

2.2 The weak interaction

There are three weak interaction ®elds associated with the W+, Wÿ and Z

particles. Each one, like the electromagnetic ®eld, is described by a vector

and a scalar potential. However, the bosons associated with the weak

2.2 The weak interaction 9

Fig. 2.1 The scattering of two electrons of momenta »k, »k0 by the exchange of a
virtual photon carrying momentum »q. Time runs from left to right in these

diagrams. (In principle, the exchange of a Z particle (}2.2) also contributes to

electron±electron scattering, but the very short range and weakness of the weak

interaction makes this contribution almost completely negligible: the electrons are

in any case kept apart by the Coulomb repulsion induced by the photon

exchange.)



®elds all have mass, and the Wÿ and W+ bosons are electrically charged.

The Z boson is neutral, and most similar to the photon, but it has a mass

MZ � �91:187� 0:007� GeV=c2 � 100 proton masses;

which is very large by nuclear physics standards.

The interactions between leptons and the electromagnetic and weak

®elds were combined into a uni®ed `electro-weak' theory by Weinberg

and by Salam. The existence of the Z and W� bosons was predicted by

the theory, and the theory together with experimental data from neu-

trino±nuclear scattering also suggested values for their masses. These

predictions were con®rmed by experiments at CERN in 1983.

The wave equation satis®ed by the scalar potential �Z associated with

the Z boson is a generalisation of (2.1) and includes a term involving MZ:

r2 ÿ 1

c2
@2

@t2
ÿ MZc

»

� �2
" #

�Z�r; t� � ÿ �Z�r; t�
"0

; �2:10�

where �Z is the neutral weak-charge density. There is a close, but not

exact, analogy between weak-charge density and electric-charge density,

and particles carry weak charge somewhat as they carry electric charge. In

the case of a nucleus, �Z will extend over the nuclear dimensions.

In free space where �Z � 0 there exist plane wave solutions of (2.10),

�Z�r; t� � �constant� ei�k�rÿ!t�;

but now to satisfy the wave equation we require

!2 � c2k2 � c2�MZc= »�2;

and with the de Broglie relations (2.5) for the ®eld quanta we obtain the

Einstein energy±momentum relation for the Z boson:

E2 � p2c2 �M2
Zc

4:

The static solution of (2.10) which corresponds to a point unit weak

charge at the origin is

�Z�r� �
1

4�"0

eÿ�r

r
; writing � � MZc

»
: �2:11�
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At points away from the origin where r2�Z ÿ �2�Z � 0, this satis®es

equation (2.10), as may be easily checked by substitution, using the for-

mula r2�Z � �1=r�d2�r�Z�=dr2. Close to the origin the solution (2.11)

behaves like the corresponding Coulomb potential 1=�4�"0r� of a unit

point electric charge, and hence has the correct point source behaviour.

The generalisation of (2.11) to a distribution of weak charge gives the

quasi-static solution (cf. (2.7))

�Z�r; t� �
1

4�"0

Z
�Z�r0; t� eÿ�jrÿr0 j

jrÿ r0j d3r0: �2:12�

The exponential factor in the integral effectively vanishes for jrÿ r0j
greater than a few times �ÿ1 � »=MZc and

»=MZc � 2� 10ÿ3 fm:

This is a very small distance compared with the size of the nucleus. Hence

in the integral in (2.12) the factor �Z is slowly varying over the range of

the exponential and may be taken outside the integral (which is then

elementary):

�Z�r; t� '
1

4�"0
�Z�r; t�

Z
eÿ�jrÿr0 j

jrÿ r0j d
3r0

� 1

4�"0
�Z�r; t�

Z 1

0

eÿ�R

R
4�R2dR

� 1

"0

»
MZc

� �2

�Z�r; t�:

�2:13�

The potential energy between two particles associated with the scalar ®eld

�Z is, by analogy with (2.8),

UZ
12 �

Z
�Z2�r; t��Z1�r; t�d3r

� 1

"0

»
MZc

� �2Z
�Z1�r; t��Z2�r; t�d3r;

and there is also a contribution from the vector part of the ®eld, analo-

gous to the magnetic contribution in (2.9), of the form

2.2 The weak interaction 11



1

"0c
2

»
MZc

� �2Z
jZ1�r; t� � jZ2�r; t�d3r;

where jZ is the weak-current density.

The physical consequences of these expressions are quite different

from the physical consequences of the electromagnetic interaction. UZ
12

is very much suppressed by the large mass factor in the denominator, and

it is this which largely accounts for the `weakness' of the weak interaction.

Also the interaction at low energies appears as a `contact interaction',

effectively having zero range.

The electrically charged W+ and Wÿ boson ®elds give rise to the

most important weak interactions, and in particular to þ-decay. They

obey equations similar to those of the Z ®eld, but the masses of the

associated particles are somewhat smaller;

MW� � MWÿ � �80:41� 0:10� GeV=c2:

2.3 Mean life and half life

Not all particles are stable: some, for example the W� and Z bosons, have

only a transient existence. Suppose that an unstable particle exists at some

instant t � 0; its mean life is the mean time it exists in isolation, before it

undergoes radioactive decay. If we denote by P�t� the probability that the

particle survives for a time t, and make the assumption that the particle

has a constant probability 1=� per unit time of decaying, then

P�t� dt� � P�t��1ÿ dt=��;

since �1ÿ dt=�� is the probability it survives the time interval dt. Hence

1

P

dP

dt
� ÿ 1

�
;

and integrating,

P�t� � P�0�eÿt=�:

Since P�0� � 1 we have

P�t� � eÿt=�: �2:14�

12 Leptons and the electromagnetic and weak interactions



Equation (2.14) is the familiar exponential-decay law for unstable parti-

cles. It is well veri®ed experimentally.

The probability that the particle decays between times t, t� dt is

clearly P�t� � �dt=��, so that the mean life is

Z 1

0

tP�t��dt=�� �
Z 1

0

teÿt=�dt=� � �:

The `half life' T1
2
is the time at which there is a 50% probability that

the particle has decayed, i.e.

P�T1
2
� � e

ÿT1
2
=� � 1

2
:

Hence

T1
2
� � ln 2 � 0:693�:

In this book we have preferred to quote mean lives rather than half

lives. We refer to �1=�� as the decay rate.

2.4 Leptons

Leptons are spin 1
2
fermions which interact through the electromagnetic

and weak interactions, but not through the strong interaction. The known

leptons are listed in Table 2.1.

The electrically charged leptons all have magnetic moments of mag-

nitude � e »=2 (mass) anti-aligned with their spins.

Of these charged leptons, only the familiar electron is stable.

Electrons are structureless particles that are described by the Dirac rela-

tivistic wave-equation. This equation explains the spin and magnetic

moment of the electron, and has the remarkable feature that it predicts

the existence of anti-particles: these are particles of the same mass and

spin, but of opposite charge and magnetic moment to the particle. The

anti-particle of the electron is called the positron. Positrons were identi®ed

experimentally by Anderson in 1932 soon after their theoretical predic-

tion.

Since leptons do not interact with the strong interaction ®eld, elec-

trons and positrons interact principally through the electromagnetic ®eld.

A positron will eventually annihilate with an electron, usually to produce

2.4 Leptons 13



two or three photons, so that all the lepton energy appears as electro-

magnetic radiation. We write these processes as

eÿ � e� ! 2ÿ

eÿ � e� ! 3ÿ:

Annihilation with the production of a single photon is not allowed,

by energy and momentum conservation (Problem 2.4).

The converse processes of pair-production by photons are also possi-

ble, and pair-production from a single photon is possible provided

another (charged) particle is present to take up momentum. Quantum

electrodynamics, based on the Dirac and Maxwell equations, describes

all processes involving electrons, positrons and photons to a high degree

of accuracy.

It is a curious fact that nature provides us also with the electrically

charged muon �ÿ and tau �ÿ and their anti-particles the �� and ��. Apart

from their greater masses and ®nite lifetimes, muons and taus seem to be

just copies of the electron, and like the electron they are accurately

described by Dirac equations. We shall see that the �ÿ can be used as

a probe of nuclear charge density, but otherwise neither the muons nor

the taus play any signi®cant role in nuclear physics.

The remaining leptons are the neutrinos � and their corresponding

anti-neutrinos denoted by ��. The experimental evidence (Table 2.1) sug-

gests that the mass of a neutrino is certainly very small compared with the

mass of its charged lepton partner. If the mass of a neutrino were zero, it

would, like the photon, travel with the velocity of light.

14 Leptons and the electromagnetic and weak interactions

Table 2.1. Known leptons

Mass

(MeV/c2�
Mean life

(s) Charge

Electron eÿ 0.5110 1 ÿe

Electron neutrino �e < 15� 10ÿ6 1? 0

Muon �ÿ 105.658 2:197� 10ÿ6 ÿe

Muon neutrino �� < 0:17 1? 0

Tau �ÿ 1777 290� 10ÿ15 ÿe

Tau neutrino �� < 18:2 1? 0



It is exceedingly dif®cult and expensive to carry out experiments with

neutrinos, but there is compelling experimental evidence that the electron,

muon and tau have different neutrinos, �e, ��, �� associated with them.

2.5 The instability of the heavy leptons: muon decay

The W+ and Wÿ bosons lead to processes called þ-decay, which neither

photons nor Z bosons can induce. In this chapter we illustrate this with

the example of the þ-decay of the muon; in the next chapter we shall

describe þ-decay processes involving hadrons.

The muon decays to a muon neutrino, together with an electron and

an electron anti-neutrino:

�ÿ ! �� � eÿ � ��e:

The W ®elds play the mediating role in this decay through the two virtual

processes illustrated in Fig. 2.2. Again, in a virtual process actual W

bosons do not appear to an observer.

The W bosons can in principle produce any charged lepton and its

anti-neutrino or an anti-lepton and its neutrino, but energy must be con-

served overall. Hence in the case of muon decay the charged lepton must

be an electron. A tau decay can produce a muon or an electron (and

indeed it is suf®ciently massive to decay alternatively to hadrons).

It is of fundamental signi®cance that electric charge is conserved at

every stage of a decay. It is also believed to be true of all interactions that

2.5 The instability of the heavy leptons: muon decay 15

Fig. 2.2 The decay �ÿ ! �� � eÿ � ��e. In (a) the muon changes to its neutrino

and a `virtual' Wÿ boson, which then decays to the electron and the electron anti-

neutrino. In (b) a `virtual' W� is created from the vacuum with the electron and

the electron anti-neutrino. The W� then transforms the muon into a muon neu-

trino. In these diagrams, the direction of the arrows on the fermion lines follows

the direction of fermion number. (The arrows on anti-particle lines then run

backwards in time.)



to a high degree of approximation a single lepton can only change to

another of the same type, and a lepton and an anti-lepton of the same

type can only be created or destroyed together. There is thus a conserva-

tion law, the `conservation of lepton number' (anti-leptons being counted

negatively), for each separate type of lepton. The experimental evidence

for a possible breakdown of this law will be discussed in Chapter 13.

2.6 Parity violation in muon decay

It is observed experimentally that in the decay of the negative muon, the

electron momentum pe is strongly biased to be in the direction opposite to

that of the muon spin s�. To explain the implication of this observation

for parity violation, we must ®rst point out that there are two types of

vector.

Under the re¯ection in the origin (Fig. 1.1), the position vector r of a

particle and its momentum p transform:

r ! r0 � ÿr and p � m
dr

dt
! p0 � m

ÿdr

dt
� ÿp; �2:15�

r and p are both true vectors.

The angular momentum L � r� p has many of the attributes of a

vector, but under re¯ection

L ! L0 � �ÿr� � �ÿp� � �L:

Thus L does not have the re¯ection property (2.14) of the true vectors r

and p. It is called an axial vector or pseudo-vector. The intrinsic angular

momentum s of a particle is likewise an axial vector.

Returning to muon decay, in the re¯ected coordinate system,

pe ! ÿpe, s� ! � s�, so that the momentum would be said to be biased

in the same direction as the muon spin! It appears that the equations of

the theory are only valid in the original right-handed frame, and would

have to be rewritten to hold in the left-handed re¯ected frame. Thus the

laws are not invariant under re¯ection and hence parity is not conserved

in muon decay. More generally, parity is not conserved in any process

involving the weak interaction ®elds.

The inequivalence of right-handedness and left-handedness is most

extreme in the case of neutrinos. Neutrinos produced in a weak interac-

tion process are always `left-handed', with their spin anti-parallel to their
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direction of motion, and anti-neutrinos are always `right-handed' (Fig.

2.3). There is no evidence that right-handed neutrinos (or left-handed

anti-neutrinos) exist at all.

The breakdown of parity conservation may be expressed slightly dif-

ferently. The re¯ection in the origin r ! r0 � ÿr is easily seen to be

equivalent to mirror re¯ection in a plane, followed by a rotation through

� about an axis perpendicular to that plane (e.g. the xy-plane and the z-

axis, cf. Problem 1.2). There is no evidence that the laws of physics break

down under rotations, so the breakdown is in the mirror re¯ection: the

assumption that the mirror image of a physical process is also a possible

physical process is wrong, in so far as the weak interaction is involved.

Problems

2.1 Plane wave solutions of the relativistic wave-equation for a free particle

of mass m are of the form

ý�r; t� � �constant�ei�k�rÿ!t�

where

!2 � c2k2 � �m2c4= »2�.

Show that the group velocity of a wave-packet representing a particle of

total energy E � »! is the same as the velocity of a relativistic classical

particle having the same total energy.

2.2 The weak charge density of an electron bound in an atom has a similar

magnitude to the electric charge density and has, similarly, a probability

distribution over the atomic dimensions of the electron's wave-function.

Show that the ratio of the weak interaction energy to the electrostatic

interaction energy between two electrons bound in an atom is of order of

magnitude 4�� »=�a0MZc��2 � 10ÿ15, where a0 is the Bohr radius.

(Compare this result with Problem 1.1.)
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Fig. 2.3 The relation between momentum p and spin for a neutrino � and an

anti-neutrino ��.



2.3 An electron-positron pair bound by their Coulomb attraction is called

positronium. Show that when positronium decays from rest to two

photons, the photons have equal energy.

2.4 Use energy and momentum conservation to show that pair annihilation

with the emission of a single photon, e� � eÿ ! ÿ, is impossible in free

space.

2.5 Show that a muon in free space with a kinetic energy of 1 MeV will

travel a mean distance of about 90 m before it decays.

2.6 An electron and a �� bound by the Coulomb attraction is called

muonium.Which of the following decays can occur?

(a) ���eÿ� ! ÿ � ÿ

(b) ���eÿ� ! �e � ���

(c) ���eÿ� ! e� � eÿ � �e � ���

2.7 The masses of the electron and neutrinos from a muon decay are neg-

ligible compared with the muon mass. Show that if the muon decays

from rest and the kinetic energy released is divided equally between the

®nal leptons then the angle between the paths of any two of them is

approximately 1208.

2.8 Starting from the Coulomb law and the Biot±Savart law, show that the

electric ®eld E is a true vector ®eld, but that the magnetic ®eld B is an

axial vector ®eld.

2.9 Show that a muon is more tightly bound in the lowest state of a 3H±

muon atom than in the lowest state of a deuteron±muon atom, by about

48 eV. (Note that in the expression m�e2=4�"0�2=2 »2 for the binding

energy of a hydrogen-like system, m is the reduced mass.) Take the

mass of the deuteron to be 1876 MeV and the mass of the triton 3H

to be 2809 MeV.
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3

Nucleons and the strong interaction

We turn now to the hadrons, bound systems of quarks which interact by

the strong interaction, as well as by the weak and electromagnetic inter-

actions. In particular we shall describe the nucleons, that is to say, the

proton and the neutron, the forces between nucleons, and the effect of the

weak interaction on the stability of nucleons.

3.1 Properties of the proton and the neutron

Nucleons, like leptons, are fermions with spin 1
2
. The mass of the neutron

is 0.14% greater than that of the proton:

mn � 939:566 MeV=c2;

mp � 938:272 MeV=c2:
�3:1�

Thus the mass difference mn ÿmp � 1:29 MeV=c2 (� 2 electron masses).

The neutron has no net electric charge. The proton has the opposite

charge to the electron: protons are responsible for exactly cancelling the

charge of the electrons in electrically neutral atoms.

The electric charge on a proton is not concentrated at a point, but is

symmetrically distributed about the centre of the proton. By the experi-

mental methods to be discussed in Chapter 4, the mean radius Rp of this

charge distribution is found to be Rp � 0:8 fm. An extended charge dis-

tribution is also found in the neutron, positive charge in the central region

being cancelled by negative charge at greater distances. The matter dis-

tribution in nucleons also extends to a distance of about Rp.
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Both the proton and the neutron have a magnetic dipole moment,

aligned with their spin:

�p � 2:792 85�e »=2mp�;
�n � ÿ1:913 04�e »=2mp�:

�3:2�

Clearly neither magnetic moment is simply related to the value

e »=[2(nucleon mass)] expected from a simple Dirac equation, and this

is a clear indication that the nucleons are not themselves fundamental

particles.

Compelling evidence that the nucleons are the ground states of a

composite system is given by data of which that in Fig. 3.1 is an example.
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Fig. 3.1 The total photon cross-section for hadron production on protons

(dashes) and deuterons (crosses). The difference between these cross-sections is

approximately the cross-section on neutrons. (After Armstrong, T. A. et al.

(1972), Phys. Rev. D5, 1640; Nucl. Phys. B41, 445.)



This shows the cross-section for absorption of photons by protons and by

deuterons (see }3.3), as a function of photon energy up to 1300 MeV. The

cross-sections vary rapidly with energy. A precise de®nition of cross-sec-

tion is given in Appendix A, but for our immediate purpose it is suf®cient

to remark that the peaks are due to photons being preferentially absorbed

to create an excited state when the photon energy matches the excitation

energy of that state. Perhaps a more familiar example of photons being

absorbed by a composite system is that of atomic absorption. Similar

peaks in atomic absorption cross-sections, but at energies of a few elec-

tron volts, correspond to the excitation of the atom to higher energy

states. The nucleon peaks have a similar interpretation, albeit on a very

different energy scale. The ®rst peak in the proton cross-section is at a

photon energy of about 294 MeV, and corresponds to the formation of a

state called the ��. The �� is a fermion with mass of about

�938� 294� MeV � 1232 MeV; its spin has been determined to be 3
2.

Data for the neutron show that it has a sequence of excited states of

the same spins and almost identical energies as has the proton. The

electrical energies associated with the charge distributions of the proton

and neutron are of order of magnitude e2=�4�"0Rp� � 2 MeV (taking

Rp � 0:8 fm), which is small compared with the nucleon rest mass ener-

gies and excitation energies. We shall see that, in all strong interactions,

protons and neutrons behave in the same way to a good approximation.

The near independence of the strong interaction on nucleon type is an

important fact for our understanding of the properties of the nucleus.

3.2 The quark model of nucleons

Any composite system with spin 1
2
must contain an odd number of fer-

mion constituents. (An even number would give integral spin.) The highly

successful quark model postulates that nucleons contain three fundamen-

tal fermions called quarks. We cannot here present the particle physics

which establishes the validity of the quark model, but since particle phy-

sics does have implications for the concepts of nuclear physics we give ±

without attempting justi®cation ± some of the most relevant results.

As is the case with the elementary leptons, there are several types of

quark, with a curious and so far unexplained mass hierarchy. For

nucleons and nuclear physics only the two least-massive quarks are

involved, the up quark u and the down quark d. The proton basically

contains two up quarks and a down quark (uud) and the neutron two

downs and one up (ddu). These quarks are bound by the fundamental
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strong interaction ®eld, called by particle physicists the gluon ®eld. The

fact that the strong interactions of neutrons are almost the same as those

of protons is explained by the gluon ®eld having the same coupling to all

quarks, independent of their type.

What are the properties of these quarks? They have mass, but the

mass of a particle is generally determined by isolating it and measuring its

acceleration in response to a known force. Because a single quark has

never been isolated, this procedure has not been possible, and our knowl-

edge of the quark masses is indirect. The consensus is that much of the

nucleon mass resides in the gluon force ®elds that bind the quarks, and

only a few MeV/c2 need be assigned to the u and d quark masses. It is well

established that the d quark is heavier than the u quark, since in all cases

where two particles differ only in that a d quark is substituted for a u

quark, the particle with the d quark is heavier. The principal example of

this is the difference in mass between the neutron and proton. The mass,

� 2 MeV=c2, associated with the electrical energy of the charged proton is

far greater than that associated with the (overall neutral) charge distribu-

tion of the neutron, so that one might expect the proton to be heavier.

However, the extra d quark in the neutron more than compensates for

this, and makes the neutron heavier than the proton.

The electric charges carried by quarks are well veri®ed by measure-

ments of the electromagnetic transitions between the nucleon ground

states and excited states. The u has charge 2
3e and the d has charge

ÿ 1
3
e. Thus the proton (uud) has net charge e and the neutron (ddu)

has net charge zero. Again, since a quark has never been isolated, the

evidence for these assignments is all indirect.

The differences between neutrons and protons, other than their elec-

tric and weak charges, are due to the u±d mass difference. This has only a

small effect on the basic strong interactions, so that the resulting strong

interaction between nucleons is almost independent of nucleon type. This

independence may be expressed mathematically by introducing the con-

cept of `isotopic spin symmetry', but for our purposes this elaboration is

unnecessary.

3.3 The nucleon±nucleon interaction: the phenomenological
description

We shall see in later chapters that the kinetic energies and potential

energies of nucleons bound together in a nucleus are an order of magni-

tude smaller than the energies �� 290 MeV� required to excite the quarks
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in an individual nucleon. It is, therefore, reasonable to regard a nucleus as

an assembly of nucleons interacting with each other, but basically remain-

ing in their ground states. To understand the physics of nuclei it is there-

fore important to be able to describe the interactions between nucleons.

Since nucleons are composite particles, we can anticipate that their inter-

actions with each other will not be simple. In fact they are rather com-

plicated. Nevertheless, after 70 years of experimental and theoretical

effort a great deal is known empirically about the forces between two

nucleons, especially at the low energies relevant to nuclear physics.

The empirical approach is to construct a possible potential which

incorporates our limited theoretical knowledge (which we shall discuss

in }3.4) and has adjustable features, mainly to do with the short-range

part of the interaction. The SchroÈ dinger equation for two nucleons inter-

acting through this potential is then solved numerically and the adjustable

features are varied to ®t the experimental facts, namely the properties of

the deuteron and the low-energy scattering data.

The deuteron is a neutron±proton bound state with:

binding energy = 2.2245 MeV;

angular momentum j � 1;

magnetic moment = 0.8574�e »=2mp�;
electric quadrupole moment = 0.286 fm2:

�3:3�

Neither proton±proton nor neutron±neutron bound states exist.

The scattering data provide much more information. Nucleons have

spin 1
2
, which may be `¯ipped' in the scattering. It can be shown that there

are ®ve independent differential cross-sections for spin-polarised proton±

proton and a further ®ve for proton±neutron scattering which can, in

principle, be measured. Neutron±neutron cross-sections have never

been measured directly because there are no targets of free neutrons.

As has been explained, the strong neutron±neutron interaction should

be almost the same as the strong proton±proton interaction, and both

these should be almost the same as the proton±neutron interaction for the

same states of relative motion. However, we must remember here the

Pauli exclusion principle: the neutron and proton can exist together in

states which are not allowed for two protons or two neutrons. This is why

the neutron and proton can have a bound state, whereas two protons or

two neutrons do not bind, without any contradiction of the principle that

the strong interaction is almost independent of nucleon type.
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A large amount of careful and accurate data has been accumulated,

and the most sophisticated and accurate empirical potential has been

constructed by a group of scientists working in Paris. Two expressions

are needed: one for the (anti-symmetric) states allowed for two protons or

two neutrons, as well as a proton and a neutron, and one for symmetric

states accessible only to the neutron±proton system. For both cases, when

the spins of the two nucleons are coupled to give a total spin S � 0 (see

Appendix C) the nucleons only experience a central potential.

In Fig. 3.2, the central potential for the anti-symmetric states with

S � 0 is denoted by VC0. The central potential for symmetric states dif-

fers from this, and is not shown.

When the spins couple to S � 1 there are four contributions to these

potentials, which are then each of the form

V�r� � VC1�r� � VT�r�ÿT � VSO�r�ÿSO � VSO2�r�ÿSO2;

where

ÿT � 3
�r1 � r��r2 � r�

r2
ÿ r1 � r2

»ÿSO � �r1 � r2� � L
»2ÿSO2 � �r1 � L��r2 � L� � �r2 � L��r1 � L�:

�3:4�

In these expressions r� »=2� is the nucleon spin operator, L is the orbital

angular momentum operator of the nucleon pair, and the subscripts 1 and

2 refer to the two nucleons present.

Again, the radial factors differ in the two cases of symmetric and anti-

symmetric states. In Fig. 3.2, VC1, VSO and VT correspond to symmetric

states.

VC1 is essentially an ordinary central potential. VTÿT is called the

tensor potential. It has the same angular structure as the potential

between two magnetic dipoles and it is also interesting because it is the

only part of the potential which does not commute with L2, so that l is

not a good quantum number. VSOÿSO and VSO2ÿSO2 give rise to different

terms for the different couplings of spin and orbital angular momenta.

Spin±orbit coupling is well known in atomic physics, where it is due to

magnetic interactions. However, these terms in the nuclear potential,

which are of major importance, arise out of the strong interaction.
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In Fig. 3.2 we show the four potentials that are most important at low

energies of interaction (< 100 MeV) and in particular are important for

nucleons in nuclei.

The potential VCO�r� is appropriate for low-energy proton±proton

and neutron±neutron interactions. The attractive tail is not, however,

suf®ciently deep to bind two nucleons. The potentials VC1�r�, VSO�r�
and VT�r� are responsible for binding the deuteron: note the deeply

attractive part of VT�r�, which is associated also with the large electric

quadrupole moment of the deuteron.

The tensor potential is particularly important for binding the deu-

teron, but since it is zero on averaging over all directions it becomes less

important in heavier nuclei. This last remark presupposes that the poten-

3.3 The nucleon±nucleon interaction: the phenomenological description 25

Fig. 3.2 The most important components of the `Paris potential'. (After

Lacombe, M. et al. (1980), Phys. Rev. C21, 861.)



tial established for the interaction of two nucleons in isolation is relevant

when many nucleons are interacting in an atomic nucleus. We shall dis-

cuss this assumption further in Chapter 4.

For the moment, we simply note the similarity between the central

potentials and the well-known Lennard-Jones pair potential between neu-

tral atoms, which also has a repulsive core and attractive tail, and (albeit

on a different scale) binds the atoms together in condensed matter.

3.4 Mesons and the nucleon±nucleon interaction

Like all fermions, quarks have corresponding anti-particles. Anti-protons

and anti-neutrons can exist, made up of anti-quarks, � �u �u �d� and � �d �d �u�; the
excited states of nucleons have images of identical mass but opposite

charge in anti-quark matter. In fact the electromagnetic and strong inter-

actions of anti-matter seem to be identical to those of matter. It is possible

to contemplate the existence of stable anti-atoms, and macroscopic

bodies, made up of anti-matter, but as electrons annihilate with positrons,

so do nucleons annihilate with anti-nucleons; matter and anti-matter,

though stable in isolation, cannot coexist. To study anti-particles we

must create them in laboratories.

As well as binding three quarks or three anti-quarks together to make

nucleons and anti-nucleons, the strong gluon ®eld can bind a quark and

an anti-quark together to form a short-lived particle called a meson. Like

nucleons, such bound pairs have a sequence of excited states.

Of most importance for nuclear physics are the � mesons. The elec-

trically charged �� and �ÿ are made up of �u �d� and �d �u� pairs respec-

tively, and the neutral �0 is a superposition �u �uÿ d �d�= 2
p

of quark anti-

quark pairs. (The orthogonal combination �u �u� d �d�= 2
p

belongs to a

meson called the �.)

The masses of the � mesons are:

mass of �� � mass of �ÿ � 139:57 MeV=c2;

mass of �0 � 134:9 MeV=c2:
�3:5�

(The � has mass � 547MeV=c2.)

The quark±anti-quark pairs in these mesons have orbital angular

momentum zero and intrinsic spins coupled to give total angular momen-

tum zero. The ®rst excited states also have orbital angular momentum

zero, but the intrinsic spins are coupled to give a total spin with quantum
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number S � 1. These states are called the ��, �ÿ and �0 mesons; they

have masses � 770 MeV=c2.

Quarks are sources of the gluon ®eld, and in a nucleon they are

con®ned by this ®eld to lie within the nucleon. At distances � 1 fm the

force between nucleons is not mediated by the basic gluon ®eld, but rather

by the exchange of mesons. Mesons have integral spin and are bosons, as

are the photons which mediate the electromagnetic interaction and the

W� and Z particles which mediate the weak interaction.

Although mesons are composite particles, their motion as a whole is

still described by a wave-function ��r; t�, obeying in free space the wave-

equation for massive particles:

r2 ÿ 1

c2
@2

@t2
ÿ mc

»

� �2" #
��r; t� � 0; �3:6�

where m is the mass of the particle (cf. equations (2.10)±(2.12)).

One solution of this equation describes the � meson ®eld associated

with a nucleon having operator spin r1� »=2� at r1:

��r; t� � g��r1 � ;1�
eÿmcjrÿr1j= »

jrÿ r1j
; �3:7�

where g� is a measure of the meson source strength of the nucleon. The

gradient operator ;1 acts only on r1, so that (3.7) is evidently a solution of

(3.6) (cf. (2.11)).

The ®eld (3.7) changes sign under re¯ection in the origin (see }2.6)
and is said to be a pseudo-scalar ®eld. It is the simplest such ®eld we can

construct which satis®es the wave-equation. The `dipole-like' nature of

the ®eld is well understood by particle physicists, and the interaction

energy between two nucleons associated with it is of `dipole±dipole' form:

U12 / g2��r2 � ;2��r1 � ;1�
eÿmcjr2ÿr1j= »

jr2 ÿ r1j
: �3:8�

The � mesons are the mesons of smallest mass and hence give the

largest contribution to the interaction at large distances. The appropriate

length scale, from the exponential in (3.7), is

»=mc � 1:4 fm:
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Explicit differentiation shows that (3.8) includes a potential of the

tensor form VT�r�ÿT. It is well established that � meson exchange is

responsible for most of the tensor potential (3.4), and is the dominant

contribution to the whole potential at distances jr2 ÿ r1j > 1:4 fm. At

smaller distances other meson exchange processes become important,

including the exchange of � mesons. However, the potentials at distances

< 0:8 fm and, in particular, the short-range repulsion, are empirical and

so far have no established explanation.

3.5 The weak interaction: þ-decay

Hadrons are subject to the weak interaction as well as to the electromag-

netic and strong interactions, and it is through the weak interaction that

quarks, like leptons, are coupled to the W and Z bosons. For example,

one quark can change to another by emitting or absorbing a virtual W

boson. The phenomena of þ-decay, in which a neutron becomes a proton

or a proton becomes a neutron, proceed in this way.

In free space, the proton is the only stable three-quark system.The

neutron in free space has enough excess mass over the proton to decay to

it by the process shown in Fig. 3.3.

The mean life of the neutron in free space is 886:7 s � 15 minutes.

However, a neutron bound in a nucleus will be stable if the nuclear

binding energies make decay energetically forbidden. Conversely, a pro-

ton bound in a nucleus may change into a neutron

p ! n� e� � �e;

if the nuclear binding energies involved allow the process to occur. The

energetics of þ-decay will be dealt with in detail in Chapter 4, and a more

quantitative theory of þ-decay will be given in Chapter 12.
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3.6 More quarks

The u and d quarks are merely the two least massive of a sequence of

types, or `¯avours' of quark, and to set the discussion of þ-decay above

into this wider context we list in Table 3.1 all the presently known ¯a-

vours.

The existence of the more massive quarks in this table is revealed by

the observation of states similar to the nucleon states and meson states we

have already discussed, but which are apparently formed by substituting

any of the `new' quarks for the u or d quarks. Thus, for example, sub-

stituting an s quark for a d quark, there exists a K+ meson �u�s� (mass

493.68 MeV/c2) like the �� meson �u �d� but heavier, and a �0 baryon

(uds) (mass 1193 MeV/c2) like the neutron (udd) but heavier. Baryon

and anti-baryon are the generic names for particles essentially made up

of three quarks or three anti-quarks. Again, since no quark has ever been

isolated, the masses given in Table 3.1 are effective masses and have no

precise signi®cance.

Were it not for the weak interaction a heavy quark would be stable

and there would be more absolute conservation laws, for example, the

conservation of strangeness and the conservation of charm. Such laws

hold for processes involving only the electromagnetic and strong interac-

tions, but are not absolute since all quarks couple to the W� and Z weak

interaction ®elds, and a quark changes its ¯avour (but remains a quark!)

when it emits or absorbs a virtual W� boson. Thus, for example, the s

quark in the �ÿ baryon can decay through processes like those shown in

Fig. 3.4. We shall see that nuclear binding energies are not suf®ciently

large to make a baryon containing a heavy quark stable even in a nucleus.

The weak interaction makes all mesons unstable. Mesons containing

a heavy quark can decay by the heavy quark changing into a lighter
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Table 3.1. Properties of quarks

Quark Approximate mass Electric charge (e)

Down d 3±9 MeV/c2 ÿ 1
3

Up u 1.5±5 MeV/c2 2
3

Strange s 60±170 MeV/c2 ÿ 1
3

Charm c 1.1±1.4 GeV/c2 2
3

Bottom b 4.1±4.4 GeV/c2 ÿ 1
3

Top t 174 GeV/c2 2
3



quark. Another possible process is illustrated in Fig. 3.5, in which a quark

and an anti-quark annihilate through the weak interaction into an anti-

muon and a muon neutrino. This latter process is the predominant type of

decay of the charged pions. The mean life of charged pions is

2:60� 10ÿ8 s.

The �0 usually decays into two photons by the direct annihilation of

the quarks with their own anti-quarks, in a way rather similar to the

decay of positronium (an electron±positron pair e�eÿ in a bound state).

Such a decay (Fig. 3.6) takes place through the electromagnetic interac-

tion, and is therefore much quicker: the mean life of the �0 is

0:84� 10ÿ16 s.

All the available experimental evidence is consistent with there being

a law of `conservation of baryon number': the total number of baryons

(anti-baryons being counted negatively) is conserved in all interactions, so

that a baryon and an anti-baryon are always created or destroyed
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Fig. 3.4 The decays �ÿ ! n� �ÿ, �ÿ ! n� �ÿ � ���.

Fig. 3.5 The decay �� ! �� � ��. The charged pion was discovered by Powell

and co-workers in Bristol in 1947 by the observation of this decay.

Fig. 3.6 The electromagnetic decay �0 ! ÿ � ÿ.



together. Indeed, it has been established that a lower limit to the mean life

of an isolated proton exceeds 1:6� 1025 years.

3.7 The Standard Model of particle physics

The electromagnetic, weak, and strong interactions of leptons and quarks

are combined in the theoretical edi®ce known as the Standard Model of

particle physics. This model has been remarkably successful in the inter-

pretation of the data of particle physics. It is generally believed that the

properties of nuclei, and the phenomena of nuclear physics in general, are

a consequence of the established laws of particle physics. Our presenta-

tion of nuclear physics has been guided by the Standard Model, but a

detailed understanding of, even, the proton within the Standard Model

remains an experimental and theoretical challenge.

The concepts which are useful at the low energies we consider, were

developed long before the Standard Model was established. We shall see

in the following chapters that quite simple theoretical models are highly

successful in elucidating the properties of nuclei.

Problems

3.1 The spins of the neutron and the proton in the deuteron are aligned.

Show that the magnetic moment of the deuteron is within 3% of the

sum of the neutron and proton moments. What might be the origin of

the discrepancy?

3.2(a) Show that the magnetic interaction energy between two magnetic dipoles

�r1 and �r2 is of the form VT�r�ÿT with VT�r� � ÿ��0=4���2=r3. (�0 is

the permeability of the vacuum.)

(b) Verify that equation (3.8) includes terms in the nucleon±nucleon poten-

tial of tensor form.

3.3 The Coulomb self-energy of a hadron with charge �e or ÿe is about

1 MeV. The quark content and rest energies (in MeV) of some hadrons

are:

n(udd) 940, p(uud) 938

�ÿ (dds) 1197, �0(uds) 1192, ��(uus) 1189
K0�d�s� 498, K��u�s� 494.
The u and d quarks make different contributions to the rest energy.

Estimate this difference.

3.4 Which of the following processes are allowed by the conservation laws?

(a) n ! p� ÿ,
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(b) p ! e� � ÿ,

(c) p ! �� � ÿ,

(d) �p� n ! �ÿ � �0.

3.5 The decay of the ��ÿ initiates the sequence of decays shown below:

��ÿ ! Kÿ ��0

ÿ!�0 � ÿ

ÿ!p� eÿ � ��e
ÿ!�ÿ � �0

ÿ!ÿ � ÿ

ÿ!�ÿ � ���
ÿ!eÿ � ��e � ��

The quark content of the hadrons involved is:

��ÿ(ssd), �0(sud), �0(sud), p(uud),

Kÿ�s; �u�, �ÿ�d �u�, �0�u �uÿ d �d�.
Classify the decays as strong, electromagnetic, or weak.
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4

Nuclear sizes and nuclear masses

We now begin our study of the nucleus. A nucleus is a bound assembly of

neutrons and protons. A
ZX denotes a nucleus of an atom of the chemical

element X containing A nucleons, of which Z are protons and

N � �Aÿ Z� are neutrons. For example, 35
17Cl denotes a chlorine nucleus

with 18 neutrons and 37
17Cl a chlorine nucleus with 20 neutrons. Since the

chemical symbol determines the atomic number Z, 35Cl or 37Cl is identi-

®cation enough, but the addition of the Z label is often useful.

A � �N � Z� is called the mass number of the nucleus. Nuclei which differ

only in the number of neutrons they contain are called isotopes. Nuclei of

the same A but different Z are called isobars.

4.1 Electron scattering by the nuclear charge distribution

Rutherford's famous analysis in 1911 of the scattering of �-particles by

matter established that the size of the nucleus of an atom is small com-

pared with the size of the atom. Whereas the electronic distribution

extends to a distance of the order of aÊ ngstroÈ ms �1 A
� � 10ÿ10 m� from

the nucleus, these and later experiments showed that the distribution of

nucleons is con®ned to a few fermis �1 fm � 10ÿ15 m�. Early theories of �-
decay and nuclear binding energies gave estimated values for nuclear radii

of a similar magnitude.

Precise information came in the 1950s, with experiments using the

elastic scattering of high-energy electrons to probe the nuclear charge

distribution. There is an obvious advantage in using charged leptons

(electrons or muons) to probe nuclear matter, since leptons interact

with nucleons primarily through electromagnetic forces: the complica-
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tions of the strong nuclear interaction are not present, and the weak

interaction is negligible for the scattering process. The most signi®cant

interaction between a charged lepton, which can be regarded as a struc-

tureless point object, and the nuclear charge is the Coulomb force, and

this is well understood. If the nucleus has a magnetic moment, the mag-

netic contribution to the scattering becomes important at large scattering

angles, but this also is well understood.

If scattering experiments are to give detailed information on the

nuclear charge distribution, it is clear that the de Broglie wavelength �

of the incident particle must be less than, or at least comparable with, the

distances over which the nuclear charge density changes. An electron with

��=2�� � 1 fm has momentum p � 2�»=� and hence energy

E � �p2c2 �m2c4�12 � 200 MeV. At these energies, the electrons are

described by the Dirac relativistic wave-equation, rather than by the

SchroÈ dinger equation. The experiments yield a differential cross-section

d��E; ��=dÿ (Appendix A) for elastic scattering from the nucleus through

an angle �, which depends on the energy E of the incident electrons.

Typical experimental data are shown in Fig. 4.1.

The incident electrons are, of course, also scattered by the atomic

electrons in the target. However, this scattering is easily distinguished

from the nuclear scattering by the lower energy of the scattered electrons.

Whereas the recoil energy taken up by the heavy nucleus is very small, the

recoil energy taken up by the atomic electrons is appreciable, except for

scattering in the forward direction. (See Problem 4.1.)

The nuclear charge density will be described by some density function

e�ch�r�. (The proton charge e is put in as a factor for convenience.) This

function is not necessarily spherically symmetric ± we shall mention this

later ± but for nuclei which are spherically symmetric, or nearly so, we can

assume the charge density depends only on the distance r from the centre

of the nucleus. Then, using the Dirac wave-equation for the electron,

d�=dÿ is in principle completely determined by �ch�r�, though the calcu-

lations are not trivial. The inverse problem, that of ®nding �ch�r� from a

knowledge of d�=dÿ, is even more dif®cult (see Problem 4.2). The

restricted amount of experimental information available means that, at

best, only a partial resolution of the problem can be made. Some idea of

the results of a direct inversion of scattering data is given by Fig. 4.2.

It has been more usual to assume a plausible shape for �ch�r�, describe
this by a simple mathematical expression involving a few parameters, and

then determine the parameters by ®tting to the scattering data. A form

which has been widely adopted is
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�ch�r� �
�0ch

1� e�rÿR�=a ; �4:1�

where the parameters to be determined are R and a, and �0ch is a normal-

isation constant chosen so that

Z
�ch�r�d3r � 4�

Z 1

0

�ch�r�r2dr � Z:

It should be stressed that the choice of this expression has no fundamental

signi®cance, it just conveniently describes a charge distribution which

extends almost uniformly from the centre of the nucleus to a distance

R, and falls to zero over a well-de®ned surface region of thickness � a.

This picture is consistent with the results of direct inversion.
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Fig. 4.1 Experimental elastic electron-scattering differential cross-section from

gold 197
79Au at energies of 126 MeV and 183 MeV. The ®tted curves are calculated

with an assumed charge distribution of the form given by equation (4.1), with

R � 6:63 fm, a � 0:45 fm. The cross-section to be expected, at 126 MeV, if the

gold nucleus had a point charge is shown for comparison. (Data and theoretical

curves taken from Hofstadter, R. (1963), Electron Scattering and Nuclear and

Nucleon Structure, New York: Benjamin.)



In Fig. 4.3 we show nuclear charge distributions for a light �168O�, a
medium �10947Ag� and a heavy �20882Pb� nucleus obtained from experimental

scattering data, using this parametrisation of the charge density. The

corresponding values of R and a are given in Table 4.1.

As the examples in the table indicate, it appears that there is a well-

de®ned `surface region' which has much the same width for all nuclei,

even light ones.

4.2 Muon interactions

The negative muon is another leptonic probe of nuclear charge. Its prop-

erties, other than its mass of m� � 207 me and its mean life of
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Fig. 4.2 The electric charge density of 208
82Pb from a model-independent analysis

of electron scattering data. The bars indicate the uncertainty. (Friar, J. L. &

Negele, J. W. (1973), Nucl. Phys. A212, 93.)

Table 4.1. Nuclear radii (R) and nuclear surface widths (a)

Nucleus

R

(fm)

a

(fm)

R=A
1
3

(fm)

16
8O 2.61 0.513 1.04
109
47Ag 5.33 0.523 1.12
208
82Pb 6.65 0.526 1.12



2:2� 10ÿ6 s, are similar to those of the electron. However, the radius of

its lowest Bohr orbit in an atom of charge Z is �4�"0� »2=m�Ze
2, and this

is smaller than the corresponding electron orbit by a factor �me=m��. For
Z � 50 the radius is only 5 fm. Hence the wave-functions of the lowest

muonic states will lie to a considerable extent within the distribution of

nuclear charge, particularly in heavy nuclei, and the energies of these

states will therefore depend on the details of the nuclear charge distribu-

tion.

Experimentally, negative muons are produced in the target material

by the decay of a beam of negative pions, and are eventually captured in

outer atomic orbitals. Before they decay, many muons fall into lower

orbits, emitting X-rays in the transitions. The measured energies of

these X-rays may be compared with those calculated with various choices

of parameters for �ch�r�. Values of R and a, found in this way, agree well

with results from electron scattering.

4.3 The distribution of nuclear matter in nuclei

From the distribution of charge in a nucleus, which as we have seen can

be determined by experiment, we can form some idea of the distribution
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Fig. 4.3 The electric charge density of three nuclei as ®tted by

�ch�r� � �0ch=�1� exp��rÿ R�=a��. The parameters are taken from the compila-

tion in Barrett, R. C. & Jackson, D. F. (1977), Nuclear Sizes and Structure,

Oxford: Clarendon Press.



of nuclear matter. If the proton were a point object, we could identify the

proton number density �p�r� with �ch�r�. Since the strong nuclear forces

which bind nucleons together are charge independent and of short range,

we can assume that to a good approximation the ratio of neutron density

�n to proton density �p is the same at all points in a nucleus, i.e.

�n�r�=�p�r� � N=Z. Then the total density of nucleons � � �n � �p can

be expressed as � � �A=Z��ch, where A � N � Z. The resulting nuclear

matter densities for the same nuclei we took in Fig. 4.3 are plotted in Fig.

4.4. These densities are only approximate, since we have neglected the

®nite size of both proton and neutron and the effect of Coulomb forces,

but they indicate that at the centre of a nucleus the nuclear matter density

� is roughly the same for all nuclei. It increases with A, but appears to

tend to a limiting value �0 of about 0.17 nucleons fmÿ3 for large A. The

existence of this limiting value �0, known as the `density of nuclear mat-

ter', is an important result. Consistently with this, we ®nd (Table 4.1),

that the `radius' R of a nucleus is very closely proportional to A
1
3, and,

approximately, �4�=3�R3�0 � A. We shall take

�0 � 0:17 nucleons fmÿ3 �4:2�
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which implies

R � 1:12 A
1
3 fm:

4.4 The masses and binding energies of nuclei in their ground
states

It thus appears that a nucleus is rather like a spherical drop of liquid, of

nearly uniform density. How are we to understand its properties? A

nucleus is a quantum-mechanical system. We shall see later that its

excited states are generally separated by energies � 1 keV or more from

its ground state, so that to all intents and purposes nuclei in matter at

temperatures that are accessible on Earth are in their ground states. Like

any other ®nite system, a nucleus in its ground state has a well-de®ned

energy and a well-de®ned angular momentum. In this chapter we shall be

concerned with the ground-state energy. Other ground-state properties of

a nucleus will be discussed in the next chapter.

Since a nucleus is a bound system, an energy B�Z;N� is needed to pull

it completely apart into its Z protons and N neutrons. From the Einstein

relation between mass and energy, the binding energy B�Z;N� is related to

the mass mnuc�Z;N� of the nucleus by

mnuc�Z;N� � Zmp �Nmn ÿ B�Z;N�=c2; �4:3�

and B�Z;N� must be positive for the nucleus to be formed. We shall see

that nuclear binding energies are of the order of 1% of the rest-mass

energy mnucc
2.

Experimentally, the masses of atomic ions, rather than the masses of

bare nuclei, are the quantities usually measured directly. If ma�Z;N� is the
mass of the neutral atom,

ma�Z;N� � Z�mp �me� �Nmn ÿ B�Z;N�=c2 ÿ belectronic=c
2;

�4:4�

where belectronic is the binding energy of the atomic electrons. These elec-

tronic contributions are, for many purposes, negligible. (The simple

Thomas±Fermi statistical model of a neutral atom gives the total electro-

nic binding energy � 20:8Z
7
3 eV.)

Atomic masses are known very accurately, and published tables give

atomic masses rather than nuclear masses. Measurements in `mass spec-
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trometers' depend on the de¯ection of charged ions in electric and mag-

netic ®elds. Instruments of great ingenuity have been developed, giving

relative masses accurate to about one part in 107. The unit employed is

the atomic mass unit, which is de®ned to be 1
12

of the mass of the neutral
12C atom:

1 amu � 931:494 32� 0:000 28 MeV=c2:

Differences between the masses of stable atoms and unstable, radio-

active, atoms (for which mass spectrometers may be inappropriate) can

be determined by measuring the energy release in the unstable atom

decay, again using the Einstein mass±energy relation.

Table 4.2 shows the experimental binding energies for some of the

lighter nuclei, those formed by successively adding a proton followed by a

neutron to an original neutron. Note that all the binding energies are

positive: this re¯ects the basic long-range attraction of the nucleon±

nucleon interaction.

Also given in the table is the average binding energy per nucleon,

B�Z;N�=A. For the heavier nuclei in the table, the average binding energy

appears to be gradually increasing to around 8 MeV, but the numbers

¯uctuate somewhat from nucleus to nucleus. The ¯uctuation is more

dramatically exhibited in the binding energy difference between a nucleus

and the one preceding it, also shown in the table. This energy can be

interpreted as the binding energy of the last nucleon added to the nucleus

in the given sequence. It is particularly large for the `even±even' nuclei
4
2He, 8

4Be,
12
6C and 16

8O, and particularly small for the nuclei immediately

following, growing steadily as the next three nucleons are added to form

the next even±even nucleus. Clearly we see here some extra binding

energy associated with neutron±neutron and proton±proton pairing.

The effect stems from the attractive character of the nucleon±nucleon

interaction, and is associated with the pairing of angular momenta

which will be discussed in Chapter 5. Table 4.2 also gives the spins and

parities of the nuclei for later reference; it will be seen that the even±even

nuclei have spin zero.

As we shall see in Chapter 6, because of its low mass, low electric

charge, and relatively large binding energy, the ®rst even±even nucleus
4
2He is particularly important in the nuclear physics of heavy nuclei.

Indeed, 4
2He played an important role in the early history of nuclear

physics and before it was properly identi®ed it was given a special

name, the �-particle, a name still in use today.
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Some of the large binding energies of the nuclei 42He, 126C and 16
8O can

be associated with their `shell structure', which will be discussed in

Chapter 5. As for 8
4Be, its binding energy is less than that of two �-

particles by 0.1 MeV, and so the nucleus 8
4Be is unstable. It does have a

transient existence for a long time compared with the `nuclear time-scale'

(}5.2), but if it is formed it will eventually fall apart into two �-particles.

Another interesting special case in Table 4.2 is that of 5
2He. The

binding energy of the last nucleon is here negative; if 5
2He is formed it,

too, has only a transient existence before falling apart into a neutron and

an �-particle. The other nuclei in Table 4.2 are all stable.

4.5 The semi-empirical mass formula

The features of `pairing energies' and shell-structure effects, superposed

on a slowly varying binding energy per nucleon, can be discerned

throughout the range of nuclei for which data are available. We saw in
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Table 4.2. Energies of some light nuclei

Nucleus

Binding

energy

(MeV)

Binding

energy of

last nucleon

(MeV)

Binding

energy per

nucleon

(MeV)

Spin and

parity

2
1H 2.22 2.2 1.1 1�
3
2H 8.48 6.3 2.8 1

2

�
4
2He 28.30 19.8 7.1 0�
5
2He 27.34 ÿ1:0 5.5 3

2

ÿ
6
3Li 31.99 4.7 5.3 1�
7
3Li 39.25 7.3 5.6 3

2

ÿ
8
4Be 56.50 17.3 7.1 0�
9
4Be 58.16 1.7 6.5 3

2

ÿ
10
5B 64.75 6.6 6.5 3�
11
5B 76.21 11.5 6.9 3

2

ÿ
12
6C 92.16 16.0 7.7 0�
13
6C 97.11 5.0 7.5 1

2

ÿ
14
7N 104.66 7.6 7.5 1�
15
7N 115.49 10.8 7.7 1

2

ÿ
16
8O 127.62 12.1 8.0 0�
17
8O 131.76 4.1 7.8 5

2

�



}4.3 that the density of nuclear matter is approximately constant, and also

that nuclei have a well-de®ned surface region. It appears as if a nucleus

behaves in some ways rather like a drop of liquid. This analogy is made

more precise in the `semi-empirical mass formula', a remarkable formula

which, with just a few parameters, ®ts the binding energies of all but the

lightest nuclei to a high degree of accuracy. There are several versions of

the mass formula. The one which is suf®ciently accurate for the purposes

of this book gives for the total binding energy of a nucleus of A nucleons,

made up of Z protons and N neutrons,

B�N;Z� � aAÿ bA
2
3 ÿ s

�N ÿ Z�2
A

ÿ dZ2

A
1
3

ÿ �

A
1
2

: �4:5�

The parameters a, b, s, d and � are found by ®tting the formula to

measured binding energies. Wapstra (Handbuch der Physik, XXXVIII/

1) gives

a = 15.835 MeV

b = 18.33 MeV

s = 23.20 MeV

d = 0.714 MeV

and

+11.2 MeV for odd±odd nuclei (i.e., odd N, odd Z)

� =

(
0 for even±odd nuclei (even N odd Z, or even Z, odd N)

ÿ11.2 MeV for even±even nuclei (even N, even Z).

It is the ®rst two terms in this formula which have an analogue in the

theory of liquids. The term �aA� represents a constant bulk-binding

energy per nucleon, like the cohesive energy of a simple liquid. The sec-

ond term represents a surface energy, in particular the surface energy of a

sphere. The surface area of a sphere is proportional to the two-thirds

power of its volume and hence, at constant density of nucleons, to A
2
3.

As in a liquid, this term subtracts from the bulk binding since the particles

in the surface are not in the completely enclosed environment of those in

the bulk. In liquids this term is identi®ed with the energy of surface

tension, and is responsible for drops of liquid being approximately sphe-

rical when gravitational effects are small. In nuclei, gravitational effects

are always small, and indeed nuclei do tend to be spherical.

The term ÿdZ2=A
1
3, called the Coulomb term, also has a simple

explanation; it is the electrostatic energy of the nuclear charge distribu-
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tion. If the nucleus were a uniformly charged sphere of radius R0A
1
3

(equation (4.2)) and total charge Ze, it would have energy

Ec �
3

5

�Ze�2
�4�"0�R0A

1
3

_ �4:6�

With R0 � 1:12 fm this gives an estimate of d, d � 0:78 MeV, close to the

value found empirically.

The term ÿs�N ÿ Z�2=A is the simplest expression which, by itself,

would give the maximum binding energy, for ®xed A, when N � Z (A

even) or N � Z � 1 (A odd). It is called the symmetry energy, since it

tends to make nuclei symmetric in the number of neutrons and pro-

tons. As was exempli®ed in the case of the deuteron discussed in

Chapter 3, the average neutron±proton attraction in a nucleus is

greater than the average neutron±neutron or proton±proton attraction,

essentially as a consequence of the Pauli exclusion principle. Thus for a

given A it is energetically advantageous to maximise the number of

neutron±proton pairs which can interact: this is achieved by making Z

and N as near equal as possible. Since the forces are short range, the

term must correspond to a `bulk' effect, like the cohesive energy.

Hence there must be a factor A in the denominator, so that overall

the term is proportional to A for a ®xed ratio of neutrons to protons.

One can also argue (see Problem 5.2) that the kinetic energy contribu-

tion to the energy results in a similar term, which is absorbed in the

coef®cient s.

The ®nal term in the semi-empirical mass formula is the pairing

energy �=A
1
2, manifest in the light nuclei included in Table 4.2. It is purely

phenomenological in form and the Aÿ1
2 dependence is empirical. For the

larger nuclei the pairing energy is small but, as we shall see, it does give

rise to important physical effects.

More sophisticated versions of the formula include also `shell struc-

ture' effects (Chapter 5), but for nuclei heavier than neon �A � 20� for
which our formula is appropriate these extra terms are of less signi®cance

than the ®ve terms of equation (4.5).

We have in the semi-empirical mass formula a description and an

understanding of the binding energies of the nuclei. We shall see that it

gives a simple but profound explanation of the masses of the chemical

elements and of why there is only a ®nite number of stable atoms in

chemistry.
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4.6 The ÿ-stability valley

Using equations (4.3) and (4.5), the mass of the neutral atom with its

nucleus having Z protons and N neutrons is given by

ma�N;Z�c2 � �Nmn � Z�mp �me��c2 ÿ aA� bA
2
3 � dZ2

A
1
3

� s�N ÿ Z�2
A

� �

A
1
2

;

�4:7�

(neglecting the electron binding energies).

For a ®xed number of nucleons A, we can write this as a function of

Z, replacing N by Aÿ Z:

ma�A;Z�c2 � �Amnc
2 ÿ aA� bA

2
3 � sA� �Aÿ1

2�
ÿ �4s� �mn ÿmp ÿme�c2�Z � �4sAÿ1 � dAÿ1

3�Z2

� �ÿ ÿZ � þZ2; say:

�4:8�

Consider ®rst the case A odd, so that � � 0. The plot of ma�A;Z� against
Z is a parabola, with a minimum at

Z � ÿ=2þ � �4s� �mn ÿmp ÿme�c2�A
2�4s� dA

2
3� : �4:9�

Thus the atom with the lowest rest-mass energy for given A has Z equal

to the integer Zmin closest to ÿ=2þ. From the form of the expression (4.9)

and the values of the parameters, it is evident that Zmin 4 A=2, so that

N 5 Z for this nucleus.

Now ÿ-decay, described in }3.5, is a process whereby the Z of a

nucleus changes while A remains ®xed, if the process is energetically

allowed. Thus if a nucleus has Z < Zmin the process

�A;Z� ! �A;Z � 1� � eÿ � ��e

is possible if

mnuc�A;Z� > mnuc�A;Z � 1� �me; �4:10�
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since the mass of the anti-neutrino (if indeed it has mass) is exceedingly

small. Adding Zme to each side of this inequality, the condition may be

written in terms of atomic masses:

ma�A;Z� > ma�A;Z � 1�: �4:11�

More precisely, conditions (4.10) and (4.11) differ by a few (electron

volts)/c2, associated with the electronic binding energy differences, and

since ÿ-decay usually takes place in an atomic environment (4.11) is the

more suitable form. The energy released in nuclear ÿ-decay is never large

enough to produce particles other than electrons or positrons, and neu-

trinos.

As an example, 7732Ge decays by a series of ÿ-decays to 77
34Se, Z increas-

ing by one at each stage:

77
32Ge ! 77

33As� eÿ � ��e � 2:75 MeV

#
77
34Se� eÿ � ��e � 0:68 MeV:

77
34Se is the only stable nucleus with A � 77.

A nucleus with Z > Zmin can decay by emitting a positron and a

neutrino. For example, another sequence of decays ending in 77
34Se is:

77
36Kr ! 77

35Br� e� � �e � 2:89 MeV

#
77
34Se� e� � �e � 1:36 MeV:

For the process of ÿ-decay by positron emission to be possible the con-

dition is

mnuc�A;Z� > mnuc�A;Z ÿ 1� �me;

or, in terms of atomic masses,

ma�A;Z� > ma�A;Z ÿ 1� � 2me: �4:12�

In an atomic environment, a ÿ-decay process competing with posi-

tron emission is electron capture, in which the nucleus absorbs one of its

cloud of atomic electrons, emitting only a neutrino. For example,
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77
35Br� eÿ !77

34 Se� �e � 2:38 MeV:

Such processes are often referred to as K-capture, since the electron is

most likely to come from the innermost `K-shell' of atomic electrons. The

condition for K-capture to be possible is less restrictive than (4.12):

mnuc�A;Z� �me > mnuc�A;Z ÿ 1� � be=c
2;

where the main contribution to the electronic energy be is the binding

energy of the K electron, or

ma�A;Z� > m�
a�A;Z ÿ 1�; �4:13�

where m�
a is the mass of the excited atom. For example, 74Be decays by K-

capture:

7
4Be� eÿ ! 7

3Li� �e � 0:86 MeV;

whereas it cannot decay by positron emission. When both processes are

possible, the energy release in K-capture will be 2mec
2 � 1 MeV greater

than in the corresponding positron emission.

The vacancy in the atomic K-shell will be ®lled by an electron falling

from a less bound atomic shell. The energy released in this transition will

appear either in the emission of a photon (X-ray), or in the ejection from

the atom of an Auger electron, usually from the L-shell. The latter process

results from the Coulomb interaction between the electrons.

Thus odd-A nuclei decay to the value of Z closest to ÿ=2þ. It is clearly

highly unlikely that there will be two values of Z giving exactly the same

atomic masses; we expect there to be only one ÿ-stable Z value for odd-A

nuclei, and such is the case.

Nuclei with even A must have Z and N both even numbers, or Z and

N both odd numbers. In the semi-empirical mass formula, the even±even

nuclei have a lower energy than the odd±odd nuclei by 2�Aÿ1
2. This quan-

tity varies from 5 MeV when A � 20 to 1.4 MeV when A � 250. Thus

there are two mass parabolas with relative vertical displacement 2�Aÿ1
2=c2,

as in Fig. 4.5, for each even value of A.

In Fig. 4.5 the values Z � 28 and Z � 30 on the lower even±even

parabola may both be regarded as effectively stable with respect to ÿ-

decay. In this particular example the only energetically possible ÿ-decay

process linking the two would be the `double K-capture'
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64
30Zn� 2eÿ !64

28Ni� 2�e � 1:1 MeV:

This decay has not been observed though it is theoretically possible.

Processes with the simultaneous emission of two electrons or two

positrons, or the simultaneous absorption of two electrons, have been

much investigated, both experimentally and theoretically. Experi-

mentally, the ®rst direct laboratory observation of such a process was

made in 1987, with the double ÿ-decay

82
34Se !82

36Kr� 2eÿ � 2 ��e � 3:03 MeV:

The mean lifetime for this decay was measured to be � 1:6� 1020 yr.

Measurements of such long lifetimes are dif®cult (see Problem 4.10).

Several other double ÿ-decays have been observed since, all with lifetimes
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Fig. 4.5 The atomic masses of atoms with A � 64 relative to the atomic mass of
64
28Ni. Open circles * are odd±odd nuclei, ®lled circles * are even±even nuclei.

The theoretical even±even and odd±odd parabolas are drawn using the para-

meters of equation (4.5). Note the odd±odd nucleus 64
29Cu, which can ÿÿ-decay

to 64
30Zn or ÿ�-decay to 64

28Ni, both of which are stable, naturally occurring, iso-

topes. These decays are discussed in detail in Chapter 12.



similar in magnitude to that of 82Se. These measurements are in good

agreement with the theoretical estimates which have been made within the

Standard Model (}3.7). Much of the interest in double ÿ-decay measure-

ments stems from the possibility of observing other modes of ÿ-decay

which are predicted in certain extensions of the Standard Model.

Figure 4.5 is characteristic of nuclei with even A, and pairs of stable

nuclei with different (even) Z but the same A are common. The only odd±

odd nuclei which are stable are the four lightest: 2
1H, 6

3Li,
10
5B and 14

7N ±

but for A < 20 the semi-empirical mass formula is less accurate.

The nuclei which are observed to be ÿ-stable are plotted in Fig. 4.6 as

points in the �N;Z� plane. Nuclei of constant A lie on the diagonal lines

N � Z � A. The bottom of the `ÿ-stability valley' where the ÿ-stable

nuclei are found is given remarkably well by the approximation (equation

(4.9))

Z � ÿ=2þ � �4s� �mn ÿmp ÿme�c2�A
2�4s� dA

2
3� : �4:14�

4.7 The masses of the ÿ-stable nuclei

With the approximation Z � ÿ=2þ, the binding energies of the ÿ-stable

nuclei can be calculated from equation (4.5). For odd-A nuclei the pairing

energy term is zero, and the resulting binding energy per nucleon B�A�=A
is plotted against A in Fig. 4.7 and the various contributions to B�A�=A
are displayed in Fig. 4.8.

It should be noted that apart from pairing effects the bulk term is the

only positive contribution to the binding energy. The initial rise of B=A

with A is simply due to the negative surface contribution diminishing in

magnitude relative to the bulk contribution as the size of the nucleus

increases. However, as A and therefore Z increase further, the

Coulomb term becomes important and produces a maximum on the

curve.

The curve gives the observed nuclear-binding energies quite well. The

small deviations of the experimental values from the smooth curve are for

the most part due to the quantum-mechanical `shell' effects, which are

considered in the next chapter. The maximum binding energies lie in the

neighbourhood of 56Fe.
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Fig. 4.6 The ÿ-stability valley. Filled squares denote the stable nuclei and long-

lived nuclei occurring in nature. Neighbouring nuclei are unstable. Those for

which data on masses and mean lives are known ®ll the area bounded by the

lines. For the most part these unstable nuclei have been made arti®cially. (Data

taken from Chart of the Nuclides (1977), Schenectady: General Electric

Company.)



4.8 The energetics of �-decay and ®ssion

The peak in the binding energy curve makes possible other modes of

decay for a heavy nucleus which is stable against ÿ-decay. Since there is

a gradual decrease of �B=A� with A for the heavier nuclei, it may be

energetically advantageous for a heavy nucleus to split into two smaller

nuclei, which together have a greater net binding energy. The most com-

mon such process is the emission of an �-particle. As Table 4.2 shows,
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Fig. 4.7 The binding energy per nucleon of ÿ-stable (odd-A) nuclei. Note the

displaced origin. The smooth curve is from the semi-empirical mass formula with

Z related to A by equation (4.14). Experimental values for odd-A nuclei are

shown for comparison; the main deviations (<1%) are due to `shell' effects not

included in our formula.



4
2He has the comparatively large binding energy of 28.3 MeV. The con-

dition for �-emission to be possible from a nucleus �A;Z� to give a

nucleus �Aÿ 4;Z ÿ 2� is

B�A;Z� < B�Aÿ 4;Z ÿ 2� � 28:3 MeV: �4:15�

For �A;Z� on the line of ÿ-stability, this condition is always satis®ed for

suf®ciently large A, A0165, and all such nuclei are, in principle, able to

emit �-particles. However, we shall see in Chapter 6, where the physical

mechanism of �-decay is analysed, that decay rates are so slow that the ÿ-
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Fig. 4.8 The contributions to B=A. Note that the surface, asymmetry and

Coulomb terms all subtract from the bulk term.



stable nuclei can also be regarded as �-stable up to 209
83Bi. Beyond, only

some isotopes of Th and U are suf®ciently long-lived to have survived on

Earth since its formation; other unstable heavy elements are produced

either from the decay of these, or arti®cially.

Another energetically favourable process which is possible when A is

large is the splitting of a nucleus into two more nearly equal parts. This is

called ®ssion. The energetics of ®ssion may be explored using the semi-

empirical mass formula, and in Chapter 6 we shall investigate the rate of

spontaneous ®ssion processes.

Beyond the heavy elements of the actinide group, �-decay and ®ssion

bring the Periodic Table to an end.

4.9 Nuclear binding and the nucleon±nucleon potential

To what extent do the nuclear properties discussed in this chapter follow

from the nucleon±nucleon potential introduced in Chapter 3? Much the-

oretical effort has been expended on this question. In a nucleus contain-

ing three or more nucleons, the nuclear potential energy need not be the

simple sum of two-body potentials over all pairs of nucleons: since the

nucleons are composite particles, there may well be additional interac-

tions.

Even if the possibility of additional interactions is not considered, the

computations are not easy but it appears that the two-body potentials are

the dominant contribution to the nuclear potential energy. For `bulk'

nuclear matter the Paris potential gives a value of 16 MeV/nucleon for

the binding energy per nucleon, in good agreement with values found for

the parameter a in the semi-empirical mass formula (4.5). However, the

calculated density of nuclear matter is somewhat too high. The Paris

potential gives 0.94 fm rather than the empirical 1.12 fm for the para-

meter in (4.2).

Similar semi-quantitative agreement is found when the two-nucleon

potential is applied to particular light nuclei. For example, the binding

energy of 3
1H is calculated to be 7.38 MeV, and the experimental value

(Table 4.2) is 8.48 MeV.

Problems

4.1 A relativistic electron whose rest mass can be neglected has energy E. It

scatters elastically from a particle of mass M at rest and after the colli-

sion has turned through an angle � and has energy E 0.
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(a) Show that the total energy of the struck particle after the collision is

EM � E ÿ E 0 �Mc2.

(b) Show that its momentum is

PM � �E2 � E 02 ÿ 2EE 0 cos ��12=c.

(c) Hence (using E2
M � P2

Mc2 �M2c4� show that the fraction of energy lost

by the electron is

E ÿ E 0

E
� 1

1�Mc2=�E�1ÿ cos ��� :

For E � a few hundred MeV, show that this is small if the struck particle

is a heavy nucleus, and is large (except for � � 0) if the struck particle is

an electron.

4.2 In quantum mechanics, the differential cross-section for the elastic scat-

tering of a relativistic electron with energy E 4 mec
2 from a ®xed elec-

trostatic potential �c�r� is given in the Born approximation, and

neglecting the effects of electron spin, by

d�

dÿ
� E

2�

� �2
1

»c

� �4

e

Z
�c�r�e iq�rd3r

� �2

where q is the difference between the ®nal and the initial wave-vectors of

the electron.

(a) Show that q � jqj � �2E=»c� sin��=2�, where � is the scattering angle.

(b) Poisson's equation relates the potential �c�r� to the charge density e�ch�r�
by r2�c � ÿe�ch="0. Noting r2e iq�r � ÿq2e iq�r, and integrating by parts,

show that

d�

dÿ
� E

2�

� �2
1

»c

� �4
1

q4
e2

"0

Z
�ch�r�eiq�rd3r

ÿ !2

:

For light nuclei (for which the Born approximation has a greater valid-

ity) a measured cross-section can be used to infer the Fourier transform

of the charge distribution, as this example indicates.

4.3 Show that the characteristic velocity v of a lepton of mass m bound in an

atomic orbit is given by v=c � »=amc � 1
137, where a � �4�"0� »2=me2 is

the appropriate Bohr radius for that lepton. Hence show that the muon

mean life is long compared with the characteristic time scale a=v for its

motion in an atomic orbit.

4.4 The ground-state wave-function of a lepton of mass m in a Coulomb

potential ÿZe2=�4�"0r� is
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ý�r� � 1

�
p Z

a

� �3
2

eÿZr=a

where a � �4�"0� »2=me2, and the corresponding binding energy E is

Z2 »2=2ma2.

The ®nite size of the nucleus modi®es the Coulomb energy for r < R,

the nuclear radius, by adding a term of the approximate form

V�r� � ÿ Ze2

4�"0R

3

2
ÿ r2

2R2
ÿ R

r

" #
:

(a) Show that the volume integral of this potential is

Z
V�r�d3r � Ze2R2

10"0
:

(b) Show that the ®rst-order correction to the binding energy due to this

term, �E � R
ý��r�V�r�ý�r�d3r, is

�E � e2

10�"0

Z4R2

a3
:

(Note that the lepton wave-function can be taken to be constant over

nuclear dimensions.)

(c) For the nucleus 66
30Zn show that

�E

E
� 5� 10ÿ6 for electrons,

�E

E
� 0:2 for muons.

4.5 Using Table 4.2 show that 8
4Be can decay to two �-particles with an

energy release of 0.1 MeV, but that 12
6C cannot decay to three �-parti-

cles. Show that the energy released (including the energy of the photon)

in the reaction 2
1H� 4

2He ! 6
3Li� þ is 1.5 MeV.

4.6 Consider nuclei with small nucleon number A and such that

Z � N � A=2. Neglecting the pairing term, show that the semi-empirical

mass formula then gives the binding energy per nucleon

B=A � aÿ bAÿ1
3 ÿ �d=4�A2

3:

Show that this expression reaches a maximum for Z � A=2 � 26 (iron).

4.7 Using the formula (4.14) calculate Z for A � 100 and A � 200. Compare

your results with Fig. 4.6 and comment.
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4.8 The carbon isotope 14
6C is produced in nuclear reactions of cosmic rays

in the atmosphere. It is ÿ-unstable.

14
6C ! 14

7N� eÿ � ��e � 0:156 MeV,

with a mean life of 8270 years.

It is found that a gram of carbon, newly extracted from the atmo-

sphere, gives on average 15.3 such radioactive decays per minute. What

is the proportion of 14C isotope in the carbon?

What count rate would you expect from one gram of carbon extracted

from the remains of a wooden hut thought to be 4000 years old?

4.9 In an experiment using 14 g of selenium containing 97% by weight of
82
34Se, 35 events associated with the double ÿ-decay

82
34Se ! 82

36Kr� 2eÿ � 2 ��e

were counted over a period of 7960 hours. Assuming a detector ef®-

ciency of 6.2%, estimate the mean life for this decay.

(See Elliott, S. R., Haln, A. A. and Moe, M. K. (1987), Phys. Rev. Lett.

59, 2020.)

4.10 If a double ÿ-decay without the emission of neutrinos were possible,

what would be its experimental signature?

4.11 On the basis of the different properties of nuclei with even A and with

odd A, explain why there are about 300 ÿ-stable nuclei with masses up to

that of 209
83Bi. What is the average number of isotopes per element?
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5

Ground-state properties of nuclei:
the shell model

5.1 Nuclear potential wells

In the last chapter, we set out a semi-empirical theory for the binding

energy of an atomic nucleus, and quantum-mechanical considerations

came in only rather indirectly. Experimental atomic masses show devia-

tions from the smooth curve given by the semi-empirical mass formula,

deviations which we said were of quantum-mechanical origin. Since a

nucleus in its ground state is a quantum system of ®nite size, it has

angular momentum J, with quantum number j which is some integral

multiple of 1
2. If j 6� 0 the nucleus will have a magnetic dipole moment,

and it may have an electric quadrupole moment as well.

The nuclear angular momentum and magnetic moment manifest

themselves most immediately in atomic spectroscopy, where the interac-

tion between the nuclear magnetic moment and the electron magnetic

moments gives rise to the hyper®ne structures of the electronic energy

levels. In favourable cases both j and the magnetic moment may be

deduced from this hyper®ne splitting.

The observed values of nuclear angular momenta give strong support

to the validity of a simple quantum-mechanical model of the nucleus: the

nuclear shell model. In this model, each neutron moves independently in a

common potential well that is the spherical average of the nuclear poten-

tial produced by all the other nucleons, and each proton moves indepen-

dently in a common potential well that is the spherical average of the

nuclear potential of all the other nucleons, together with the Coulomb

potential of the other protons. Since the nuclear forces are of short range

we can guess that the shape of such an average nuclear potential will
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re¯ect the nuclear density exhibited in Fig. 4.4. In particular it will be

uniform in the central region and rise steeply in the surface region.

Indeed, we can anticipate that the steep rise will be even more pro-

nounced than the fall in nuclear density, since tunnelling into the classi-

cally forbidden region will make the nuclear density near the surface more

diffuse. Thus the potential wells for neutrons and protons will be, quali-

tatively, as sketched in Fig. 5.1(a) and Fig. 5.1(b).

In order to model the effect of proton charge, we have added to the

proton well the Coulomb potential energy Uc�r� of a proton in a sphere of

uniform charge density and total charge �Z ÿ 1�e, corresponding to a

uniform distribution of the other �Z ÿ 1� protons. (Such a charge distri-

bution gave an energy which agreed well with the empirical Coulomb

contribution in the mass formula.) Elementary electrostatics gives

Uc�r� �
�Z ÿ 1�e2
4�"0R

3

2
ÿ r2

2R2

" #
; r < R;

�Z ÿ 1�e2
4�"0r

; r > R;

8>>><
>>>:

�5:1�

where R is the nuclear radius.

Since the basic nucleon±nucleon interaction is state-dependent, there

are other factors which affect the relative depths of the neutron and

proton wells. For nuclei with more neutrons than protons the contribu-

tion of the strong nucleon±nucleon interaction to the potential is more
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Fig. 5.1 A schematic representation of (a) the neutron potential well and (b)

the proton potential well for the nucleus 208
82Pb. EF

n and �EF
P ÿ �U� have been

estimated using equation (5.5). The observed neutron separation energy Sn of

7.4 MeV implies a neutron well-depth of 51 MeV. The observed proton separa-

tion energy Sp of 8.9 MeV implies that �U � 11 MeV. �U represents the sum of the

mean electrostatic potential and the asymmetry energy.



attractive for the protons than for the neutrons, since a proton in such a

nucleus is, on average, more subject to the neutron±proton interaction

(recall the discussion of symmetry energy in }4.5). This lowers the proton
well-depth relative to Uc�r�, as is indicated in Fig. 5.1(b) (which is drawn

with parameters appropriate to 208
82Pb). The nuclear shell model treats all

these effects empirically.

5.2 Estimates of nucleon energies

Let us, for the moment, disregard the details of the nuclear potential at

the surface, and replace it by a potential with in®nitely high walls at

r � R, which force the nucleon wave-functions to be zero at, and outside,

r � R. We measure energies from the bottom of the neutron well, and for

simplicity take the proton well to be raised with respect to the neutron

well by a constant energy �U. This �U represents the mean electrostatic

potential and any asymmetry contributions to the proton potential well.

Then the SchroÈ dinger equations for the neutron states þn and proton

states þp are respectively

ÿ »2

2mn

r2þn � Enþn; �5:2�

ÿ »2

2mp

r2þp � �Ep ÿ �U�þp; �5:3�

where any terms involving the intrinsic spin of the nucleons have been

neglected.

Nucleons are fermions, and the Pauli exclusion principle requires that

no two neutrons nor two protons are in the same state. Hence in the shell

model of the ground state of a nucleus with N neutrons and Z protons,

the lowest N neutron states are occupied up to some energy EF
n , called the

neutron Fermi energy, and the lowest Z proton states are occupied up to

some energy EF
p , the proton Fermi energy. To obtain a qualitative esti-

mate of the energies involved, we suppose that N and Z are suf®ciently

large for us to use the elementary formula for the integrated density of

states N�E�, derived in Appendix B,

N�E� � V

3�2

2mE

»2

� �3
2

; �5:4�
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where V is the volume of the system considered, in this case the nuclear

volume V � 4�R3=3. Hence EF
n and EF

p are given by

N � V

3�2

2mnE
F
n

»2

ÿ !3
2

; Z � V

3�2

2mp�EF
p ÿ �U�
»2

ÿ !3
2

; �5:5�

since proton kinetic energies are given by �Ep ÿ �U�.
In lighter nuclei, A940, the number of neutrons and protons is

approximately equal, so that N=V is close to half the `density of nuclear

matter' given by equation (4.2), i.e. N=V � 0:085 fmÿ3. For this density,

equation (5.5) gives EF
n � 38 MeV, irrespective of the particular nucleus.

For heavier nuclei, this ®gure will increase somewhat, but for energies of

this order the corresponding neutron velocities are quite low: v2F=c
2 � 0:1.

This gives some justi®cation for our use of the non-relativistic

SchroÈ dinger equation for the neutrons. Similarly, a proton at the Fermi

energy EF
p has kinetic energy �EF

p ÿ �U� � 38 MeV also.

Similar energies are to be expected in more realistic potentials of ®nite

depth. In a ®nite well, the depth of EF
n below the external potential out-

side the nucleus is equal to the energy required to detach a neutron from

the nucleus. This energy, the neutron separation energy Sn, is given in

terms of binding energies by

Sn�N;Z� � B�N;Z� ÿ B�N ÿ 1;Z�; �5:6�

and hence is of the order of the binding energy per nucleon, about 8 MeV

(Fig. 4.7, see also Table 4.2). Thus the total depth of the neutron well is

� 46 MeV.

Similarly the proton separation energy is de®ned by

Sp�N;Z� � B�N;Z� ÿ B�N;Z ÿ 1�:

The most stable nucleus of a given mass number A � N � Z will have

the neutron and proton Fermi energies approximately equal: if they were

to differ in energy by more than �(mec
2� energy level spacing), the

nucleus would be unstable to ÿ-decay. A nucleon at the higher Fermi

energy would decay to an empty state just above the lower Fermi energy,

to form a new nucleus with different charge, and lower total energy. An

equivalent condition is that Sn and Sp must be approximately equal.

The characteristic velocity of a nucleon at the Fermi energy, and the

radius R of the nucleus, set a typical nuclear time scale tnuc:
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tnuc �
2R

vF
� 2:6� 10ÿ23 � A

1
3 s: �5:7�

5.3 Energy shells and angular momentum

To obtain more precise information about the nucleon levels we must

solve the SchroÈ dinger equations (5.2) and (5.3). For simplicity, we again

take the potential wells with in®nite walls. The SchroÈ dinger equations are

separable in �r; �; �� coordinates so that

þ�r; �; �� � ul�r�Ylm��; ��;

where l � 0; 1; 2; 3; . . . and m � ÿl;ÿl � 1; . . . ; l ÿ 1; l, are orbital angu-

lar momentum quantum numbers (Appendix C). States with l � 0; 1; 2;

3; 4; 5; . . . are called s, p, d, f, g, h, . . . states, the notation having been

established in the early days of atomic spectroscopy. Taking equation

(5.2) for neutrons (and the equation for protons differs only in the shift
�U in energy), the radial function ul�r� satis®es

ÿ»2

2mn

1

r

d2

dr2
�rul� �

»
2mn

l�l � 1�
r2

ul � Eul; �5:8�

with the boundary conditions that u�r� is ®nite at r � 0 and zero at r � R.

When l � 0 (s-states) we see immediately that the solutions ®nite at

r � 0 are

us�r� �
sin�kr�
kr

with E � »2k2

2mn

: �5:9�

The boundary condition at r � R is satis®ed by taking k � kn � n�=R,

where n � 1; 2; 3; . . ., and the corresponding energy levels 1s, 2s, 3s, . . .,

are given by

E�n; s� � »2

2mn

n�

R

� �2
: �5:10�

Thus there is a sequence of energy eigenstates having l � 0, labelled by

the additional quantum number n. When l � 1 (p-states) the SchroÈ dinger

equation is
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ÿ »2

2mn

1

r

d2

dr2
�rup� �

»2

mnr
2
up � Eup; �5:11�

and it is straightforward to check by differentiation that the solution

®nite at r � 0 is

up�r� �
sin�kr�
�kr�2 ÿ cos�kr�

�kr� ; E � »2

2mn

k2: �5:12�

We must again choose k so that up�R� � 0. Let us write kR � x. The

values of x for which up�R� � 0 are x1p � 4:49, x2p � 7:73; . . ., and the

corresponding energies are E�n; p� � � »2=2mn��xnp=R�2. It should be

noted that the labelling of energy levels, n � 1; 2; 3; . . ., for each l

value, differs from that conventionally adopted in atomic physics.

In fact us�r� and up�r� are special cases of the spherical Bessel functions
jl�kr�. For arbitrary l the zeros of jl�x�, which give the allowed values of k,

are tabulated in standard tables of mathematical functions, and given in

column (2) of Table 5.1. Thus for any l the levels E�n; l� � �»2=2m��xn1=
R�2 are easily determined, and hence their sequence in order of increasing

energy. This is given in columns (1) and (7) of Table 5.1. For each E�n; l�,
there are �2l � 1� allowed values of the quantum number m. Since we have

so far neglected any coupling between the intrinsic spin of a nucleon and

its orbital motion, each nucleon has two possible spin states, which may

be characterised by ms � 1
2
;ms � ÿ 1

2
, so that there are �4l � 2� states of

the same energy for a given �n; l�.
The sequence of the levels E�n; l� is not very sensitive to the precise

details of the well, and is much the same for a well of ®nite depth and

appropriately rounded shape. If N neutrons are put into the neutron well,

the ground state (which may be degenerate) will correspond to the occu-

pation of the N lowest lying energy states. Figure 5.2 expresses graphi-

cally the number of states available in terms of the dimensionless quantity

x � kR. N�x� is the number of states with energy less than � »2=2mn�
�x=R�2 or, equivalently, the number of zeros xnl with xnl < x, each zero

being counted �4l � 2� times. Also drawn is the asymptotic formula, valid

for large x,

N�x� � 4x3

9�
1ÿ 9�

8x

� �
� V

3�2

2mnE

»2

� �3
2

1ÿ 3�

8

S

V

»2

2mnE

ÿ !1
2

2
4

3
5:
�5:13�
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Table 5.1

xnl Neutron Proton

1s 3.14 1s1
2

2 2 1s1
2

1s

1p 4.49 1p3
2

6 6 1p3
2

1p

1p1
2

8 8 1p1
2

1d 5.76 1d5
2

14 14 1d5
2

1d

2s1
2

16 16 2s1
2

2s 6.28 1d3
2

20 2s

20 1d3
2

1f 6.99 1f7
2

28

2p3
2

32 28 1f7
2

2p 7.73 1f5
2

38 1f

2p1
2

40 32 2p3
2

1g 8.18 1g9
2

50 38 1f5
2

2p

2d5
2

56 40 2p1
2

2d 9.10 1g7
2

64

1h11
2

76 50 1g9
2

1h 9.36 3s1
2

78 1g

2d3
2

82 58 1g7
2

3s 9.42 2f7
2

90 64 2d5
2

1h9
2

100

2f 10.42 3p3
2

104 2d

1i 10.51 1i13
2

118 76 1h11
2

2f5
2

124 80 2d3
2

1h

3p 10.90 3p1
2

126 82 3s1
2

3s

2g9
2

136

1j 11.66 1i11
2

148 92 1h9
2

2g7
2

156 100 2f7
2

2g 11.70

The ®rst and last columns give the sequence of energy levels in a spherical well with in®nite

walls. The second column gives the corresponding values of xnl � knlR. The third column

gives the observed sequence of spin±orbit coupled levels for neutrons, and the fourth the

cumulative number of available states in these levels. The remaining two columns give the

levels and number of states for protons. The spacings are chosen so that the ®lling of the

neutron and proton shells for stable nuclei is approximately in step down the columns. Lines

are drawn at the `magic numbers'.



This is an extension of the usual density of states formula we used in

equation (5.4) and includes a correction for the effects of the surface (of

area S). It follows the exact N�x� remarkably closely.

So far we have neglected spin. The crucial step in establishing the

nuclear shell model was the recognition that there must also be a spin±

orbit coupling term in the self-consistent potential seen by the nucleons, of

the form

Uso�r�L � s: �5:14�

A term like this is not perhaps too surprising since in the basic nucleon±

nucleon interaction, equation (3.4), there is coupling between the spins

and the orbital motions of the nucleons.

With the introduction of this spin±orbit coupling term into the poten-

tial, L2 and s2 are still conserved since

�L2;L � s� � 0; �s2;L � s� � 0; �5:15�
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Fig. 5.2 The exact N�x� compared with the asymptotic formula of equation

(5.13). (See Baltes, H. P. and Hilf, E. R. (1976), Spectra of Finite Systems, for

the derivation of (5.13).)



so that l and s�� 1
2
� remain good quantum numbers, but m and ms, are

`good quantum numbers' no longer, since

�Lz;L � s� 6� 0; �ms;L � s� 6� 0: �5:16�

Thus the magnitudes, but not the directions, of L and s are preserved.

However, the total angular momentum J � L� s is of course conserved,

so that states may be speci®ed by the quantum numbers �l; s; j; jz�. In
Appendix C it is shown that for a given l and s � 1

2
, the allowed values

of j are: l � 1
2
, with �2�l � 1

2
� � 1� � 2l � 2 allowed values of jz; and l ÿ 1

2
,

with �2�l ÿ 1
2
� � 1� � 2l allowed values of jz. The parity of the state speci-

®ed by �l; s; l � 1
2
; jz� is �ÿ1�l .

The expectation value of L � s may be obtained from the identity

L � s � 1
2 ��L� s�2 ÿ L2 ÿ s2� � 1

2 �J2 ÿ L2 ÿ s2�; �5:17�

so that

�l; s; j; jzjL � sjl; s; j; jz� � 1
2
� j� j � 1� ÿ l�l � 1� ÿ s�s� 1�� »2

�
1
2
l»2 if j � l � 1

2

ÿ1
2
�l � 1� »2 if j � 1ÿ 1

2
:

(

�5:18�

Thus the introduction of spin±orbit coupling splits the �4l � 2�-fold
degenerate level �n; l� into two levels which we may label by nll�1

2
, nllÿ1

2
.

For example, when l � 2 (d-states),

nd (10 states) ! nd5
2
(6 states) and nd3

2
(4 states):

Experiment shows that the sign of Uso�r� is negative so that the state

with j � l � 1
2
always has lower energy than the state with j � l ÿ 1

2
.

Equation (5.18) suggests that the energy splitting increases with l, though

of course the form of the radial function is also relevant in the calculation

of the energy levels. The splitting is great enough to change the orbital

sequence of columns (1) and (7) of Table 5.1. This effect is most apparent

in the heavier nuclei, where because of increasing R the orbital levels are

closer together in energy than in the lighter nuclei.

The sequence of `shells' inferred from experiment is shown in columns

(3) and (6) for neutrons and protons respectively. The shift of the proton
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column relative to the neutron column re¯ects the shell ®lling observed

for the ÿ-stable nuclei. In the ®lling of these levels there are departures

from the order given in the case of a few particular nuclei.

The major success of the shell model is the prediction of the angular

momenta of nuclei in their ground states. These values follow simple

rules: nuclei with an even number of protons and an even number of

neutrons (even±even nuclei) have angular momentum zero and positive

parity, nuclei with an even number of protons and an odd number of

neutrons or vice-versa (even±odd nuclei), have angular momentum and

parity equal to that of the odd nucleon in the shell that is being ®lled. We

saw in Chapter 4 that it was energetically favourable for nuclei to contain

even numbers of protons and even numbers of neutrons. The information

from nuclear spins makes more precise the origin of this energy: it seems

that it is energetically advantageous for nuclei to take pairs of protons

and pairs of neutrons into the energy shells, with the angular momenta of

the pairs coupled to zero, J1 � J2 � 0, so that the angular momentum

and parity of an unpaired nucleon is the angular momentum and parity of

the whole nucleus. There are some exceptions to this last rule, but

remarkably few considering its simplicity.

In the case of odd±odd nuclei, the odd proton and odd neutron do

not combine their angular momenta in any systematic way; there is no

very clear empirical rule, and no simple theory. Indeed, odd±odd nuclei

are altogether energetically disfavoured. There are only four stable odd±

odd nuclei �21H; 6
3Li;

10
5 B;

14
7 N�, the rest undergo ÿ-decay to become even±

even (Chapter 4).

The rules may be seen obeyed by the light nuclei of Table 4.2. For

example 17
8O has one odd neutron in the 1d5

2
shell, and spin and parity 5

2

�
.

5.4 Magic numbers

In Table 5.1 lines have been drawn where the total numbers of states in

the shells above the line are 2, 8, 20, 28, 50, 82 and 126, the so-called

`magic numbers'. The ®rst two numbers just correspond to the ®lling of 1s

and 1p shells. The others appear to be somewhat arbitrary, but it is found

empirically that the energy gaps to the next shell are greater than average

at these points in the sequence. Nuclei having Z or N equal to one of

these numbers have properties which re¯ect the existence of such a gap.

For example, tin �Z � 50� has ten stable isotopes, and there are seven

stable elements having N � 82 (see Fig. 4.6). These examples illustrate

that there must be a large gap in the energy spacing at Z � 50 in the
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proton sequence and at N � 82 in the neutron sequence, as is clear from

our discussion in }5.2 of the condition EF
n � EF

p .

The departures from the smooth curve of binding energy per nucleon,

given by the semi-empirical mass formula, are associated with the nuclear

shell structure and the magic numbers. Magic number nuclei are particu-

larly strongly bound and have been marked on Fig. 4.7. The heaviest �-

stable nuclei are 208
82Pb, which is `doubly magic' with N � 126, Z � 82,

and 209
83Bi which has N � 126.

The magic numbers were identi®ed experimentally before the shell

model was established, and indeed the indications of shell structure pro-

vided by the existence of these numbers was a strong motivation for the

formulation of the shell model. Other consequences of the magic numbers

will be mentioned in the sections on the excited states of nuclei and

atomic abundances in the Solar System.

5.5 The magnetic dipole moment of the nucleus

The successful description of nuclear angular momentum indicates the

essential validity of the shell model. The model also gives a qualitative

understanding of the magnetic dipole moments of nuclei. The magnetic

moments of paired nucleons, like their spins, cancel exactly, and all even±

even nuclei are found to have zero magnetic moments. A nucleus with

angular momentum operator J (quantum numbers j; jz) has a magnetic

moment operator l which, averaged over the nucleons, must be aligned

with J, since J is the only vector available giving a preferred direction.

The magnetic dipole moment l is de®ned by writing

hli � �

� j»� hJi; �5:19�

where the brackets h� � �i indicate any matrix element between the �2j � 1�
states labelled by jz.

In a magnetic ®eld B � �0; 0;B�, which speci®es the z-direction, the

magnetic potential energy of the nucleus in the ®eld is the expectation

value of ÿl � B � ÿ�zB. For a state of given jz, this energy is, from

equation (5.19),

E� jz� � ÿ�� jz=j�B �5:20�
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so that there are �2j � 1� equally spaced energy levels corresponding to

jz � ÿj;ÿj � 1; . . . ; j.

Transitions between these levels may be induced by a radio-frequency

oscillating electromagnetic ®eld of angular frequency ! where

»! � j�jB=j: �5:21�

Measurements of this resonance frequency in a known magnetic ®eld give

a precise value for the magnetic dipole moment. The phenomenon is

called nuclear magnetic resonance, and has many applications in physics,

chemistry and biology.

5.6 Calculation of the magnetic dipole moment

In our simple version of the shell model, the magnetic moment of an odd-

A nucleus will arise entirely from the unpaired nucleon. If this unpaired

nucleon is a proton, its orbital motion will give, as in classical magnetism,

a moment

lL � eL

2mp

� �N

L

»

� �
; �5:22�

where �N � e»=2mp is the nuclear magneton. A neutron, since it is

uncharged, will give no orbital contribution.

To this must be added the intrinsic magnetic moment of the nucleon,

ls � gs�N

s

»

� �
; �5:23�

where (using the values quoted in equation (3.2)), gs � 5:59 for a proton

and gs � ÿ3:83 for a neutron.

Thus the total magnetic moment operator for a single nucleon is

l � lL � ls � �N�gLL� gss�= »; �5:24�

where gL � 1 for a proton and gL � 0 for a neutron. We can write this as

l � lN�12�gL � gs��L� s� � 1
2�gL ÿ gs��Lÿ s��= »;

and take the scalar product with J � L� s to give
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l � J � �N�12�gL � gs�J2 � 1
2�gL ÿ gs��L2 ÿ s2��= »

(since L and s commute). Then the expectation value of each side of this

equation for a state speci®ed by � j; jz; l; s� gives, using equation (5.19)

�

j

� �
j� j � 1� � �N�12�gL � gs� j� j � 1� � 1

2�gL ÿ gs��l�l � 1� ÿ s�s� 1���

so that

� � �N

1

2
�gL � gs� j �

1

2
�gL ÿ gs�

�l ÿ s��l � s� 1�
� j � 1�

� �
: �5:25�

Since s � 1
2 and j � l � 1

2 we ®nally obtain for the contribution from the

upaired nucleon

� � �N� jgL ÿ 1
2
�gL ÿ gs�� for j � l � 1

2
;

� � �N jgL � j

2� j � 1� �gL ÿ gs�
� �

for j � l ÿ 1
2;

�5:26�

which are referred to as the `Schmidt values'.

These predictions of the simple model for a nucleus with an odd

unpaired nucleon are not grossly wrong: almost all the observed magnetic

moments for such nuclei lie between these two values. But they are not

accurate predictions and there is no generally accepted explanation of the

discrepancies. One possible reason is that the intrinsic magnetic moment

of the nucleon is smaller in a nuclear environment than in free space.

Another interpretation is that the magnetic moments provide a more

sensitive test of the nuclear shell model than does the nuclear spin, and

cooperative effects which we have neglected may contribute.

5.7 The electric quadrupole moment of the nucleus

Nuclei with spin 51 usually have small permanent electric quadrupole

moments. The size of this electric quadrupole moment gives an indication

of the extent to which the distribution of charge (and hence matter) in the

nucleus deviates from spherical symmetry. A nucleus is coupled through

its electric quadrupole moment to the gradient, at the nuclear site, of the

external electric ®eld produced by the molecular or crystalline environ-

ment of the nucleus. Like the nuclear magnetic dipole moment, the
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nuclear electric quadrupole moment provides a sensitive probe of this

environment for chemistry and condensed matter physics.

Classically, the energy of a nuclear charge distribution e�ch�r� in an

external electrostatic potential ��r� is

U � e

Z
�ch�r���r�d3r:

We take the origin r � 0 to be the centre of mass of the nucleus. Since

�ch�r� is con®ned to the small nuclear volume we can approximate ��r� by
the ®rst few terms of a Taylor series,

��r� � ��0� ÿ r � E� 1

2

X
i;j

xixj�ij; �5:27�

where E � ÿr� is the electric ®eld, and

�ij �
@2�

@xi@xj
� ÿ @Ei

@xj
; all evaluated at r � 0:

Here the indices i, j run from one to three, and we are using the notation

r � �x1; x2; x3�, etc.
We then have

U � eZ��0� ÿ E � d� 1
2e
X
i;j

�ij

Z
�ch�r�xixj d3r;

where d � e
R
�ch�r�r d3r is the electric dipole moment. The ®rst term

would be the energy if the nuclear charge Ze were a point charge at the

origin. The second term is the electric dipole energy. Apart from negli-

gible weak interaction effects, nuclear charge densities have the re¯ection

symmetry �ch�r� � �ch�ÿr�; thus nuclear electric dipole moments are zero,

and the effects of the extended nuclear charge distribution appear in the

term

�U � 1
2e
X
i;j

�ij

Z
�ch�r�xixj d3r;

which in general does not vanish.
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If we neglect the charge density of atomic electrons at the nucleus, the

external potential � satis®es Laplace's equation

r2� �
X
i

�ij � 0: �5:28�

We can therefore re-write �U in the form

�U � e

6

X
i;j

�ijQij;

where

Qij �
Z

�ch�r��3xixj ÿ r2�ij�d3r:

Qij is de®ned to be the quadrupole moment tensor of the classical

charge distribution. �ij is the usual Kronecker �. The additional term

containing �ij does not change �U, because of (5.28), but makes Qij �
0 if �ch�r� is spherically symmetric.

Dimensional analysis suggests that for a nucleus which has a non-

vanishing quadrupole moment

jQijj=e � �nuclear dimension�2:

A nucleus in a neutral atom is subject to the electric ®eld of the

surrounding atomic electrons. The closed shells of inner atomic electrons

will be distributed with near spherical symmetry, and will not contribute

appreciably to a quadrupole ®eld at the nucleus. Any quadrupole ®eld

will be produced by outer electrons, and it may therefore be anticipated

that

�ij � e=�4�"0��atomic dimension�3:

Hence typically the interaction energy is of magnitude

�U � e2�nuclear dimension�2
4�"0�atomic dimension�3 � 10ÿ9 eV:
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Such small energy shifts are detectable in radio-frequency spectro-

scopy, but it is clear that higher multi-pole moments arising from further

terms in the Taylor expansion (5.27) will be unimportant.

The charge distribution in a nucleus must of course be treated quan-

tum mechanically rather than classically, and we de®ne the electric quad-

rupole moment operator by

Qij �
X

protons p

�3xpixpj ÿ �ijr
2
p�;

where now the xpi are the proton coordinates.

Just as the matrix elements of the (vector) magnetic dipole operator l

are proportional to the matrix elements of the (vector) angular momen-

tum operator J, it can be shown that for the tensor operator Qij

hQiji � Ch�32�JiJj � JjJi� ÿ �ijJ
2�i;

where C is a constant, and again the brackets indicate any matrix ele-

ments between the �2j � 1� nuclear states of angular momentum quantum

number j, labelled by jz. Thus all the matrix elements of Qij are deter-

mined by a single quantity. It is conventional to take the expectation

value of Q33 in the state with jz equal to its maximum value j, and de®ne

this as the nuclear electric quadrupole moment Q, so that

Q � C�3j2 ÿ j� j � 1�� � Cj�2j ÿ 1�;

or

C � Q

j�2j ÿ 1� :

All other matrix elements are then determined in terms of Q. Note that Q

vanishes for nuclei with j � 0 or j � 1
2
.

Experimental values of Q are obtained from spectral measurements

on systems in which the ®eld gradients can be accurately calculated. These

values are often very much larger than, and sometimes differ in sign from,

the predictions of the simple shell model. The implication is that the

deformation of many nuclei from spherical symmetry is much larger

than would be expected from the simple independent particle shell

model. In reality the deformations must result from collective effects

involving several nucleons. As might be expected, deviations from sphe-
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rical symmetry are least in the neighbourhood of closed shells and largest

for nuclei with shells which are around half-full.

Problems

5.1 In the model of }5.2, verify that when N � Z � A=2 then

EF
n � EF

p ÿ �U � 38 MeV.

5.2(a) Show that in the model of }5.2 the total kinetic energy of a nucleus

containing N neutrons and Z protons is

�35NEF
n � 3

5Z�EF
p ÿ �U��:

(b) For �N ÿ Z�5 A, this expression may be Taylor expanded about

N0 � A=2, Z0 � A=2, EF
0 � 38 MeV. Show that

EF
n � EF

0 1� 2

3

�N

N0

ÿ 1

9

�N

N0

� �2
" #

;

�EF
p ÿ �U� � EF

0 1ÿ 2

3

�N

N0

ÿ 1

9

�N

N0

� �2
" #

;

where �N � ÿ�Z � �N ÿ Z�=2.
(c) Hence show that the total kinetic energy of the nucleons in the nucleus is

approximately

3
5E

F
0 A� 1

3E
F
0

�Nÿ Z�2
A

and therefore contributes � ÿ23 MeV to the coef®cient `a' in the semi-

empirical mass formula, and � 13 MeV to the symmetry coef®cient `s'

(equation (4.5)).

5.3(a) Show from equation (5.1) that the average Coulomb energy of a proton

in a nucleus of atomic number Z is

�Uc �
6

5

�Z ÿ 1�e2
4�"0R

:

(b) Show that for 208
82Pb, �Uc � 2 �U.

5.4 40
20Ca is the heaviest stable nucleus with Z � N. (It is doubly magic.) The

neutron separation energy is 15.6 MeV. Estimate the proton separation

energy, and compare your estimate with the empirical value of 8.3 MeV.

5.5 Suggest values for the spins and parities of the following nuclei in their

ground states:

31
15P;

67
30Zn;

115
49In.
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5.6 The measured spins, parities and magnetic moments of some nuclei are:

43
20Ca

7ÿ

2
;ÿ1:32�N

� �
; 93

41Nb
9�

2
; 6:17�N

� �
; 137

56Ba
3�

2
; 0:931�N

� �
;

197
79Au

3�

2
; 0:145�N

� �
; 26

13Al�5�;not known�:

Compare these values with the predictions of the shell model.

5.7 Calculate the nuclear magnetic resonance frequencies for (a) protons,

(b) 43
20Ca (see Problem 5.6), in a magnetic ®eld of 1 tesla (= 104 gauss).

5.8 Show that for a uniformly charged ellipsoid of revolution

x2 � y2

a2
� z2

b2
4 1,

of total charge Ze,

Qzz � 2
5Z�b2 ÿ a2�:

The nucleus 176
71Lu has j � 7 and a very large electric quadrupole moment

of 8.0 barns. Suppose the nucleus in the state with jz � 7 has approxi-

mately an ellipsoidal charge distribution of the form above. Calculate a

and b.
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6

Alpha decay and spontaneous ®ssion

6.1 Energy release in �-decay

We saw at the end of Chapter 4 that the binding energy per nucleon curve

of the ÿ-stable nuclei has a maximum in the neighbourhood of iron (Fig.

4.7), and that the heavier elements may be unstable to spontaneous dis-

integration. The principal mode of break-up is by emission of a 4
2He

nucleus. Historically, the particles emitted in the decays of naturally

occurring �-unstable nuclei were called �-particles before they were iden-

ti®ed by Rutherford in 1908 as 4
2He nuclei, and the name has stayed.

The kinetic energy release Q�A;Z� in an �-decay of a nucleus �A;Z� is
given in terms of the binding energies of the parent and daughter nuclei

by

Q�A;Z� � B�Aÿ 4;Z ÿ 2� � 28:3 MeVÿ B�A;Z�; �6:1�

(where 28.3 MeV is the experimental binding energy of the 4
2He nucleus). If

the nucleus is assumed to lie on the ÿ-stability curve, given approximately

by equation (4.14), then Q may be calculated as a function of Z (or of A)

from the semi-empirical mass formula, using equation (4.5). Neglecting

the pairing energy term, the effects of which are small, the resulting

smooth Q�Z� is plotted in Fig. 6.1 for Z > 50. Negative values of Q

imply absolute stability against �-decay. Also shown are Q values calcu-

lated from the experimentally measured masses of ÿ-stable nuclei and their

corresponding daughter nuclei. The trend of the experimental points is

given correctly by the semi-empirical formula. Though the detailed pre-

dictions can be out by as much as 5 MeV, this is very small (<0.3%)
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compared with the total binding energies of the nuclei in this region. The

main deviation from the simple formula is due to the extra binding energy

of nuclei around the double-closed shell nucleus 208
82Pb. This extra binding

energy not only makes these nuclei more nearly stable than average, but

also makes less stable the nuclei immediately above them. At higher Z,

around 238
92U, there is another small region of relative stability.

From Fig. 6.1 it will be seen that þ-stable nuclei with Z > 66 (and a

few with Z 4 66) are in principle unstable to �-decay. In practice the

decay rate is so low as to be almost unobservable if the energy release Q is

<4 MeV. Up to Bi �Z � 83� the lifetimes of þ-stable nuclei are many

orders of magnitude greater than the age of the Earth.

6.2 The theory of �-decay

It is the electrostatic force which is responsible for inhibiting the �-decay

of those nuclei for which the decay is energetically favourable. As an

example, consider the decay of bismuth to thallium,
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Fig. 6.1 Experimental and theoretical �-decay energies Q � B�Aÿ 4;Z ÿ 2�
�28:3 MeVÿ B�A;Z�, as a function of the atomic number Z of the parent

nucleus. The experimental points are from cases where both parent nucleus and

daughter nuclei are þ-stable. The theoretical curve is from equation (4.5) (neglect-

ing the pairing energies) together with equation (4.14).



209
83Bi !205

81 Tl� 4
2He� 3:11 MeV;

which is in principle possible but is not observed.

Figure 6.2 shows the electrostatic potential energy of the �-particle

(charge 2e) at a distance r from a thallium nucleus (ZTl � 81�,
2ZT1e

2=�4�"0�r. Also indicated on the graph is the distance rs at which

the strong interaction with the thallium nucleus takes over, which we

estimate as

rs � 1:1��205�13 � 4
1
3� fm � 8:23 fm;

where we have used equation (4.2) for the radii of the Tl and He nuclei. It

is around this distance, in the surface region of the parent Bi nucleus, that

the �-particle can be considered to be formed.

The graph immediately explains why the �-particle ®nds it dif®cult to

escape even if it is formed. At rs the height of the Coulomb potential is

28.4 MeV, very much greater than the energy Q � 3:11 MeV of the �-

particle. Classically, it cannot penetrate the barrier and is free to move

only at distances greater than rc where rc is given by

76 Alpha decay and spontaneous fission

Fig. 6.2 The potential energy of an �-particle in the Coulomb ®eld of a thallium

nucleus, as a function of the separation distance r. At r � rs the �-particle from

the decay of bismuth is formed. At r � rc it has penetrated through the classically

forbidden region.



Q � 2ZT1e
2

�4�"0�rc
; �6:2�

rc is the classical distance of closest approach to the nucleus of an �-

particle of energy Q coming from the outside. For thallium, rc � 75 fm.

Thus classical mechanics forbids the �-particle to escape. Quantum

mechanics, however, allows it to tunnel through, and we now estimate

this important tunnelling probability.

At distances r > rs, outside the range of the strong interaction, the

SchroÈ dinger equation for the radial wave-function u�r� of the �-particle is

ÿ »2

2m

1

r

d2

dr2
�ru� � 2Zde

2

�4�"0�r
� »2

2m

l�l � 1�
r2

" #
u � Qu: �6:3�

Here Zd is the atomic number of the daughter nucleus, and m is the

reduced mass, i.e.,

m � m�md

m� �md

; �6:4�

where m�, md are the masses of the �-particle and daughter nucleus. The

use of the reduced mass takes into account the recoil of the daughter

nucleus. To conserve angular momentum, the angular momentum of

the �-particle and the angular momentum of the daughter nucleus must

combine to give the angular momentum of the parent. Also the parity of

the ®nal state, �ÿ1�l� (parity of daughter nucleus), must equal to the

parity of the parent nucleus. In the example Bi�92
ÿ� ! Tl�1

2

��, it is possible
to conserve angular momentum with l � 4 or l � 5 (Appendix C), but

parity conservation requires l � 5.

For simplicity we shall only consider the case l � 0. In fact the angu-

lar momentum term is usually small compared with the Coulomb poten-

tial. Writing u�r� � f �r�=r, equation (6.4) then reduces to

ÿ »2

2m

d2f

dr2
� 2Zde

2

�4�"0�r
f � Qf : �6:5�

If the Coulomb term were replaced by a constant potential V0 we should

have solutions
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f �r� �
e�ikr; Q > V0; k2 � 2m

»2
�Qÿ V0�

e�Kr; Q < V0; K2 � 2m

»2
�V0 ÿQ�:

8><
>: �6:6�

This suggests that we try to ®nd solutions to equation (6.5) of the form

f �r� � e��r�; �6:7�

where ��r� is to be determined. By substitution, ��r� satis®es

»2

2m

d2�

dr2
� d�

dr

� �2
" #

� 2Zde
2

�4�"0�r
ÿQ

þ !
: �6:8�

In a constant potential V0, d�=dr � �ik �Q > V0�, or �K �Q < V0� and in

both cases d2�=dr2 � 0. We shall assume that the Coulomb potential in

(6.8) is suf®ciently slowly varying for d2�=dr2 in this equation to be

neglected compared with �d�=dr�2. Then

d�

dr
� � 2m

»2
2Zde

2

�4�"0�r
ÿQ

� �� �s

and

��r� � �
Z

2m

»2
2Zde

2

�4�"0�r
ÿQ

� �� �
dr:

s
�6:9�

For r > rc, we can write our approximate solution in the form

f �r� � A exp �i

Z r

rc

k�r�dr
� �

� B exp ÿi

Z r

rc

k�r�dr
� �

; �6:10�

where

k�r� � � 2m

»2
Qÿ 2Zde

2

�4�"0�r
� �� �

;

s

and for rs < r < rc we can write
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f �r� � C exp �
Z rc

r

K�r�dr
� �

�D exp ÿ
Z rc

r

K�r�dr
� �

; �6:11�

where

K�r� � � 2m

»2
2Zde

2

�4�"0�r
ÿQ

� �� �
:

s

A, B, C, D are constants to be determined by the boundary conditions.

The solution (6.10) represents outgoing and incoming waves. The

incoming wave would be needed in an analysis of the scattering of �-

particles by a nucleus. In the problem of �-decay, only the outgoing wave

is present, so that B � 0.

This solution must then be matched on to the exponentially increas-

ing and decreasing functions included in (6.11). Any admixture of the

second term in the expression (6.11) quickly becomes negligible as r

decreases, since the fall of the exponential is very rapid for typical values

of the parameters, so that in the region rs < r < rc we may take

f �r� � C exp

Z rc

r

K�r�dr
� �

: �6:12�

At r � rs, we must then match this solution to the appropriate radial

function of the �-particle in the region where it is subject to the strong

interaction. Here, at the surface of the daughter nucleus, the description

of the �-particle is really a very complicated many-body problem. But it is

reasonable to assume that in a heavy nucleus the rate of formation of �-

particles is a property of the nuclear surface and does not vary greatly

from one nucleus to another. Given that an �-particle has been formed,

the radial probability density of ®nding the particle at r � rc relative

to the radial probability density of ®nding it at r � rs is given by

4�r2c ju�rc�j2
4�r2s ju�rs�j2

� j f �rc�j2
j f �rs�j2

: �6:13�

We can therefore interpret

f �rc�
f �rs�
ÿÿÿÿ

ÿÿÿÿ2� eÿG; say; �6:14�
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as the transmission probability, through the Coulomb barrier, for �-par-

ticles created at r � rs. The essential correctness of this interpretation is

con®rmed by a more exact analysis of the wave-functions and matching

conditions.

Using equation (6.12)

G � 2

Z rc

rs

K�r�dr

� 2

Z rc

rs

2m

»2
2Zde

2

4�"0�r
ÿQ

� �� �
dr

s

� 2
2mQ

»2

r Z rc

rs

rc
r
ÿ 1

� �1
2

dr;

since rc �
2Zde

2

�4�"0�Q
.

With the substitution r � rc cos
2 � the integral is easily evaluated to give

G � 2rc
2mQ

»2

r Z �0

0

2 sin2 � d�

� 2rc
2mQ

»2

r
��0 ÿ sin �0 cos �0�;where �0 � cosÿ1 rs

rc

r" #

� �

»c
2Zde

2

4�"0

þ !
2mc2

Q

s
G�rs=rc�;

�6:15�

where the function

G�rs=rc� �
2

�
cosÿ1 rs

rc

r" #
ÿ rs

rc
1ÿ rs

rc

� �� �r" #
�6:16�

is dimensionless and lies between 1 and 0 for 0 < rs=rc < 1 (Fig. 6.3). At

low energies rc ! 1 and G ! 1.

If the total ¯ux of �-particles created at rs is �
ÿ1
0 , the probability per

unit time of �-particle emission is �ÿ1
0 eÿG, and hence the mean life for �-

decay is given by

� � �0e
G: �6:17�
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We have argued that the rate of formation of �-particles, and hence

�0, is a nuclear property unlikely to vary greatly from nucleus to nucleus.

In Table 6.1 we compare the formula (6.17) with experiment for a

sequence of naturally occurring �-decays (all with l � 0) initiated by

the most common isotope of uranium 238
92U, taking �0 to be a constant.

The value �0 � 7:0� 10ÿ23 s was chosen to give a reasonable ®t to this

sequence of measured lives. This value is not unreasonable on a nuclear

time scale of 2:6� 10ÿ23 � A
1
3 s (}5.2), though it is somewhat shorter than

earlier estimates because we have chosen rs to be consistent with the

modern values for nuclear radii. Early workers obtained estimates of

nuclear radii from assumed values of �0.

The qualitative agreement of the simple theory (which was pro-

posed in 1928 by Gamow and by Condon and Gurney) with experi-

ment is truly remarkable. The simple quantum-mechanical formula for

tunnelling comprehends time scales from as long as the age of the

Earth �1:45� 1017 s� down to times less than a microsecond. The lar-

gest discrepancy between theory and experiment occurs with 210
84Po; this

discrepancy can be associated with the closed shell N � 126 in this

isotope.
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Fig. 6.3 The function G�x� � �2=��fcosÿ1 x
p ÿ �p

x�1ÿ x��g.



This particular sequence of decays is of interest in the early history of

the study of radioactivity. As is indicated in Table 6.1, the daughter

nucleus of an �-decay may be unstable to þ-decay. Since the mass number

A decreases by four in an �-decay, and is unchanged in þ-decay, we expect

there to be three other similar sequences of �-decays. Two of these, based

on 232
90Th and 235

92U, are also naturally occurring. The third, initiated by
237
93Np, is made up of comparatively short-lived isotopes which must be

produced arti®cially for the series to be observed.

Since mean lives are dominated by the tunnelling factor, and this in

turn depends principally on the value of Q, we can now understand why

decay rates with Q < 4 MeV are so low.

It is found experimentally that �-particle emission can take place with

the daughter nucleus left in an excited state. With even±even nuclei such

processes usually occur with much lower probability, since the value of Q

is reduced. However, the situation tends to be more complicated in the

case of even±odd and odd±odd nuclei. An unpaired nucleon is less likely

to take part in �-particle formation, and its state may form part of an

excited con®guration of the daughter nucleus. In such a case, the daugh-

ter nucleus is likely to be found in this excited state after the emission of

an �-particle.
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Table 6.1. The �-decay series from 238
92U

Q

(MeV)

rs
(fm)

rc
(fm) G

�exp
(s)

�theory
(s)

238
92U ! 234

90Th 4.27 8.52 60.7 0.53 2:0� 1017 3:3� 1017

�23490Th ! 234
91Pa ! 234

92U�
234
92U ! 230

90Th 4.86 8.49 53.3 0.51 1:1� 1013 1:1� 1013

230
90Th ! 226

88Ra 4.77 8.45 53.1 0.51 3:5� 1012 3:9� 1012

226
88Ra ! 222

86Rn 4.87 8.41 50.9 0.50 7:3� 1010 7:4� 1010

222
86Rn ! 218

84Po 5.59 8.37 43.3 0.46 4:8� 105 4:2� 105

218
84Po ! 214

82Pb 6.11 8.33 38.7 0.43 2:6� 102 1:6� 102

�21482Pb ! 214
83Bi ! 214

84Po�
214
84Po ! 210

82Pb 7.84 8.28 30.1 0.36 2:3� 10ÿ4 1:1� 10ÿ4

�21082Pb ! 210
83Bi ! 210

84Po�
210
84Po ! 206

82Pb 5.41 8.24 43.7 0.47 1:7� 107 5:8� 105

The values of Q are from experiment. The intervening þ-decays, which reduce the

neutron-to-proton ratio as the nuclei become lighter, are given in parentheses.



6.3 Spontaneous ®ssion

In �-decay, a heavy nucleus splits into a light helium nucleus and another

heavy nucleus. Fission is the name given to a similar but more symmetric

process of a nucleus splitting into two more or less equal masses. The two

pieces are called ®ssion fragments.

The fragments are often nuclei in quite highly excited states, but we

can estimate the energy release in ®ssion by considering the simple case of

the symmetric ®ssion of an even±even nucleus �A;Z� into two identical

nuclei �A=2;Z=2� in their ground states, and using the semi-empirical

mass formula (4.5). We shall neglect the pairing energies. For a ®xed

ratio of protons to neutrons, the symmetry term as well as the cohesive

energy term is proportional to the total number of nucleons. Thus only

the surface and Coulomb energies contribute to the difference in binding

energy �B of the two fragments and the parent nucleus:

�B � 2B�A=2;Z=2� ÿ B�A;Z�

� ÿbA
2
3�2�1

2
�23 ÿ 1� ÿ dZ2

A
1
3

�2�1
2
�53 ÿ 1�:

�6:18�

If �B is positive then this ®ssion is energetically possible, and the frag-

ments will acquire kinetic energy �B. From equation (6.18) nuclei for

which

Z2

A
>

b�2ÿ 2
2
3�

d�22
3 ÿ 1� ; i:e:

Z2

A
> 18; �6:19�

are metastable with respect to ®ssion. This condition is satis®ed by þ-

stable nuclei heavier than 98
42Mo. The energy release on the ®ssion of the

heavy elements is much larger than that in �-decay. For example, the

energy release in the symmetric ®ssion of 238
92U is ' 180 MeV. However,

although this is large, the process is strongly inhibited by the tunnelling

factor and spontaneous ®ssion is only observed in the heaviest of ele-

ments.

We envisaged the process of �-decay as the initial formation of an �-

particle at the surface of a nucleus and a subsequent tunnelling to free-

dom. It is not so easy to envisage the ®ssion process, or to calculate the

potential barrier. Figure 6.4 gives a schematic representation of the ®ssion

process, in which the nucleus is treated as a liquid drop. For the early

stages of the ®ssion of an initially spherical nucleus of radius R, it is
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reasonable to consider the nucleus deforming into an ellipsoid of revolu-

tion as in the ®rst step of Fig. 6.4.

If we introduce a deformation parameter " such that

a � �1� "�R
b � R=�1� "�12

�6:20�

where a, b are the major and minor semi-axes of the ellipsoid, the volume

of the drop �4
3
��ab2 stays the same. It is not dif®cult to show that, for

small ", the surface area becomes to order "3

S�"� � 4�R2�1� 2
5
"2 ÿ 52

105
"3�; �6:21�

and the surface energy will, correspondingly, increase. (For small ", the "3

term is a small correction.)

The Coulomb energy, on the other hand, decreases on deformation.

A (rather lengthy) calculation for a uniformly charged ellipsoid gives the

result

Ec �
�2

�4�"0�
1

2

Z Z
d3r d3r 0

jrÿ r 0j

� 3

5

�Ze�2
4�"0R

�1ÿ 1
5"

2 � 4
21"

3�
�6:22�

for small " (cf. equation (4.6)).

Using the parameters of the semi-empirical mass formula, these

results suggest that a small ellipsoidal deformation of a spherical nucleus

gives a change in energy of

"2
2

5
bA

2
3 ÿ 1

5
d
Z2

A
1
3

þ !
ÿ "3

52

105
bA

2
3 ÿ 4

21
d
Z2

A
1
3

þ !
: �6:23�
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Fig. 6.4 A schematic representation of a symmetric ®ssion in the liquid drop

model.



The coef®cient of "2 is negative if

Z2

A
>

2b

d
� 51: �6:24�

Hence when this condition is satis®ed the deformation energy is negative

even for small ", and ®ssion would proceed uninhibited by any potential

barrier. Thus (6.24) suggests there is an absolute upper limit for chemical

elements of Z � 144 (using the relation between Z and A for þ-stable

nuclei given by equation (4.9)).

For elements of lower Z, spontaneous ®ssion involves tunnelling

through a potential barrier. We can crudely estimate the height of the

barrier from the expansion (6.23). For 235
92U this gives the deformation

energy

�83:35"2 ÿ 159:16"3� MeV:

The coef®cient of "3 is negative, which con®rms that in the liquid drop

model the most likely deformation is indeed a prolate, rather than oblate,

ellipsoid, and the expression has a maximum of 3.4 MeV when " � 0:35.

The measured potential barrier is 5.8 MeV. For A � 240 barrier heights

are found to be between 5 and 6 MeV. Experimental values are deter-

mined from the threshold energies required to induce ®ssion, when the

nucleus is bombarded with, for example, ÿ-rays. Induced ®ssion by neu-

tron capture also gives information on barrier heights. We shall consider

induced ®ssion in more detail in Chapter 8 and Chapter 9. It is a subject

of great technological importance.

As the inequalities (6.19) and (6.24) indicate, Z2=A is a measure of the

likelihood that a nucleus will be subject to spontaneous ®ssion. An

empirical, approximately linear, relationship exists between the logarithm

of the mean life for spontaneous ®ssion and Z2=A. This is shown in Fig.

6.5 for some even±even nuclei.

The fragments produced in spontaneous ®ssion move apart rapidly

because of their Coulomb repulsion. They are neutron rich, since the

equilibrium neutron-to-proton ratio of a þ-stable nucleus decreases as

A decreases, and they are in highly excited states. Typically, one to

four neutrons `boil off ' from the fragments in a time of 10ÿ18 to

10ÿ15 s. Studies of the angular distribution of these `prompt neutrons'

show that they are indeed emitted from the moving fragments, rather

than at the moment of break-up of the ®ssioning nucleus. The resulting

6.3 Spontaneous fission 85



nuclei are still far from the line of þ-stability. They reach their ground

states through the emission of prompt ÿ-rays and gradually decay, by þ-

emission, to stable nuclei. It occasionally happens that a nucleus pro-

duced by þ-decay is unstable to neutron emission, and a `delayed neutron'

may result. For example, one of the ®ssion products of 236U is 87
35Br. This

þ-decays with a mean life of 80 s to either the ground state 87
36Kr or an

excited state 87
36Kr* which can lie above the threshold for neutron emis-

sion. In the latter case the rapid decay 87
36Kr� ! 86

36Kr� n sometimes

occurs. Thus the time scale for the emission of the delayed neutrons is

determined by the long lifetimes of the þ-decay processes involved. We

shall see in Chapter 8 that such processes are important for the control of

nuclear reactors.
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Fig. 6.5 Mean lives for spontaneous ®ssion of some even±even nuclei. (Data

from American Institute of Physics Handbook, 3rd ed., 1972, New York:

McGraw-Hill.)



The semi-empirical mass formula predicts that the energy release in

spontaneous ®ssion is at a maximum when the two fragments are of equal

mass. Notwithstanding this, it is usually found that there is a quite strik-

ing asymmetry in the mass distribution of the ®ssion fragments. It is likely

that this asymmetry is due to shell structure effects. More detailed the-

ories of ®ssion include these aspects of nuclear structure.

Problems

6.1 8
4Be decays to two �-particles with a kinetic energy release of 0.094 MeV.

Estimate its mean life using the tunnelling formula (6.17), and compare

your estimate with the observed mean life of 2:6� 10ÿ17 s.

6.2 The isotope 194
79Au undergoes þ-decay and has a mean life of 56 hours.

(a) One mode of decay is

194
79Au ! 194

78Pt� e� � �� 1:5 MeV:

The positron in this decay is created in the nucleus and must tunnel

through a Coulomb barrier to escape. Show that the barrier factor

suppresses the decay rate to a positron with an energy � 1 MeV only

by a factor of about four.

(b) Another energetically possible decay, which has not been observed, is

194
79Au ! 190

77Ir� 4
2He� 1:8 MeV:

Estimate the mean life for this mode of decay.

6.3 238Pu decays by �-emission:

238
94Pu ! 234

92U� �� 5:49 MeV,

with a mean life of 128 years. The mean life of 234U is much longer, 2:5�
105 years. Space probes to the outer planets use 238Pu as a power source

for their equipment. Estimate the mass of 238Pu needed to supply a

minimum of 1 kW of heat for 50 years.

6.4 The intermediate members of the radioactive series stemming from 238U

have negligible mean lives on geological time scales (Table 6.1), so that
238U may be said to decay to 206Pb with a mean life of 6:48� 109 years.

Similarly, 235U decays to 207Pb with a mean life of 1:03� 109 years.

In a certain sample of uranium-bearing rock the proportions of atoms

of 238U, 235U, 206Pb, 207Pb were measured to be 1000:7.19:79.7:4.85. The

rock contained a negligible amount of 208Pb, which is usually the most

common isotope of lead, indicating that all the lead in the rock came

from uranium decay. Estimate the age of all rock.
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6.5 Estimate the energy release and the velocity of the fragments in the

spontaneous ®ssion

238
92U ! 119

46Pd
� � 119

46Pd
�

where * denotes an excited state.

Neutrons `boil off' from the fragments. If in the frame of the moving

fragments the neutrons are emitted isotropically with energy � 2 MeV,

describe qualitatively how the neutrons appear in the laboratory.
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7

Excited states of nuclei

7.1 The experimental determination of excited states

So far we have for the most part been considering atomic nuclei in their

quantum ground states. Most nuclei on Earth have been in their ground

states since the time of its creation. However, almost all nuclei possess

excited states of higher energy (and therefore less binding energy) than

their ground state. There are many ways of exhibiting these excited states,

and determining their energies and quantum numbers. One method is to

scatter energetic protons of known momentum pi from the nucleus of

interest and to observe their angle of scattering � and ®nal momentum

pf . This process is illustrated in Fig. 7.1.

To conserve momentum, the recoiling nucleus has momentum

�pi ÿ pf cos �� in the direction of the incoming proton and pf sin � in the

perpendicular direction. Taking all momenta and energies to be non-

relativistic, the difference E between the initial and ®nal kinetic energies

of the system is

E � p2i
2mp

ÿ p2f
2mp

ÿ �p2i � p2f ÿ 2pipf cos ��
2m�

A

; �7:1�

where m�
A is the mass of the recoiling target nucleus. By conservation of

energy E must be the excitation energy given to the nucleus. In terms of

the initial and ®nal proton kinetic energies Ei and Ef , equation (7.1)

becomes
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E � Ei 1ÿ mp

m�
A

� �
ÿ Ef 1� mp

m�
A

� �
� 2mp

m�
A

�EiEf �
1
2 cos �: �7:2�

In equations (7.1) and (7.2), m�
A � mA � E=c2 may be replaced by the

mass mA of the nucleus in its ground state, with little error.

In practice, a mono-energetic beam of protons is directed at a target

containing the nucleus in question. If the target is a solid it is generally

made so thin that the probability of a proton scattering more than once

off a nucleus is small.

At a ®xed scattering angle � the emerging protons are no longer

mono-energetic but, apart from a background coming from, for example,

the residual multiple scattering, their energies fall into several well-de®ned

peaks. An example of this is shown in Fig. 7.2.
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Fig. 7.1 Scattering of a proton from a nucleus initially at rest.

Fig. 7.2 The number of protons scattered at 908 from a static target containing
10B, as a function of their ®nal energy Ef . Initially the protons were in a colli-

mated beam and had energy 10.02 MeV. Background scattering has been

removed. (Data from Armitage, B. H. & Meads, R. E. (1962), Nucl. Phys. 33,

494.)



In the experiment from which this data is taken, initial protons of

energy 10.02 MeV were scattered from 10
5B, and the graph shows the

number of protons scattered within a small angular range at � � 908 as
a function of their ®nal energy Ef . The peak of the highest energy at

Ef � 8:19 MeV corresponds to elastic scattering, since equation (7.2)

then gives E � 0, that is, no excitation. The values of Ef for the successive

peaks of lower energy give a sequence of excitation energies E of the 10
5B

nucleus (Problem 7.1).

The area under the peak at a particular Ef in Fig. 7.2 is proportional

to the probability of producing the corresponding excited state. This

probability depends both on Ei and on �. Information on the spin and

parity of the state can be obtained from measurements of the angular

dependence of the production probability. Further information on spin

and parity is given by the energies and angular distribution of ÿ-rays that

can result as the excited states decay back to the ground state.

The inelastic scattering of protons as in the above example is a tech-

nique which may be used with nuclei which are not radioactive and which

can be safely made into targets. Another technique, which is suitable for

determining the energy levels of some þ-unstable nuclei also, is that of

deuteron stripping.

In deuteron stripping, a mono-energetic beam of deuterons is directed

at a target nucleus. As well as elastic and inelastic deuteron scattering,

leaving the original, possibly excited, target nucleus, a nuclear reaction

may take place in which the deuteron loses a nucleon into the target

nucleus. Consider for example the reaction represented by

2
1H� A

ZX ! A�1
Z X� � p; �7:3�

in which only the proton emerges.

Here A
ZX is the target nucleus and A�1

Z X is its isotope (perhaps

unstable) with one more neutron. The * denotes a possible excited state.

If the emerging proton in this reaction is at an angle � with respect to

the beam of incident deuterons and has energy Ef , a calculation similar to

that for proton scattering yields for the excitation energy of the ®nal

nucleus, A�1
Z X�, the expression

E � Ei 1ÿ md

m�
A�1

� �
ÿ Ef 1� mp

m�
A�1

� �
� 2

�mpmdEiEf �
1
2

m�
A�1

cos � � E0;

�7:4�
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where now Ei is the incident deuteron energy, md is the deuteron mass

and E0 � �mA �md ÿmA�1 ÿmp�c2 is the difference in rest mass energies

between the initial and ®nal nuclei in their ground states.

Table 7.1 shows the results of a deuteron-stripping experiment,

2
1H� 16

8O ! 17
8O

� � p;

in which a deuteron beam with energy Ei � 14:95 MeV was directed at a

target containing 16
8O and the energies of protons detected at � � 198 were

measured. In this example E0 � 1:93 MeV. The table shows the six pro-

ton groups with the highest energies and the corresponding 17
8O excitation

energies E. The highest-energy proton group with Ef � 16:62 MeV cor-

responds to the production of 17O in its ground state.

Figure 7.3 shows the excitation energies of 17O up to 6 MeV. In this

energy-level diagram the excited states are denoted by horizontal lines at a

height above the ground state that is proportional to the excitation

energy. The ®ve lowest excited states are those determined from the

above deuteron-stripping reaction. The experimental information on

the others will be discussed in }8.1. We shall in general restrict our dis-

cussion to energy levels below about 10 MeV, which is the most impor-

tant energy range for the topics we discuss in later chapters.

Also shown on the energy-level diagram are the lowest energies,

called threshold energies, such that excited states above these thresholds

can break up into the smaller nuclei indicated. These energies are com-

puted from the masses of the nuclei involved. The lowest threshold is for
17O to disintegrate into 16O and a neutron. Below this threshold the

excited states cannot disintegrate into lighter nuclei but they decay elec-

tromagnetically, for example by the emission of a photon, to lower energy

states and, eventually, the ground state.
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Table 7.1

Ef (MeV) 11.42 11.97 12.69 13.50 15.74 16.62

E (MeV) 5.08 4.56 3.85 3.06 0.87 0.0

This shows the mean energies Ef of groups of protons that emerge, from a static
target containing 16O, at an angle of 198 to a 14.95 MeV deuteron beam. Below

are the corresponding excitation energies E of 17O, as calculated using equation
(7.4). (Data from Yakgi, K. et al. (1963), Nucl. Phys. 41, 584.)



The spins and parities of the excited state, some of which are shown

on the diagram, are deduced from measurements of the angular distribu-

tion of the protons from the nuclear reactions which produce the states,

and also from the angular distributions of the photons resulting from the

subsequent decays of the states.

7.2 Some general features of excited states

In general, the heavier the nucleus the more excited states it has. The

deuteron has no excited states and very light nuclei have only a few

well-de®ned excited states. However, the number of excited states

increases rapidly as A increases. Figure 7.4 gives the energy levels up to

9 MeV of the two light nuclei 11
5B and 11

6C. This pair is an example of so-

called mirror nuclei: the number of protons in either one equals the num-
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Fig. 7.3 The 17O energy-level diagram up to an excitation energy of 5.94 MeV.

The ®rst ®ve excited state energies are as determined from deuteron stripping

(Table 7.1). Also shown is the threshold energy at 4.15 MeV for break-up into

a neutron and 16O (the `neutron separation energy' of 17O), and the threshold

energy for break-up into 13C and an �-particle. (For more information see

Ajzenberg-Selove, F. (1982), Nucl. Phys. A375, 1.)



ber of neutrons in the other. The near equality of their energy levels

illustrates the charge independence of the strong force; for this pair of

light nuclei the difference in Coulomb energies is small and the nuclear

physics is almost identical.

A qualitative understanding of the excited states is given by the shell

model. Consider the 11
5B nucleus. The six neutrons ®ll the 1s1

2
and 1p3

2

shells. There are two protons ®lling the 1s1
2
shell and in the 1p3

2
shell two

protons have their angular momenta coupled to zero while the odd

remaining proton gives the ground-state spin and parity 3
2

ÿ
. The ®rst
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Fig. 7.4 Energy-level diagrams for the mirror nuclei 115B and 11
6C. The spins and

parities of the states are also given. Note the proton separation energy from 11
6C at

8.69 MeV, and the �-particle separation energies. (Data from Ajzenberg-Selove,

F. & Busch, C. L. (1980), Nucl. Phys. A336, 1.)



excited state, spin and parity 1
2

ÿ
, can be considered within the shell model

to be the state in which the odd proton is taken from the 1p3
2
shell and

placed in the higher energy 1p1
2
shell. Such a state is known as a single-

nucleon excitation.

Many of the higher energy states will correspond to several nucleon

excitations. The fact that there is a large number of excited states is easily

accommodated within the shell model. If we consider only the 1p3
2
and 1p1

2

shells, the four neutrons can be distributed in ( 64 ) ways over the six

available single-particle neutron states, and the three protons in ( 63 )

ways over the single-particle proton states. Thus we can construct

( 64 ) � ( 63 ) � 15� 20 � 300 independent states ± more than enough to

account for all of the states of negative parity below the �-decay thresh-

old, even allowing for the fact that levels with spin j have �2j � 1�
members.

Figure 7.5 shows energy-level diagrams for two heavier nuclei, 46Ca

and 108Pd. Note in these examples that for a given excitation energy, the

heavier nucleus has a greater density of excited states and, for a given

nucleus, the density of states increases as the excitation energy increases.

These qualitative features are apparent in most nuclei, though near to
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Fig. 7.5 Energy-level diagrams for 46Ca and 108Pd. (Data from Nuclear Data

Sheets of the National Nuclear Data Centre for Nuclear Data Evaluation, Sheet

37 (1982), 290; Sheet 38 (1983), 467: Academic Press.)



closed-shell nuclei the energy gaps between levels tend to be signi®cantly

greater, especially at low excitation energies. Again, the shell model pro-

vides an explanation. The elementary formula (5.4) for the integrated

density of single-nucleon states gives N�E� � E
3
2 for neutrons or protons,

so that the number of single-nucleon states �N in a small energy range

�E is given by

�N
�E

� dN
dE

� 3

2

N
E

: �7:5�

Hence, taking �N � 1, the mean spacing between single-particle neutron

levels at the Fermi energy �EF � 38 MeV;N�EF� � N; see }5.2) is

�E � 2

3

EF

N
� 25

N
MeV; �7:6�

with a similar result for the protons. �E very largely sets the energy scale

for the excited states, so that as N�� A=2� increases they come closer

together.

In the shell model, the lowest-lying excitations can often be associated

with single-particle excitations. At higher energies, several nucleons can

be simultaneously excited, and the increasing density of states with energy

re¯ects the increasing number of possible con®gurations involving many

excited nucleons.

Often, such complex nuclear states can be quite simply described by

models which naturally incorporate multi-particle motion. For example,

the liquid drop with which we started our discussion of nuclei, and

which we deformed in our discussion of spontaneous ®ssion, can be

envisaged to be in an excited state of vibration or one of overall rota-

tion. Although we will not dwell here on these interesting and useful

models, many excited states which it would be clumsy to describe in

terms of the shell model can be justi®ably envisaged as vibrational and/

or rotational states.

The excited states of nuclei are not stable. Their energies, being of the

order of MeV for light nuclei and keV for heavy nuclei, are so high they

play an insigni®cant role in terrestrial thermodynamics. At temperatures

accessible in laboratories they decay to states of lower energy and ulti-

mately to the ground state. We now take up the question of their modes

of instability and their mean lives.
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7.3 The decay of excited states: ÿ-decay and internal conversion

Excited states that have energies below the lowest threshold for break-up

into lighter nuclei decay almost exclusively electromagnetically. The most

prominent mode is ÿ-decay, in which the nucleus changes to one of its

lower energy states and simultaneously emits a single photon. A nucleus

can also decay by internal conversion, which is a process whereby electro-

magnetic energy liberated by the nucleus is taken up by an atomic elec-

tron which is ejected. The energy of the emitted particle, be it photon or

electron, is the energy lost by the nucleus, with corrections for small recoil

effects and, in the case of internal conversion, the electron's atomic bind-

ing energy.

Electromagnetic mean lives can be as long as hundreds of years, or

as short as 10ÿ16 s. The transitions are slow if the change in nuclear spin

is large. To understand this great disparity in decay rates it must be

appreciated that photons, like other particles, have angular momentum,

which is the sum of their intrinsic and orbital angular momentum. The

intrinsic photon spin is one, so that the total angular momentum quan-

tum number j of a photon is integral. The allowed values are

j � 1; 2; 3; . . .; the value j � 0 is not possible: photons do not exist in

states of zero total angular momentum (just as classically, since electro-

magnetic waves are transverse, it is impossible to construct wave-like

solutions of Maxwell's equations with spherical symmetry). If the

nucleus changes its spin from ji to jf in a ÿ-decay, then to conserve

angular momentum

ji � jf 5j 5j ji ÿ jf j;

as is shown in Appendix C. Thus ÿ-ray transitions between states with

ji � 0 and jf � 0 are absolutely forbidden (but transitions by internal

conversion are possible). It may be shown theoretically that transition

rates are much suppressed as j increases; the theory of ÿ-decay and inter-

nal conversion will be discussed more fully in Chapter 12.

As well as angular momentum, parity is conserved in electromagnetic

transitions. The photon parity must be positive if the initial and ®nal

states have the same parity and negative if they have opposite parities.

A photon has parity �ÿ1� j when the decay is `electric' with the nucleus

basically coupling to the electric ®eld of the photon, and parity ÿ�ÿ1� j
when the decay is `magnetic' with the nucleus coupling to the magnetic

®eld of the photon.
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Figure 7.6 shows the results of rough theoretical estimates of ÿ-decay

rates. Precise calculations require a detailed knowledge of the initial and

®nal nuclear wave-functions, which is not generally available. As an

example, consider the decay of the ®rst excited state of 17
8O (Fig. 7.3).

This can only decay to the ground state and, neglecting internal conver-

sion, will do so by emitting an 0.87 MeV photon. (See Problem 7.3 for

recoil effects.) The nuclear spin changes from 1
2 to

5
2 and there is no change

in nuclear parity. Therefore the photon must have positive parity and

j 5j 12 ÿ 5
2 j � 2. The value j � 2 is the most likely photon angular momen-

tum; the value j � 3 is possible but would give a much lower decay rate.

The experimentally observed mean life is �2:58� 0:04� � 10ÿ10 s, in fair

agreement with the value suggested by Fig. 7.6 for an electric transition

with j � 2.
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Fig. 7.6 Estimated mean lives for electric multi-pole radiation of order 2 j as a

function of the energy of the emitted photon, for a nucleus with A � 100.

Corresponding estimates for other nuclei may be obtained by multiplying by

�100=A�2j=3. Mean lives for magnetic multi-pole radiation are generally longer

than those for electric multi-pole radiation of the same order by a factor

�M=�E � 20A
2
3.

(The lines are drawn from formulae given, for example, in Jackson, J. D. (1975),

Classical Electrodynamics, 2nd ed., New York: Wiley, p. 760.)



Measurements of photon energies clearly give information on the

energies of excited states, and such measurements have played a large

part in determining these energies. Measurements of decay rates and of

the angular distributions of the intensity and polarisation of the photons

give information on the `multi-pole' type of the transition. Transitions

with j � 1; 2; 3; . . . ; n; . . ., are referred to as dipole, quadrupole, octapole,

. . . ; 2n-pole, . . ., transitions; each type of transition has its characteristic

lifetime and angular distribution. Unravelling the multi-pole type of a

transition is one of the ways of determining the spins and parities of

the nuclear states involved. Long-lived excited states of nuclei are

known as isomeric states.

7.4 Partial decay rates and partial widths

In general, an excited state of a nucleus has the option of decaying in

several ways. There may be several lower energy states to which it can

decay by ÿ-emission, or it may be able to break up into lighter nuclei. For

example, the 4.56 MeV excited state of 17O (Fig. 7.3) can decay by neu-

tron emission, or by ÿ-emission to any one of four lower energy levels.

With each mode of decay, or decay channel, say the ith, there will be a

partial decay rate 1=�i, and the total decay rate 1=� is simply the sum of

the partial decay rates:

1

�
�

X
i

1

�i
: �7:7�

� is the mean lifetime of the excited state (}2:3�:
The partial width of the ith channel is de®ned to be ÿi � »=�i and the

total width ÿ � »=�, so that

ÿ �
X
i

ÿi: �7:8�

The ÿi and ÿ have the dimensions of energy. It is shown in Appendix D

that an excited state does not have a de®nite energy, but a distribution of

energies of width ÿ about a mean energy E. Hence the relation

ÿ� � » �7:9�
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can be interpreted as a relation between the uncertainty in energy of a

state and its lifetime, rather like the Heisenberg uncertainty relation

between position and momentum of a particle.

The particle decay rates of nuclei for ÿ-emission are rarely greater

than 1016 sÿ1. The corresponding partial widths are thus generally less

than about 5 eV (and the energies of excited states that decay only by ÿ-

emission, expressed in MeV, can be quoted to ®ve decimal places).

7.5 Excited states arising from þ-decay

When a þ-unstable nucleus decays, it may be energetically possible for the

transition to be to an excited state of the daughter nucleus. Although the

immediate energy release for decay to an excited state is less than that for

decay to the ground state, there are many þ-decays in which the selection

rules discussed in }12.2 and }12.6 make decay to an excited state more

likely. The excited state will then itself decay, usually by ÿ-emission.

As an example, Fig. 7.7 shows the decay scheme of 60
27Co, which is þ-

unstable with a mean life of 7.6 years. 60
27Co rarely decays directly to the

ground state of 60
28Ni, but with 99.9% probability it decays to a state with

an excitation energy of 2.50 MeV. The þ-emission is quickly followed by

the emission of two photons with energies of 1.17 MeV and 1.33 MeV,
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Fig. 7.7 The þÿ decay of 60Co illustrated with energy-level diagrams. The decay

takes place predominantly to a state of 60Ni with excitation energy 2.50 MeV,

sometimes to a state with excitation energy 1.33 MeV, and rarely to the ground

state. The spins and parities of the states are also given.



giving a total ÿ energy of 2.50 MeV. In almost all of the remaining 0.1%

of þ-decays, the electron emission is followed by a single-photon emission

of energy 1.33 MeV. Thus there must be two excited states of 60
28Ni

involved in these processes, ordered as shown in the ®gure.
60Co has important uses in medicine and technology as a source of ÿ-

rays. It is manufactured by the irradiation of natural 59Co in a nuclear

reactor.

An extensive and detailed compilation of data on nuclear energy

levels will be found in Firestone, R. B., Shirley, V. S., editor (1996),

Table of Isotopes, 8th ed., New York: John Wiley.

Problems

7.1 From the data given in Fig. 7.2 draw an energy-level diagram for the

nucleus 10
5B.

7.2 Derive equation (7.4).

7.3(a) Using the data of Table 7.1, show that the recoil velocity of a 17O�

nucleus produced in its ®rst excited level is

v � 5:7� 10ÿ3c �E0 � 1:918 MeV�:

(b) If this 17O� nucleus comes to rest before it decays, show that the energy

of the emitted photon is about 24 eV less than the excitation energy of

the nucleus.

(c) If the photon is emitted from the moving nucleus, show that because of

the Doppler effect it will be changed in energy by between ÿ5 keV and

5 keV.

7.4 The binding energies of the mirror nuclei 11
5B and 11

6C are 76.205 MeV

and 73.443 MeV respectively. Assuming that the difference is due

entirely to Coulomb effects, and that the proton charge is uniformly

distributed through a sphere of radius RC in both nuclei, ®nd RC.

This was an early way of estimating the size of a nucleus. Compare

RC with the value R � 1:12A
1
3 fm, and comment on the difference.

7.5 The excited state 17O� at 4.56 MeV (Fig. 7.3) has a mean life of only

1:6� 10ÿ20 s. How can this be so short? Estimate the width ÿ of the

state.

7.6 What type of electromagnetic transition do you expect between a state at

2.13 MeV in 11
5B (Fig. 7.4) and the ground state? Estimate the mean life

of this state.

7.7 Consider the energy levels of 10
5B (Problem 7.1). The ground state has

spin and parity 3�, and the excited states in order of increasing excita-
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tion energy are 1�; 0�; 1�; 2�; 3�; 2ÿ; 2�; . . . . Is there an explanation

within the shell model of why the lowest states all have positive parity?

The ®rst excited energy level is at 0.72 MeV and the second at

1.74 MeV. Given a large number of nuclei in the second excited state,

what energies have the ÿ-rays that result from the decays? Estimate the

relative numbers of these ÿ-rays.
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8

Nuclear reactions

In a nuclear reaction two nuclei, or a nucleon and a nucleus, come

together in such close contact that they interact through the strong

force. The deuteron-stripping reaction of equation (7.3) is one example.

A reaction which contributes to energy generation in stars is

16O� 16O ! 28Si� �� 9:6 MeV; �8:1�

and a nuclear reaction important in power technology is

n� 235U ! fission products:

The latter two are both exothermic reactions in which the kinetic energy

of the ®nal nuclei is greater than that of the initial nuclei. In an endother-

mic reaction energy must be supplied before the reaction will take place,

as in the reaction inverse to (8.1) above.

8.1 The Breit±Wigner formula

The concept of cross-section (Appendix A) is important for understanding

and classifying nuclear reactions. Figure 8.1 shows the total cross-section

for neutrons to interact with the 16
8O nucleus as a function of the kinetic

energy E (in the centre-of-mass system) up to E � 2:3 MeV. The princi-

pal features of the cross-section are the high but narrow resonance peaks,

superposed on a slowly varying background. These peaks are due to the

formation of excited states of 17O from the neutron and 16O at the reso-
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nance energies. When the energy of the incident neutron is such that the

total energy of the system matches, to within the width ÿ, one of the

excited states energies of 17O, the neutron is readily accepted into the

target to form that state. Note that the binding energy of the neutron

in the ground state of the so-called compound nucleus becomes available

as excitation energy. In our example of 17O, if excitation energies are

measured from the ground state the neutron binding energy of

4.15 MeV (cf. Table 4.2 and Fig. 7.3) has to be added to the resonance

energies to obtain the 17O excitation energies. This displaced energy scale

is also given in Fig. 8.1. Thus only those excited states above 4.15 MeV

can appear in the data.

The six peaks which appear in Fig. 8.1 correspond to the top six levels

of the energy-level diagram, Fig. 7.3. The two lowest of these six corre-

spond to states found in the deuteron-stripping reaction we discussed

earlier in }7.1.
It is shown in Appendix D that excited states make a contribution to

the total cross-section in the neighbourhood of the resonance energy E0

of approximately the form
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Fig. 8.1 The total cross-section for neutrons interacting with 16O as a function of

centre-of-mass energy, showing resonances that correspond to the formation of

excited states of 17O (top scale: see also Fig. 7.3). (Data from Garber, D. I. &

Kinsey, R. R. (1976), Neutron Cross Sections, vol. II, Upton, New York:

Brookhaven National Laboratory.)



�tot�E� �
�

k2
gÿiÿ

�E ÿ E0�2 � ÿ2=4
; �8:2�

where k � jkj, and k is the wave-vector of the incoming neutron in the

centre-of-mass frame, ÿi is the partial width for decay into the incident

channel 16O� n, g is a statistical factor (in this case g � �2j � 1�=2 where j
is the spin of the excited state). The expression (8.2) is known as the Breit±

Wigner formula. For ÿ5E0 the cross-section is at a maximum when

E � E0, and falls to half its maximum value at E � E0 � ÿ=2. Thus ÿ

is the `full width at half-maximum' of the peak. The peak width seen

experimentally depends also on the energy spread of the incident neutron

beam (no particle beam is ever perfectly mono-energetic), on the thermal

motion of the nuclei in the target, and on the characteristics of the detec-

tors, so that a careful analysis may be necessary before a true intrinsic

width can be obtained from the raw experimental data.

Consider the peak at E � 0:41 MeV in Fig. 8.1. The estimated width

of the peak, ÿ � 0:04 MeV, corresponds to a mean life of � 1:6� 10ÿ20 s.

This is short compared with mean lives for ÿ-emission, but still quite long

on the nuclear time scale (}5.2) of the oxygen nucleus of � 10ÿ22 s. Such a

long mean life can be understood as resulting from the nature of the

excited state, which is a compound nuclear state in which many nucleons

participate. The neutron entering the nucleus loses its energy by collisions

with other nucleons, and if it loses more than 0.41 MeV it can no longer

escape. The nucleus then stays in the excited state until such time as a

single neutron again acquires enough energy to get away, or (in this case

with much lower probability) the nucleus decays electromagnetically. In

the latter case, if the decay is to the ground state or any other state below

the neutron separation energy, the neutron is captured; this process is

known as radiative capture.

In between resonance peaks, an analysis of the background cross-

section suggests that the nucleus resists penetration by the incident neu-

tron. The neutron appears to be repelled from the surface of the 16O

nucleus at energies off resonance.

Resonance peaks are a feature of all cross-sections for neutron scat-

tering from nuclei with A5 4 and neutron energies up to a few MeV. The

`binding energy of the last neutron' (or separation energy: see equation

(5.6)) which is available for excitation energy usually lies in the range

5 MeV±15 MeV. As explained in }7.2, the density of excited states at

®xed energy increases rapidly with A. Thus for neutron scattering from

heavy nuclei the number of resonances per MeV increases rapidly with A.
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Also, as A increases, the width of the states becomes narrower: the states

become more stable since in the compound nucleus the incoming neutron

has more nucleons with which to share its energy, and the probability of

any one of them acquiring enough energy to escape decreases.

All this is illustrated in Fig. 8.2, which shows the total cross-section at

low energies for neutrons interacting with the heavy nucleus 238
92U. Note

that the horizontal energy scale is in electron volts, and the vertical cross-

section scale is logarithmic. The resonance peaks are associated with the

formation of excited states of 239U, and the spacings between the peaks

are only � 20 eV. The resonances are very narrow, with an intrinsic width

of order 10ÿ2 eV. Indeed, the states are here so narrow that ÿ-decay

competes signi®cantly with other decay modes, and roughly half of the

decays of the excited states formed at these resonances are electromag-

netic and result in radiative capture. The other prominent decay mode is

neutron emission. Less-common modes include �-decay and ®ssion.

For neutron energies that are off resonance the cross-section of Fig.

8.2 is dominated by the neutron scattering from the surface of the 238U

nucleus. However, other nuclear reactions are energetically possible and

may occur. For example, the neutron could pick up two protons and

another neutron from the 238U surface to form an �-particle:

n� 238
92U ! 4

2He� 235
90Th:
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Fig. 8.2 The total cross-section for neutrons interacting with 238U, as a function

of centre-of-mass energy. Note that the vertical scale for the cross-section is

logarithmic and the horizontal energy scale is in electron volts. (Data as in Fig.

8.1.)



Such a reaction, when the neutron energy is off resonance, does not

proceed through the formation of 239
92U, and is known as a direct nuclear

reaction.

8.2 Neutron reactions at low energies

Since neutrons are uncharged there is no Coulomb barrier to overcome;

hence neutrons of very low energy easily penetrate matter and interact

with nuclei. In the limit E ! 0, only elastic scattering and exothermic

nuclear reactions can take place. When a nuclear reaction is possible it

can be expected that the reaction rate at suf®ciently low energies will be

independent of E, and simply proportional to the density of neutrons in

the neighbourhood of the nucleus. The cross-section �ex for exothermic

nuclear reactions is given (Appendix A) by

(neutron flux)� �ex � reaction rate per nucleus.

The neutron ¯ux is �nv (where �n is the neutron number density in the

beam and v is the velocity of the neutrons relative to the target nucleus).

Since the right-hand side of the equation is also proportional to �n, it

follows that

�ex �
�constant�

v
�8:3�

at suf®ciently low energies. This is the behaviour that is seen experimen-

tally.

If the low-energy region lies in the wing of a resonance, the �1=v� law
follows from the Breit±Wigner formula (8.2). In this case, we must take

into account the energy dependence of the partial width ÿi�E�, found in

equation (D.9) of Appendix D. ÿi�E� contains the factor ni�E�, which is

proportional to k (from equations (B.6) and (B.8) of Appendix B). For

E � 0, the Breit±Wigner formula then gives

� � 1

k

�constant�
E2
0 � ÿ2=4

: �8:4�

Since »k � mv, where m is the reduced mass of the neutron and target

nucleus, we recover the �1=v� law. The combination of the �1=v�, or,
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equivalently, �1=E1
2� law with a low-lying resonance is well illustrated in

Fig. 8.3, which shows the low-energy cross-section for cadmium.

In quantum mechanics, non-elastic processes are always accompa-

nied by elastic scattering, just as, in optics, absorption is always accom-

panied by diffraction. The elastic scattering of neutrons by nuclei takes

place through compound nucleus formation and by surface scattering;

the two processes are not independent and must be considered together.

It may be shown that the elastic-scattering cross-section of slow neu-

trons does not follow the �1=v� law but tends to a constant value as

E ! 0. This limiting value depends sensitively on the presence of reso-

nances near threshold. If the target nucleus has spin, the cross-section

also depends on the relative orientation of the spins of the neutron and

nucleus.
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Fig. 8.3 The total cross-section for neutrons interacting with natural cadmium.

The open circles � are experimental points (data as in Fig. 8.1). The line is a ®t

with

�tot �
�constant�

v��E ÿ E0�2 � ÿ2=4� ;

taking E0 � 0:18 eV and ÿ � 0:12 eV. Note that both the scales are logarithmic.

On a logarithmic plot the `1=v' form at very low energies gives a straight line with

a slope of ÿ 1
2 (cf. equation (8.4), v � �2mE�12�. This is evident for E < 0:03 eV.

The very large resonance cross-section is due to 113Cd, which constitutes 12.3% of

natural cadmium.



8.3 Coulomb effects in nuclear reactions

Our discussion of nuclear reactions has so far emphasised reactions invol-

ving neutrons. In a nuclear reaction involving a proton and a nucleus, or

two nuclei, there are seen the same features of resonance scattering with

the formation of a compound nuclear state, and direct nuclear reactions

off resonance.

However, the effect of the Coulomb repulsion between particles in the

initial or ®nal channels of the reaction leads to signi®cant differences in

the reaction cross-sections at low energies below the Coulomb barrier

height. This effect is illustrated in Fig. 8.4, which shows the low-energy

cross-section for the nuclear reaction

�� 13
6C ! n� 16

8O;
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Fig. 8.4 The cross-section for the reaction �� 13C ! n� 16O. The dashed curve

ÿ ÿ ÿ exhibits the large Coulomb suppression at low energies (see text). Note the

resonances at high excited-state energies of 17O (top scale) which are above those

shown in Fig. 7.3. (Data from Blair, J. K. & Haas, F. X. (1973), Phys. Rev. C7,

1356.)



as a function of the centre-of-mass kinetic energy E of the incident nuclei.

The reaction is in fact exothermic, with an energy release of 2.2 MeV

(Fig. 7.3) and so it can in principle occur at any energy. However, at

low energies the �-particle must tunnel through a Coulomb barrier before

it can interact with the 13C nucleus. The barrier is about 4 MeV high. In

classical mechanics a nuclear interaction could not occur for an �-particle

having lower energy than this. In quantum mechanics the particle can

tunnel through, but the low-energy cross-section is much suppressed, as

the ®gure clearly demonstrates. The tunnelling probability for the �-par-

ticle to penetrate the barrier from the outside is the same as the prob-

ability for tunnelling in the other direction, as in �-decay, and this we

estimated in Chapter 6 to be eÿG�E�, where G�E� is given by equation

(6.15) (but with Q replaced by E).

It is usual to parametrise charged-particle reaction cross-sections at

low energies by the expression

��E� � 1

E
S�E�eÿG�E�; �8:5�

and Fig. 8.4 also shows this curve with S�E� chosen to be a constant 0.3

barn MeV to ®t the cross-section at the lowest energies. The background

cross-section below the resonances roughly follows this curve, but large

resonance peaks due to the formation of excited states of 17O are evident.

The precise form of charged-particle nuclear reaction cross-sections

at low energies is of great importance, both in astrophysics and for the

prospect of controlled thermonuclear reactions on Earth. It may be

shown that, as E ! 0, the function S�E� in (8.5) tends to a constant

value, which depends on the particular reaction and is very sensitive to

the proximity of resonances. We can give a qualitative derivation of this

result for the case when the low-energy region lies in the wing of a nearby

resonance. The Breit±Wigner formula (8.2) may be written

��E� � � »3

2mE

gÿ�ÿi= »�
�E ÿ E0�2 � ÿ2=4

; �8:6�

where m is the reduced mass of the interacting particles and ÿi= » is the

decay rate into the incident channel. For energies close to threshold it is

again important to include the energy dependence of ÿi. Recalling the

discussion of �-decay in Chapter 6, we replace the decay rate �ÿi= »� by
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�1=�0�eÿG�E�, where �0 is a constant nuclear time. For E � 0 the expression

(8.6) then reduces to

��E� � � »3

2m�0

gÿ

E2
0 � ÿ2=4

eÿG�E�

E
:

This is of the same form as (8.5) with

S�E� � �

2m

»3

�0

gÿ

E2
0 � ÿ2=4

;

a constant.

If the nuclei in a reaction have charges Z1e, Z2e, the expression (6.15)

for G�E� must of course be generalised slightly: 2Zde
2 is replaced by

Z1Z2e
2, and m becomes the reduced mass of the nuclei involved. At

very low energies rc is large and so G�rs=rc� ! 1. Thus

G�E� � �

»c
Z1Z2e

2

4�"0

ÿ !
2mc2

E

r

� EG

E

r
; say;

where

EG � 2mc2
�Z1Z2e

2

»c�4�"0�

ÿ !2

and

��E� � 1

E
S�0�eÿ �p

EG=E�: �8:7�

8.4 Doppler broadening of resonance peaks

We mentioned in }8.1 that the thermal motion of the nuclei in the target

affects the width of a resonance as seen experimentally. Neutrons in a

beam incident on a target, and mono-energetic with respect to that target,

are not mono-energetic with respect to the individual nuclei in the target,
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since these will be in random thermal motion. The energy that appears in

the Breit±Wigner formula is the energy in the centre-of-mass frame of the

neutron and the target nucleus. If the neutron has velocity v1 and the

nucleus velocity v2, the centre-of-mass energy is

E � 1
2
m�v1 ÿ v2�2 � E1 �

m

M
E2 ÿ 2

m

M
E1E2

� �r
cos �;

where M is the mass of the nucleus, m � mnM=�mn �M� is the reduced

mass, E1 is the centre-of-mass energy when thermal energy is neglected,

E2 is the thermal energy of the nucleus and � the angle between v1 and v2.

The term �m=M�E2 can be neglected if the neutron energy is much

greater than thermal or if the target nucleus is heavy. The thermal energy

E2 is of order of magnitude kBT , where kB is Boltzmann's constant and T

is the temperature of the target. Since cos � lies between ÿ1 and �1, it can

be seen that, when averaged over many nuclei, E will have a spread in

energy about E1 of magnitude

�E � 2
m

M
E1kBT

� �r
:

Thus if a cross-section is measured in the laboratory as a function of E1,

in the neighbourhood of a resonance at energy E0, the Breit±Wigner form

is modi®ed and, in particular, the width of the resonance peak will be

larger than the natural width by an amount of order

�ÿ � 2
m

M
E0kBT

� �r
:

This is Doppler broadening. A more detailed analysis shows that the total

area under the resonance peak is independent of temperature, so that the

height of the peak is reduced as the width increases. This is illustrated in

Fig. 8.5 for a resonance in 238U. (We shall see in Chapter 9 that Doppler

broadening is of crucial importance for the thermal stability of nuclear

reactors.) In the resonance peak of Fig. 8.3, on the other hand, it is easy

to check that the effect of Doppler broadening at room temperature

Tr�kBTr � �1=40� eV� is small.

Data on neutron scattering cross-sections will be found in McLane,

V., Dunford, C. L., and Rose, P. F. (1988), Neutron Cross Sections Vol. 2,

San Diego: Academic Press.
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Problems

8.1 Quantum mechanics gives the total cross-section for scattering from an

impenetrable sphere of radius R at low energies �kR5 1� to be

� � 4�R2. For the cross-section of Fig. 8.2, show that the order of

magnitude of the cross-section between resonances is given by this for-

mula with R the radius of the uranium nucleus, and at a resonance the

order of magnitude is given by ��=2��2, where � is the neutron wave-

length �� � 2�=k�, as is implied by the Breit±Wigner formula (8.2).

8.2 Neutron detectors register individual neutrons by their production of

charged, ionising particles in a nuclear reaction. One method, appropri-

ate to thermal neutrons �E < 0:1 eV� uses the reaction

n� 3
2He ! p� 3

1H� 0:73 MeV:

The cross-section for this reaction, which dominates at low energies,

follows the �1=v� law,
� � 0:039�c=v� b:

The mean distance a neutron travels through 3He gas before it interacts

is l � 1=��He��, where �He is the number density of helium atoms

(Appendix A). What detector thickness is needed, using 3He gas at a

pressure of 10 bars (which gives �He � 2:4� 1026 mÿ3� in order that at

least 90% of incident neutrons with energy 0.1 eV produce ionisation?
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Fig. 8.5 The Doppler broadening of the Breit±Wigner cross-section �ÿ for neu-

tron radiative capture by 238U. The resonance is at 6.67 eV and its natural width is

0.026 eV.



8.3 The nucleus 5
3Li is apparent as a resonance in the elastic scattering of

protons from 4
2He at a proton energy � 2 MeV. The resonance has a

width of 0.5 MeV and spin 3
2
.

(a) What is the lifetime of 5
3Li?

(b) Estimate the cross-section at the resonance energy.

8.4 Figure 9.1(b) shows the measured total cross-section for neutrons inci-

dent on 238U. What conclusion can you draw from the apparent absence

of �1=v� behaviour at low neutron energies?

8.5 The zero-temperature radiative capture cross-section illustrated in Fig.

8.5 is the intrinsic cross-section to which the Breit±Wigner formula is

immediately applicable. The excited state has spin 1
2
, and there are two

signi®cant decay channels; the dominant one is ÿ-emission and the other

is neutron emission. Estimate the relative probability of neutron radia-

tive capture at resonance, and estimate the elastic neutron scattering

cross-section at resonance. (Hint: use equation (D.11).)
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9

Power from nuclear ®ssion

We saw in Chapter 4 that nuclei in the neighbourhood of 56Fe have the

greatest binding energy per nucleon (Fig. 4.7). In principle therefore,

nuclear potential energy can be released into kinetic energy and made

available as heat by forming nuclei closer in mass to iron, either from

heavy nuclei by ®ssion or from light nuclei by fusion. This chapter is

devoted to the physics of nuclear ®ssion and its application in power

reactors. There were, world-wide, some 430 nuclear power stations oper-

ating in 1997, and these generated about 17% of the global electricity

supply. In the UK about 28% of all electricity generated came from

nuclear ®ssion.

9.1 Induced ®ssion

The spontaneous ®ssion of nuclei such as 236U was discussed in }6.3; the
Coulomb barriers inhibiting spontaneous ®ssion are in the range 5±

6 MeV for nuclei with A � 240. If a neutron of zero kinetic energy enters

a nucleus to form a compound nucleus, the compound nucleus will have

an excitation energy above its ground state equal to the neutron's binding

energy in that ground state. For example, a zero-energy neutron entering
235U forms a state of 236U with an excitation energy of 6.46 MeV. This

energy is above the ®ssion barrier, and the compound nucleus quickly

undergoes ®ssion, with ®ssion products similar to those found in the

spontaneous ®ssion of 236U. To induce ®ssion in 238U, on the other

hand, requires a neutron with a kinetic energy in excess of about

1.4 MeV. The `binding energy of the last neutron' in the nucleus 239U

is only 4.78 MeV, and an excitation energy of this amount clearly lies
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below the ®ssion threshold of 239U. The differences in the binding energy

of the last neutron in even-A and odd-A nuclei are incorporated in the

semi-empirical mass formula in the pairing energy term (equation (4.5))

and are clearly evident in induced ®ssion. The odd-A nuclei

233
92U; 235

92 U; 239
94 Pu;

241
94 Pu;

are examples of `®ssile' nuclei, i.e. nuclei whose ®ssion is induced even by

a zero energy neutron, whereas the even-A nuclei

232
90Th;

238
92 U; 240

94 Pu;
242
94 Pu;

require an energetic neutron to induce ®ssion.

9.2 Neutron cross-sections for 235U and 238U

The principal isotopes of naturally occurring uranium are 235U (0.72%)

and 238U (99.27%). Figure 9.1 shows the total cross-sections �tot and

®ssion cross-sections �f of
235U and 238U for incident neutrons of energy

E from 0.01 eV to 10 MeV. Note that both scales on the graphs are

logarithmic. It is useful to divide the energy range into three parts and

pick out the features of particular interest. At very low energies, below

0.01 eV, the �1=v� law is clearly seen in the 235U total and ®ssion cross-

sections, and the cross-sections are large, because of an excited state of
236U lying just below E � 0. The ®ssion fraction �f=�tot is � 84%; the

remaining 16% of �tot corresponds mostly to radiative capture (the for-

mation of 236U with ÿ-ray emission). In contrast, the cross-section for
238U is very much smaller and nearly constant in this region, and is due

almost entirely to elastic scattering.

The second region is that between 1 eV and 1 keV, where resonances

are prominent in both isotopes. These resonances are very narrow and

radiative capture gives a signi®cant fraction of the total widths. This is

particularly true of the resonances in 238U, which are below the ®ssion

threshold in this region; for example, ÿ-decays account for 95% of the

width of the resonance at 6.68 eV.

In the third region, between 1 keV and 3 MeV, the resonances are not

resolved in the measured cross-sections. Compound nuclear states at

these energies are more dense and wider. Thus the probability of radiative

capture is, on average, smaller than at lower energies. The ®ssion cross-

section for 238U appears above 1.4 MeV and the 235U ®ssion fraction
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�f=�tot remains signi®cant. However, in both isotopes at these higher

energies the result of a neutron interaction is predominantly scattering,

either elastic scattering, or at higher energies, inelastic scattering with

neutron energy lost in exciting the nucleus. (The threshold energies for

9.2 Neutron cross-sections for 235U and 238U 117

Fig. 9.1 Total cross-section �tot and ®ssion cross-section �f as a function of

energy for neutrons incident on (a) 235U, (b) 238U. In the region of the dashed

lines the resonances are too close together for the experimental data to be dis-

played on the scale of the ®gures. Note that both the horizontal and vertical scales

are logarithmic. (Data from Garber, D. I. & Kinsey, R. R. (1976), Neutron Cross

Sections, vol. II, Upton, New York: Brookhaven National Laboratory.)



inelastic scattering in 235U and 238U are 14 keV and 44 keV respectively,

which are the energies of the ®rst excited states in these nuclei.) Figure 9.1

shows that the 235U and 238U total cross-sections become similar, around

7 barns, at 3 MeV.

9.3 The ®ssion process

The measured widths of the low-energy resonances in the 235U cross-

section are � 0:1 eV. The compound nuclei formed at these resonances

decay predominantly by ®ssion. Thus we can infer that ®ssion takes place

in a time of the order of

�f �
»
ÿf

� 10ÿ14 s

after neutron absorption (at least at low energies). On the time scales

relevant to this chapter we can regard this as instantaneous.

As with spontaneous ®ssion, there are generally two highly excited

®ssion fragments which quickly boil off neutrons. The average number �

of these prompt neutrons produced per ®ssion in 235U is � � 2:5. The

value of � depends somewhat on the energy of the incident neutron. In

addition there are on average �d � 0:02 delayed neutrons produced per

®ssion, emitted following chains of þÿ-decays of the neutron-rich ®ssion

products (}6.5). The mean delay time is about 13 s.

The total energy release on the induced ®ssion of a nucleus of 235U is,

on average, 205 MeV and is distributed as shown in Table 9.1.

We have divided the energy release into that which becomes available

as heat, and that which is delayed by the long time scale of the þ-decay

chains of the ®ssion products. In the nuclear power industry the latter is

to some extent a nuisance. Some of it is delayed for decades or more and

presents a biological hazard in discarded nuclear waste. That which is

emitted during the lifetime of a fuel-rod is converted into useful heat, but

also presents a problem in reactor safety since there is no way of control-

ling it or turning it off, for example in the case of a breakdown in the heat

transport system. In the steady-state operation of a nuclear reactor we

shall see that ��ÿ 1� of the ®ssion neutrons must be absorbed in a non-

®ssion process somewhere in the reactor. Their radiative capture will yield

a further 3±12 MeV of useful energy in emitted ÿ-rays, which is not

included in the table. As for the neutrinos, their subsequent interaction

118 Power from nuclear fission



cross-sections are so small that almost all of their 12 MeV escapes unim-

peded into outer space.

9.4 The chain reaction

Since neutron-induced ®ssion leads to neutron multiplication, in an

assembly of uranium atoms there is clearly the possibility of a chain

reaction, one ®ssion leading to another or perhaps several more.

Let us ®rst consider some of the length and time scales relevant to a

possible chain reaction in uranium metal, which we consider to be a

mixture of 235U and 238U atoms in the ratio c : �1ÿ c�. The nuclear num-

ber density �nuc of uranium metal is 4:8� 1028 nuclei mÿ3.

The average neutron total cross-section for a mixture of the two

isotopes is

��tot � c�235
tot � �1ÿ c��238

tot

and the mean free path of a neutron in the mixture is

l � 1=�nuc ��tot

9.4 The chain reaction 119

Table 9.1. Distribution of energy release on the induced ®sion of a

nucleus of 235U

MeV

Kinetic energy of ®ssion fragments 167

Kinetic energy of ®ssion neutrons 5

Energy of prompt ÿ-rays 6

Sub-total of `immediate' energy 178

Electrons from subsequent þ-decays 8

ÿ-rays following þ-decays 7

Sub-total of `delayed' energy 15

Neutrino energy 12

205



(cf. Appendix A). l is the mean distance a neutron travels between inter-

actions. For example, the average energy of a prompt neutron from ®s-

sion is about 2 MeV, and at this energy we see from Fig. 9.1 that

�235
tot � �238

tot � 7 barns. Thus l � 3 cm. A 2 MeV neutron travels this dis-

tance in 1:5� 10ÿ9 s.

The conceptually most simple case is that of an `atomic bomb' in

which the explosive is uranium highly enriched in 235U. For simplicity

we take c � 1, corresponding to pure 235U. Figure 9.1 shows that a

2 MeV neutron has an 18% chance of inducing ®ssion in an interaction

with a 235U nucleus. Otherwise, neglecting the small capture probability

at this energy, it will scatter from the nucleus losing some energy in the

process, so that the cross-section for a further reaction may be somewhat

increased. If the neutron is not lost from the surface of the metal, the

probable number of collisions before it induces ®ssion is about six

(Problem 9.4). Assuming the neutron's path is a `random walk', it will

move a net distance of about
���
6

p � 3 cm � 7 cm from its starting point, in

a mean time tp � 10ÿ8 s, before inducing a further ®ssion and being

replaced by, on average, 2.5 new 2 MeV neutrons.

Not all neutrons will induce ®ssion. Some for example will escape

from the surface and some will undergo radiative capture. If the prob-

ability that a newly created neutron induces ®ssion is q then each neutron

will on average lead to the creation of ��qÿ 1� additional neutrons in the

time tp. (We can neglect delayed neutrons in the present discussion.) If

there are n�t� neutrons present at time t, then at time t� �t there will be

n�t� �t� � n�t� � ��qÿ 1�n�t���t=tp�:

In the limit of small �t this gives

dn

dt
� ��qÿ 1�

tp
n�t�;

which has the solution

n�t� � n�0�e��qÿ1�t=tp : �9:1�

The number increases or decreases exponentially, depending on whether

�q > 1 or �q < 1. For 235U the number increases exponentially if

q > �1=�� � 0:4.
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Clearly, for a small piece of 235U with linear dimensions much less

than 7 cm there will be a large chance of escape, q will be small, and the

chain reaction will damp out exponentially. However, a suf®ciently large

mass of uranium brought together at t � 0 will have q > 0:4. There will

be neutrons present at t � 0 arising from spontaneous ®ssion and, since

tp � 10ÿ8 s, a devastating amount of energy will be released even in a

microsecond, before the material has time to disperse. For a bare sphere

of 235U the critical radius at which �q � 1 is about 8.7 cm and the critical

mass is 52 kg. (See Problem 9.6.)

9.5 Nuclear ®ssion reactors

We now consider the fate of a 2 MeV neutron in a mass of natural

uranium �c � 0:0072�. It is possible for a 2 MeV neutron to induce ®ssion

in either of the two isotopes, but since �235
tot and �238

tot are nearly equal at

this energy, the neutron is much more likely to interact with 238U since

this makes up more than 99% of natural uranium. In an interaction with
238U, the probability of ®ssion is only about 5% of that of scattering,

which is the predominant interaction in this energy range. Because the

uranium nucleus is much more massive than a neutron, the neutron

would lose only a small proportion of its energy if it were to scatter

elastically (Problem 9.5(a)). However, a 2 MeV neutron is likely to scatter

inelastically, leaving the 238U nucleus in an excited state, and after one or

two such scatterings the neutron's energy will lie below the threshold for

inducing ®ssion in 238U.

Once its energy lies below the 238U ®ssion threshold, the neutron has

to collide with a 235U nucleus if it is to induce ®ssion. Its chances of doing

this are small unless and until it has `cooled down' to the very low ener-

gies, below 0.1 eV, where the 235U cross-section is much larger than that

of 238U (Fig. 9.1). In fact, before the neutron has lost so much energy it is

likely to have been captured into one of the 238U resonances, and to have

formed the nucleus 239U with the emission of ÿ-rays. In natural uranium

the proportion of ®ssion neutrons which induce further ®ssion is far too

small ever to sustain a chain reaction.

Basically, two routes have been followed to circumvent these dif®cul-

ties in producing a controlled chain reaction in uranium. The most highly

developed technology is that of thermal reactors, some of which are

fuelled by natural uranium. In a thermal reactor, uranium metal, or

more usually the ceramic uranium dioxide, is contained in an array of

fuel elements which are in the form of thin rods. Fission neutrons, while
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still energetic, can escape from the rods into a surrounding large volume

®lled with material of low mass number and low neutron-absorption

cross-section, called the moderator. In the moderator the neutrons lose

their energy principally by elastic collisions (Problem 9.5(b)) and the

volume of the moderator is made suf®ciently large for a high proportion

of the neutrons to reach thermal energies corresponding to the ambient

temperature of the reactor �0:1 eV � 1160 K�. These thermal neutrons, if

captured in the fuel rods, are predominantly captured by 235U nuclei, the

large cross-section of 235U at thermal energies compensating for its low

number-density. Since the neutrons slow down to thermal energies prin-

cipally in the moderator rather than in the fuel rods, capture into the 238U

resonances is largely avoided. The captures into 235U lead to ®ssion with a

probability of �235
f =�235

tot � 84% at thermal energies, and a chain reaction

may be sustained in the reactor in this way. The moderator used in

reactors fuelled by natural uranium is 12C in the form of graphite, or

`heavy water', D2O.

The design criteria of thermal reactors are less stringent if the fuel is

arti®cially enriched with 235U; the reactor can be made much smaller and

it becomes possible to use ordinary water rather than D2O as a modera-

tor, despite the relatively high neutron-absorption cross-section of hydro-

gen through the reaction n� p ! 2H� ÿ � 2:33 MeV. Typical

enrichment in commercial reactors is 2%±3%.

The alternative to the thermal reactor is the fast reactor. In a fast

reactor a moderator is not required, and no large density of thermal

neutrons is established. Fission is induced by fast neutrons ± hence the

name. A fast reactor works because the ®ssion probabilities within the

fuel are increased over those of natural uranium by increasing the pro-

portion of ®ssile nuclei to � 20%. The ®ssile fuel used is 239Pu rather than
235U, for reasons we shall discuss in }9.7.

9.6 Reactor control and delayed neutrons

In a nuclear explosion the delayed neutrons are of no consequence: they

appear after the event. In a power reactor they must be considered, since

fuel rods can remain in the reactor for three or four years. Thus in a

reactor each ®ssion leads to ���� �d�qÿ 1� additional neutrons, where �d
is the number of delayed neutrons per ®ssion.

In the steady operation of a reactor, with a constant rate of energy

production, the neutron density must remain constant so that the reaction

rate remains constant. Thus q must be such that the critical condition
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��� �d�qÿ 1 � 0

is satis®ed.

Reactors are controlled by manipulating q mechanically, using adjus-

table control rods inserted in the reactor. The control rods contain mate-

rials such as boron or cadmium, which have a large neutron-absorption

cross-section in the thermal energy range (Fig. 8.3). Inserting or with-

drawing the control rods decreases or increases q. It is important in the

design of reactors that the critical condition cannot be met by the prompt

neutrons alone, so that

�qÿ 1 < 0

always. Although the lifetime of a prompt neutron in a thermal reactor

may be as long as 10ÿ3 s, rather than 10ÿ8 s which we estimated in pure
235U, this gives an uncomfortably short time scale in which to change q

mechanically and so avoid an accidental catastrophic exponential rise in

neutron density, as given by equation (9.1). However, since the reactor

can only become critical for

��� �d�qÿ 1 � 0

the time scale for a response to small variations in the population of

prompt neutrons is actually determined by the time scale of the delayed

neutrons, and becomes adequate for mechanical control. Problem 9.7

exempli®es this.

A reactor is brought into operation by slowly increasing q and allow-

ing the neutron density to increase until the required power production

and operating temperature is reached. The heat produced, to be used in

the more traditional technology of raising steam and driving turbines, is

carried away by a coolant circulating through tubes which permeate the

core of the reactor, to a heat exchanger outside the reactor. Thus the

coolant is, necessarily, also a moderator, and its nuclear properties as

well as its thermal properties have to be considered. Gas-cooled thermal

reactors have commonly used carbon dioxide under pressure (typically 40

bar). Ordinary water can be used as coolant in reactors using enriched

uranium, such as pressurised-water reactors, in which the water is kept

under high pressure to prevent it boiling. In the case of a fast reactor, the

absence of moderator necessitates a highly compact core which demands

a coolant of high thermal conductivity and high thermal capacity; liquid
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sodium appears to be most suitable and has been used in prototype

reactors.

For thermal stability, it is very important that q, the proportion of

neutrons inducing ®ssion, satis®es the inequality

dq

dT
< 0;

so that an increase in temperature T leads to a fall in q, and hence a fall in

the reaction rate and vice-versa. There are many factors affecting dq=dT ,

arising from the thermal expansion of the various components of the

reactor, changes in the velocity distribution of the thermal neutrons

with temperature, and the effect of Doppler broadening of resonances.

In thermal reactors, Doppler broadening leads to an increase in the neu-

tron absorption in 238U resonances in the fuel rods and gives a signi®cant

negative contribution to dq=dT . Since the resonant cross-sections are

large, neutrons which impinge upon fuel rods and whose energies lie

near to resonances are absorbed close to the surface of the rod. The

broadening of the resonance increases the energy band absorbed and

hence increases the neutron absorption rate.

Parts of the No. 4 RBMK reactor at Chernobyl had dq=dT > 0 under

low power operation. This `design ¯aw' contributed to the catastrophic

accident in 1986. (All other RBMK type reactors have subsequently been

corrected.)

In a fast reactor the effects of Doppler broadening are more compli-

cated since the ®ssion rate in 239Pu resonances is also increased by broad-

ening. It is important for the safety of fast reactors that the net effect on

dq=dT should be negative.

9.7 Production and use of plutonium

So far we have considered only 235U as a nuclear fuel and regarded 238U

with its high radiative-capture cross-section as something of a drawback.

However, the nucleus 239U formed in radiative capture is odd and þ-

decays to the ®ssile nucleus 239Pu:

239
92U

ÿ!
�34 min�

239
93Np� eÿ � ��

# �3:36 days�
239
94Pu� eÿ � ��:
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The nuclear properties of 239Pu are very similar to 235U and, in particular,

it is suitable as a fuel in a nuclear reactor. In a thermal reactor, some of

the 239Pu produced will be burnt up in the lifetime of the fuel rods, and

the remainder may be extracted chemically from the spent fuel later.

Because of the relatively short mean life of plutonium isotopes (239Pu

has a mean life for �-decay of 3:5� 104 years) virtually all plutonium on

Earth is man-made. Large quantities have been produced as a by-product

of the nuclear power industry (and wilfully for the nuclear weapons pro-

gramme).

The value of � for 239Pu is 2.96 for fast neutrons, compared with 2.5

for 235U, so that it is a very suitable fuel for fast reactors. Such reactors

can be designed to breed more ®ssile 239Pu from 238U than is consumed,

using `spare' neutrons. In a fast reactor the central core is, typically,

loaded with 20% of 239Pu and 80% of 238U (`depleted' uranium recovered

from the operation of thermal reactors.) The core is enveloped in a

`blanket' of 238U, and in this blanket more plutonium is made. A fast-

breeder reactor programme can, in principle, be designed to utilise all the

energy content of natural uranium, rather than the 1% or so exploited in

thermal reactors.

Such schemes for burning plutonium in fast reactors have for the

most part been abandoned (}9.9), but 239Pu can be burnt in thermal

reactors in the form of `MOX', a fuel of suitably mixed uranium and

plutonium oxides. Existing power plants designed for enriched uranium

fuel rods may need modi®cation before they can burn MOX: 239Pu differs

from 235U in having a lower fraction of delayed neutrons and a higher

neutron absorption cross-section, so that the use of MOX places more

stringent requirements on the control rods of the reactor.

9.8 Radioactive waste

The operation of a nuclear power programme generates radioactive

waste. After uranium and plutonium have been separated chemically

from the spent fuel, the remaining material, the `waste', consists mainly

of ®ssion products along with some higher actinides which have been

built up from uranium by successive neutron captures. The immediate

products of ®ssion are neutron rich, and hence þ-emitters. The daughter

nucleus from the þ-decay is often formed in an excited state, which then

decays to its ground state by ÿ-emission. þ-decay will then take place

again until the þ-stability valley is reached.
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A complete description of the decay chains is well documented but

complex. Overall, for each ®ssion it is found that on average the rate of

release of ionising energy from the decay products at time t is given, to

within a factor of 2, for times between 1 s and 100 years by the formula

dE

dt
� 2:66

1 s

t

� �1:2

MeV sÿ1: �9:2�

Over this period the energy release is divided roughly equally between

electrons and ÿ-rays. Energy lost to neutrinos is not included. Problem

9.8 indicates how such a simple empirical formula can be used to estimate

properties such as heat output and radioactivity of the waste.

The highly radioactive waste which remains after chemical processing

is kept in acid solution. The generally preferred option for the long-term

storage of this `high level' waste is vitri®cation, followed by deep burial.

Borosilicate glass, which readily dissolves large quantities of ®ssion pro-

ducts and actinides, has been used successfully for vitri®cation. Sites for

deep burial must have stable and suitable geological characteristics for at

least 10 000 years. In the UK, no site for deep burial has yet been found

acceptable to all the parties concerned, and liquid high level waste con-

tinues to be stored above ground in stainless steel tanks.

9.9 The future of nuclear power

The nuclear power scenario sketched out in }9.7 has not actually evolved.

Early economic forecasts of the cost of nuclear power were over-optimis-

tic, and did not take properly into account the cost of decommissioning

power stations at the end of their working life, or the capital cost of

meeting increasingly stringent safety requirements. The nuclear explosion

at the Chernobyl power station in 1986 and its aftermath did nothing to

assuage an already existing public unease about nuclear power.

With fast reactors, there have been dif®cult engineering problems,

associated mostly with the hazardous use of liquid sodium as coolant.

All of the prototype fast reactors in the West have now been decommis-

sioned. In fact, enough high-grade uranium ores have been discovered to

eliminate the need for expensive fast reactors for several decades. It is also

questionable if there is any need for spent fuel to be reprocessed, rather

than simply stored. However, fossil fuels and uranium ores will eventually

run out, and in a century or so fast reactors may be needed.
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Except for France, in the West public hostility to nuclear power and

doubts about its economic viability have made the construction of new

nuclear power stations unlikely in the near future. Investment in nuclear

power continues in France and Japan, both countries having low reserves

of fossil fuels. China has ambitious plans for reactor building (despite

having an abundance of coal).

It is a great merit of nuclear power generation that it does not con-

tribute to `greenhouse gases'. (See Problem 9.2.) This feature may well

become of compelling importance if global warming continues, and no

signi®cant progress is made in the use of non-fossil energy resources such

as hydroelectricity, wind power, and solar power, or in reducing the

energy demand in highly developed countries.

Problems

9.1 The combustion of methane

CH4 � 2O2 ! CO2 � 2H2O;

releases an energy of about 9 eV/(methane molecule). Estimate the rela-

tive energy release per unit mass for nuclear (®ssion) as against chemical

fuels.

9.2 Show that a nuclear power plant producing 1000 MW of heat consumes

about 1 kg of 235U (or other ®ssionable fuel) per day. Show that a power

station burning natural gas and producing 1000 MW of heat will dis-

charge about 4000 tonnes of the greenhouse gas carbon dioxide into the

atmosphere every day.

9.3 Show that the semi-empirical mass formula predicts that for a heavy

nucleus the neutron separation energy (or `binding energy of the last

neutron') is approximately 2� �11:2=A1
2� MeV greater for an even Z

even N nucleus such as 236U than it is for a nearby even Z odd N nucleus

such as 239U.

9.4 Suppose that a neutron induces ®ssion in a nucleus with probability p,

and that otherwise the collision is elastic. Show that the mean number of

collisions it undergoes is 1=p.

9.5(a) A neutron with kinetic energy T0 (non-relativistic) collides elastically

with a stationary nucleus of mass M. In the centre-of-mass system the

scattering is isotropic. Show that on average the neutron energy after the

collision is

T1 �
M2 �m2

n

�M �mn�2
T0:
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(b) Consider the nuclei of a graphite moderator to be pure 12C, with a

number density of 0:9� 1029 nuclei/m3. For neutron energies less than

2 MeV the scattering is elastic, with a cross-section approximately con-

stant � 4:5 b.

Estimate (a) the number of collisions required to reduce the energy of

a 2 MeV ®ssion neutron to a thermal energy of 0.1 eV, and (b) the time

it takes.

9.6 If the neutron density ��r; t� in a material is slowly varying over dis-

tances long compared with the neutron mean free path l, ��r; t� approxi-
mately satis®es the `diffusion equation with multiplication',

@�

@t
� ��ÿ 1�

tp
��Dr2�:

The coef®cient of diffusion is given in simple transport theory by

D � lv=3, where v is the neutron velocity (assumed constant). At a

free surface, the effective boundary condition, again obtained from

transport theory, is

0:71l
@�

@n
� � � 0;

where @=@n denotes differentiation along the outward normal to the

surface.

Using the data given in }9.4, estimate the critical radius of a bare

sphere of 235U. Look for spherically symmetric solutions of the equation

of the form ��r; t� � f �r�e�t, and replace the boundary condition at the

surface r � R by the approximation ��R� 0:71l; t� � 0.

9.7 In a simpli®ed model, the number of neutrons n�t� in a reactor at time t is

given by

dn

dt
� ��qÿ 1�

tp
n� �dq

tp

Z t

ÿ1

n�t 0�eÿ�tÿt 0 �=�þ

�þ
dt 0;

where tp is the mean life of the prompt neutrons and �þ is the mean life of

those ®ssion fragments which produce delayed neutrons.

(a) Show how this equation may be derived, assuming that only one type of

®ssion fragment produces delayed neutrons.

(b) Show that solutions are of the form

n�t� � n0e
�t,

and give the equation for �.
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(c) Show that if tp � 10ÿ4 s, �qÿ 1 � 10ÿ4, and there are no delayed neu-

trons ��d � 0), then n�t� increases exponentially with a time scale of 1 s.

(d) Show that if �þ � 10 s, ��� �d�qÿ 1 � 10ÿ4 and �qÿ 1 � ÿ0:0078 (cor-

responding to � � 2:5, �d � 0:02), n�t� increases exponentially with a

time scale of about 13 minutes.

9.8(a) Show that the mean thermal power from a fuel rod of a reactor that has

been shut down for time t�> 1 s�, after burning with steady power out-

put P for a time T , is approximately

power � 0:07P
1 s

t

� �0:2

ÿ 1 s

T � t

� �0:2
" #

:

(b) Before its catastrophic shut-down, the No. 4 Chernobyl reactor had been

producing about 3 GW of heat. Taking the mean age of its fuel rods to

be T � 1 year, estimate the power outputs from the core at one week,

one month, and one year after the accident. 97% of the radioactive

material remained in the core.

9.9 The critical mass of a bare sphere of 239Pu at atmospheric pressure is M,

say. By what factor must a bare sphere of mass 0:8M be compressed, for

it to become critical? (Assume that the critical radius of a sphere of

plutonium is proportional to the mean free path of a ®ssion neutron.)
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10

Nuclear fusion

In this chapter we describe the nuclear reactions that power the Sun and

thus make possible life on Earth. In contrast to the power from ®ssion

discussed in the preceding chapter, the radiance of the Sun comes from

the fusion of the lightest element, hydrogen, into helium. We then exam-

ine the possibility of controlled nuclear fusion for power production on

Earth.

10.1 The Sun

In stars, the gravitational, the weak, the electromagnetic, and the strong

interactions all play an active and essential role. Our Sun and its planets

are thought to have condensed out of a diffuse mass of material, mostly

hydrogen and helium atoms, some 5� 109 years ago. Table 10.1 gives the

estimated proportions of the ten most abundant nuclei in that mass of

material.

The major attributes of the Sun, determined from a wide variety of

observations, are as follows:

Mass Mÿ � 1:99� 1030 kg

Radius Rÿ � 6:96� 108 m

Luminosity Lÿ � 3:86� 1026 W:

(The luminosity of a star is the total rate of emission of electromagnetic

energy.)

Because of the long range and universally attractive nature of gravity,

a homogeneous mass of gas at suf®ciently low temperature is unstable to

contraction into objects like stars. During contraction of a mass of gas,
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gravitational potential energy is converted into kinetic energy and radia-

tion energy, and the temperature of the gas rises. The rate of collapse is

determined by the extent to which the build-up of pressure in the hot,

dense interior can balance the incessant pressure of gravitational contrac-

tion. In a star like the Sun, as the temperature and density increased, its

rate of contraction was essentially stopped when the interior became hot

enough to ignite the hydrogen-burning reaction that we shall discuss in

detail presently. At this stage in the Sun's evolution, the generated nuclear

power keeps the interior hot enough to sustain the pressure that balances

gravity, and a quasi-static condition is established, a condition that exists

today. This condition is not one of thermodynamic equilibrium, since the

interior is hotter than the outside and the nuclear energy liberated at the

centre is transferred, radiatively and by conduction and convection, to the

surface, where it is radiated out into space, to our bene®t, and gives the

Sun its luminosity.

The principal reactions that power the Sun begin with the conversion

of hydrogen into deuterium:

p� p ! 2
1H� e� � �e � 0:42 MeV: �10:1�

This reaction involves the weak interaction (a proton changes to a neu-

tron), and so occurs very rarely. It is the weak interaction that sets the

long time scale of the quasi-static state of the Sun.

The positron produced in the reaction quickly annihilates with an

electron to release a further 1.02 MeV of energy. The deuterium is con-

verted to 3He:

p� 2
1H ! 3

2He� þ � 5:49 MeV; �10:2�

which in turn fuses to 4He:
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Table 10.1. The proportion by number, relative to carbon, of the ten most

abundant atoms in the Solar System at its birth

H He C N O Ne Mg Si S Fe

2400 162 1.0 0.21 1.66 0.23 0.10 0.09 0.05 0.08

Data from Cameron, A. G. W. (1992), in Essays in Nuclear Astrophysics, ed. C. A.
Barnes, D. D. Clayton & D. N. Schramm. Cambridge University Press, p. 23.



3
2He� 3

2He ! 4
2He� p� p� 12:86 MeV: �10:3�

Thus the net result of these reactions, which are called the `PPI chain', is

the conversion of hydrogen to helium with an energy release of

26.73 MeV per helium nucleus formed. The neutrinos emitted in the

p±p reactions take an average 0.26 MeV of energy each. This energy is

lost into outer space, but is not included in the observed luminosity. Thus

each hydrogen atom consumed in this process leads to the emission of

6.55 MeV of electromagnetic energy from the Sun.

The observed solar luminosity implies that Lþ=�6:55 MeV� � 3:7�
1038 hydrogen atoms are converted into helium per second. This rate of

conversion, over the lifetime of the Sun, gives a total of 5:4� 1055 con-

versions. The Sun's mass and composition show that it started with about

8:9� 1056 hydrogen atoms. We can conclude that less than 10% of the

hydrogen of the Sun has so far been consumed, and appreciate the long

time scale of this stage of stellar evolution.

Figure 10.1 shows the density, temperature and thermonuclear-power

density from a model calculation of the Sun as it is now. It it interesting to

note that 50% of the mass is within a distance of Rþ=4 from the centre,

and 95% of the luminosity is produced in the central region within a

distance of Rþ=5, where the temperature is such that kBT 0 1 keV. (kB
is Boltzmann's constant and kBT � 1 keV when T � 1:16� 107 K.)

A simple order-of-magnitude calculation shows that the gravitational

energy released in contraction, before the quasi-static period began, is

suf®cient to produce such temperatures:

gravitational energy � GM2
þ

Rþ
� 3:8� 1041 J;

where the gravitational constant G � 6:67� 10ÿ11 m3 kgÿ1 sÿ2. This

energy would give � 1 keV of kinetic energy on average to every particle,

nuclei and electrons. At these temperatures the hydrogen and helium

atoms will be completely ionised; material in this condition is known as

plasma.

10.2 Cross-sections for hydrogen burning

We turn now to a more-detailed examination of the nuclear physics

involved in hydrogen burning. Reactions involving charged particles

were discussed in }8.3, where the role of the Coulomb barrier was empha-
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sised. For energies in the range of keV we shall use the low-energy expres-

sion for charged-particle reactions given by equation (8.7):

��E� � 1

E
S�0�eÿ �p

EG=E� �10:4�

where
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Fig. 10.1 (a) Mass densities and (b) the thermonuclear power density " and the

temperature T , in the modern Sun as a function of distance r from the centre.

(Taken from model calculations by Bahcall, J. N. et al. (1982), Rev. Mod. Phys.

54, 767.)



EG � 2mc2
�Z1Z2e

2

»c�4�"0�

ÿ !2

:

A more accurate expression may be necessary if there is a resonance in the

keV energy range.

Direct measurements of the cross-sections of reactions (10.2) and

(10.3) at energies of 1 keV have not been made since they are so small,

but values of S�0� are known by extrapolation from measurements at

higher energies. The p±d reaction (10.2) has been measured down to

15 keV and Spd�0� � 2:5� 10ÿ7 MeV b. The helium±helium reaction

(10.3) has been measured down to 33 keV, giving Shh�0� � 4:7 MeV b.

The p±d cross-section is small because it necessarily involves a þ-transi-

tion to satisfy both energy and momentum conservation. The p±p reac-

tion (10.1), the ®rst stage of hydrogen burning, has a cross-section which

is lower by many orders of magnitude because it involves the weak inter-

action. Although the reaction is crucial, the cross-section is so small that

it has not been directly measured in a laboratory at any energy.

Fortunately we have such a precise theory of the weak interaction that

the cross-section, and Spp�0�, can be calculated with some con®dence; it is

found that

Spp�0� � 3:88� 10ÿ25 MeVb: �10:5�

This order of magnitude is not too dif®cult to understand. As is explained

in Chapter 3, the proton±proton nuclear potential has been determined

from scattering experiments. From the potential, the low-energy proton±

proton nuclear-scattering cross-section can be calculated. Although there

is no resonance, the nuclear attraction makes the cross-section quite large,

36 barns, at energies 01 MeV which are low but are above the Coulomb

barrier. Reaction (10.1) involves the protons coming together within the

range of the nuclear force (Fig. 3.2) and, while they are together, a ÿ-

decay taking place. We can estimate the probability of this ÿ-decay by

probability � a typical nuclear time

a ÿ-decay time
:

Consider the cross-section at 1 MeV. Since the energy released in the

reaction is comparable with the energy released in the ÿ-decay of a free

neutron, it is reasonable to take the ÿ-decay time to be the neutron life-

time, 887 s, and the nuclear time is � 1023 s (}5.2). The cross-section for
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the proton±proton to deuteron reaction at 1 MeV should thus be of the

order

� � �36 b� � 10ÿ23 s

887 s

ÿ !
� 4� 10ÿ25 b:

Since the energy of 1 MeV is above the Coulomb barrier, we can infer

that Spp � 4� 10ÿ25 MeV b. This excellent agreement with equation

(10.5) is fortuitous, but the argument does make intelligible the order

of magnitude of this key quantity.

10.3 Nuclear reaction rates in a plasma

During the early cold stages of stellar contraction, nuclei do not have

kinetic energies high enough, compared with the Coulomb barriers

between them, for the barrier penetration probability to be signi®cant.

To obtain the reaction rate for a process in the interior of a star and see

how it depends on temperature, we must average suitably over the ener-

gies of the particles involved. The calculation is an important one so we

shall set it out here.

Consider the nuclei in a volume of plasma small enough for the

temperature and number densities to be considered uniform. We shall

assume that the velocities of the nuclei are given by the Maxwell±

Boltzmann distribution, so that the probability of two nuclei having a

relative velocity v in the range, v, v� dv is given by

P�v�dv � 2

�

� �1
2 m

kBT

� �3
2

eÿmv2=2kBTv2dv;

where m is the reduced mass of the pair. (The centre-of-mass motion has

been factored out.)

If the nuclei are labelled by a, b, with number densities �a, �b, the

number of reactions per unit time per unit volume is

reaction rate per unit volume � K�a�b�v�ab�; �10:6�

where �ab is the cross-section for the reaction, and the bar denotes the

average over the velocity distribution. Equation (10.6) follows from the

discussion of reaction rates in Appendix A. The factor K � 1 if the nuclei

are different and K � 1
2
if the nuclei are the same.

10.3 Nuclear reaction rates in a plasma 135



We have

v�ab �
Z 1

0

v�abP�v�dv:

Changing variables to E � mv2=2, and using the low-energy formula

(10.4) for the cross-section, this becomes

v�ab �
8

�m

� �1
2 1

kBT

� �3
2

Sab�0�
Z 1

0

eÿ��E�dE; �10:7�

where ��E� � E=kBT � �p
EG=E�.

The function eÿ��E� is sharply peaked. It falls off rapidly at high

energies because of the Boltzmann factor, and at low energies because

of the barrier-penetration factor. The peak lies at E � E0 where ��E� is a
minimum, i.e. where d�=dE � 0, which gives

E0 � �EG�
1
3�kBT=2�23:

Figure 10.2 is a graph of eÿ��E� appropriate to the p±p reaction at the

centre of the Sun.
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proton±proton reaction at kBT � 1:34 keV.



As it stands, the integral cannot be performed analytically, but the

main contribution comes from the peak. It is possible to replace ��E� in
the neighbourhood of E0 by a simpler expression, leading to an analytic

result for the integral (which is also a good approximation). The Taylor

expansion of ��E� about E0 gives

��E� � ��E0� � 1
2
�E ÿ E0�2� 00�E0�;

where

��E0� � 3�12�
2
3�EG=kBT�13;

� 00�E0�; � 3�1
2
�13Eÿ1

3

G �kBT�ÿ5
3:

The linear term does not appear, since � 0�E0� � 0. With this approxima-

tion, the integrand is replaced by a Gaussian peak and the integration

range can be extended down to E � ÿ1 with negligible error. We have

then, remembering the result
R1
ÿ1 eÿax2dx � ��=a�12, the fairly simple

expression

v�ab � 8
9Sab�0�

2

3mEG

� �1
2

�2eÿ�

with

� � 3�12�
2
3�EG=kBT�13 � 3

mc2

2kBT

ÿ !1
3
�ZaZbe

2

»c�4�"0�

ÿ !2
3

: �10:8�

For practical calculations, taking the masses of nuclei to be A� (one

atomic mass unit) gives

v�ab �
7:21� 10ÿ22

ZaZb

�Aa � Ab�
AaAb

Sab�0�
1 MeV b

� �
�2eÿ� m3 sÿ1;

and

� � 18:8
Z2

aZ
2
bAaAb

Aa � Ab

ÿ !1
3
1 keV

kBT

� �1
3

:
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Note that the temperature dependence of v� lies entirely in the factor

�2eÿ�.

The temperature dependence is dramatic, as also is the dependence on

the nuclear species involved. Both are illustrated in Fig. 10.3, which

shows plots of �2eÿ� against temperature for several reactions of astro-

physical interest. Note that the vertical scale extends over a range of 1060!

For a given set of nuclear reactions, we can write down equations

giving the rate of change of the number densities � of the nuclei partici-

pating, in a region of given temperature. For example, considering the

PPI reactions and writing �ab � v�ab, we have, from reactions (10.1) and

(10.2) and equation (10.6),

@�d
@t

� 1
2
�pp�

2
p ÿ �pd�p�d:

Because of the long time scale of hydrogen burn-up, �p may be regarded

as constant in this equation, giving the solution

�d�t� � �1
2
�pp=�pd��p�1� Ceÿ�pd�pt�;
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where C is a constant.

Using the numerical values for Spp�0� given in }10.2, and a tempera-

ture and density appropriate to the centre of the Sun, from Fig. 10.1, we

®nd that the time constant for establishing equilibrium is ��pd�p�ÿ1

� 3:3 s. Thus our assumption that �p could be treated as a constant

was valid. In equilibrium, the ratio �d=�p � 1
2�pp=�pd � 1:5� 10ÿ18. The

low density of deuterium accounts for our neglect of d±d reactions (which

are considered in }10.6).

10.4 Other solar reactions

Our account above of hydrogen burning in the Sun is not complete. There

are other ways of consuming the 3He formed in reaction (10.2). The

presence of 4He in a star leads to the formation of 7Be:

3
2He� 4

2He ! 7
4Be� þ � 1:59 MeV: �10:9�

7Be is unstable to the capture of a free electron from the plasma to form
7Li:

7
4Be� eÿ ! 7

3Li� �e � 0:86 MeV; �10:10a�

or, with 10.3% probability, to form an excited state 7
3Li

�:

7
4Be� eÿ ! 7

3Li
� � �e � 0:38 MeV; �10:10b�

which then decays:

7
3Li

� ! 7
3Li� þ � 0:48 MeV:

7
3Li is quickly broken up by a proton into two helium nuclei:

7
3Li� p ! 4

2He� 4
2He� 17:35 MeV: �10:11�

These reactions form the `PPII chain'.

Alternatively, the 7
4Be may interact with a proton to form 8

5B:

7
4Be� p ! 8

5B� þ � 0:14 MeV: �10:12�
8
5B is unstable to ÿ-decay,
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8
5B ! 8

4Be
� � e� � �e � 14:02 MeV; �10:13�

and 8
4Be

� breaks up into two helium nuclei:

8
4Be

� ! 4
2He� 4

2He� 3:03 MeV; �10:14�

this is the `PPIII chain'. The positron annihilates with an electron to

release a further 1.02 MeV.

The relative importance of the PPII and PPIII chains, compared with

the PPI chain, can be calculated from the appropriate set of rate equa-

tions; in the standard model of the Sun, the PPI chain is the main process.

Another interesting set of reactions resulting in the burning of hydro-

gen to helium is the `CNO' cycle. The presence of any of the nuclei 12
6C,

13
6C,

14
7N or 15

7N catalyses the burning by the set of reactions

12C� p ! 13N� þ; 13 N ! 13C� e� � �e
13C� p ! 14N� þ
14N� p ! 15O� þ; 15O ! 15N� e� � �e
15N� p ! 12C�4He:

�10:15�

The weak interactions in the cycle are not compelled to occur in a ¯eeting

10ÿ23 s, as in the p±p reaction, but can proceed at their leisure in the usual

ÿ-decay times. Carbon and nitrogen nuclei are known to be present in the

Sun (Table 10.1), but at the temperatures of the Sun the reaction rates are

greatly suppressed by the Coulomb barrier (Fig. 10.3), and the CNO cycle

probably accounts for only about 3% of stellar hydrogen burning. In

hotter stars the CNO cycle may dominate over the PP chains, since the

CNO cycle reaction rates increase more rapidly with temperature (Fig.

10.3 again).

10.5 Solar neutrinos

The solar reactions described in }10.1 and }10.4 lead to a considerable ¯ux

of neutrinos through the Earth. The ¯ux spectra predicted by the stan-

dard solar model are shown in Fig. 10.4. The band spectra result when the

neutrino is produced with an accompanying positron. For example, pp

refers to the process described by equation (10.1). Line spectra result

when there is no accompanying positron to share the energy release.
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The line spectra marked 7Be come from the processes (10.10a) and

(10.10b). The pep line is from the three-body reaction

p� eÿ � p ! 2
1H� �e � 1:44 MeV: �10:16�

This is a very rare alternative to the process (10.1). Almost all of the

1.44 MeV released is taken by the neutrino and so does not serve to

heat the plasma. The hep spectrum comes from another very rare reac-

tion, converting 3
2He into 4

2He:

p� 3
2He ! 4

2He� e� � �e � 18:77 MeV: �10:17�

This is an alternative to the main mechanism given by equation (10.3).

The cross-sections for neutrino interactions are so small that solar

neutrinos arrive at the Earth more or less directly from the thermonuclear

furnace at the Sun's core. Measurements of the solar neutrino spectrum

provide a valuable check on our understanding of the Sun, and in fact the

measurements have also provided valuable information on the nature of

neutrinos themselves.
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Fig. 10.4 The solar neutrino spectra predicted by the standard solar model.

Spectra for the pp chain are shown by solid lines and those for the CNO chain

by dashed lines. (See Bahcall, J. N. and Ulrich, R. K. (1988), Rev. Mod. Phys. 60,

297.)



Two basic techniques have been employed, that cover different

regions of the spectrum. The lowest energies are probed through the

neutrino reaction

�e � 71
31Ga� 0:23 MeV ! 71

32Ge� eÿ: �10:18�

As can be seen from Fig. 10.4, over 99% of all the solar neutrinos in the

energy range from the threshold energy for the reaction, 0.23 MeV, up to

a maximum energy of 0.42 MeV, come from the basic pp reaction (10.1).

Only the gallium experiments cover this low-energy region.

Although low-energy solar neutrinos are copious, their interaction

cross-section is particularly small (see }13.1). At the GALLEX experi-

ment in Italy, 30 tons of gallium in a GaCl3±HCl solution serves as target.

The germanium produced binds chemically to form the volatile molecule

GeCl4, which is collected in the vapour above the liquid. The production

rate of germanium (a few molecules per day) is determined by observing

the characteristic Auger electrons and X-rays emitted in the K-capture

decays of 71Ge:

71
32Ge� eÿ ! 71

31Ga� �e:

At the Homestake Mine experiment in the USA, the neutrino ¯ux is

measured through the reaction

�e � 37
17Cl� 0:81 MeV ! eÿ � 37

18Ar: �10:19�

The detector in this experiment consists of 615 tons of liquid perchlor-

oethylene, C2Cl4. (The natural abundance of 37Cl is 24%.) The argon

produced in the experiment is extracted, and measured by monitoring

its decay by K-capture, in a similar way to the gallium experiment. The

threshold energy of 0.81 MeV makes the 37Cl detector blind to the neu-

trinos from the pp reaction. The detector is particularly sensitive to high-

energy neutrinos from the 8B decay of equation (10.13).

An entirely different technique is used at the SuperKamiokande

detector in Japan. This looks for elastic scattering of solar neutrinos

from electrons in the target:

�e � eÿ ! � 0
e � eÿ

0
:
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The target is � 20 kilotonnes of very pure water, H2O. In many materials,

the atomic nuclei have large cross-sections for electron production

through reactions like (10.18) or (10.19). However, in the case of H2O

there is no such reaction for a proton, and the threshold energy for

electron production from 16
8O (the principal 99.7% stable isotope of oxy-

gen) is 14.9 MeV ± too high for all but a few solar neutrinos. Elastic

scattering from the electrons is thus the dominant reaction of solar neu-

trinos in water.

The water acts not only as target but also as detector. The scattered

electrons emit Cerenkov light, which is registered by photomultipliers. To

reduce background, counting is restricted to electrons with a recoil energy

greater than about 7 MeV. Hence the detector is sensitive only to 8B and

hep neutrinos.

The Cerenkov radiation gives information on the scattered electron's

direction, which is close to that of the incident neutrino. This directional

capacity makes water detectors more discriminating instruments than

gallium or chlorine detectors. Water detectors can also time individual

events. We shall see signi®cant applications of timing in }11.4.
For all neutrinos, event rates are necessarily very low, of the order of

one per day, and much patience is required to build up a signi®cant data

set. However, after several years accumulating data, all detectors tell a

consistent and signi®cant story: over the whole spectrum the event rate is

about one-half the expected rate. It is not thought that this discrepancy is

the result of our misunderstanding of the Sun, but that it is due to the

nature of neutrinos themselves. We reserve until Chapter 13 the explana-

tions and implications of these observations.

10.6 Fusion reactors

For the generation of nuclear fusion power on Earth the immeasurably

slow p±p reaction is useless. However, Coulomb barriers for the deuteron,
2
1H, are the same as for the proton, and the exothermic reactions

2
1H� 2

1H ! 3
2He� n� 3:27 MeV;

2
1H� 2

1H ! 3
1H� p� 4:03 MeV;

�10:20�

suggest deuterium to be a suitable fuel for a fusion power station. The

natural abundance of deuterium is large, 0.015% of all hydrogen, and
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supplies of deuterium, in sea water for example, are effectively unlimited.

The mass ratio of 2:1 makes isotope separation relatively easy.

Current research is more concerned with deuterium±tritium mixtures

as fuel, using the reaction

2
1H� 3

1H ! 4
2He� n� 17:62 MeV: �10:21�

This has two advantages over the reactions (10.20). First, the heat of

reaction is greater. Second, and more important, the cross-section is con-

siderably larger (Fig. 10.5), because of an excited state of 5
2He which gives

a resonance in the cross-section. The principal disadvantage is that tri-

tium, 3
1H, must be manufactured; it has no natural abundance since it

undergoes ÿ-decay with a mean life of 17.7 years. As Fig. 10.5 shows, the

peak of v� is at kBT � 60 keV, and a temperature of 20 keV is regarded

as a practical working temperature by fusion researchers.

A plasma at a temperature of 20 keV will vaporise any material con-

tainer with which it comes into contact; current projects generally involve

pulsed devices which contain and heat the plasma for short bursts of time

only. For example, the moving electrically charged particles of the plasma

may be con®ned for short times, and even compressed, by magnetic ®elds,
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terium reactions (10.20) and the deuterium±tritium reaction (10.21). (Data from

Keefe, D. (1982), Ann. Rev. Nucl. Part. Sci. 32, 391.)



and heated by electromagnetic ®elds. Instruments such as the Joint

European Torus (JET) at Culham are investigating these possibilities.

Inertial con®nement, by the implosion of small pellets containing the

deuterium±tritium fuel mixture, with the energy for implosion provided

by pulsed laser beams, is another active area of research. A continuing

series of `mini-explosions' of such pellets, each containing a few milli-

grams of fuel, is envisaged. The scenario for such a reactor usually

includes lithium in the heat-exchange blanket, since this provides a way

of breeding tritium through the reactions

7Li� n� 2:46MeV ! 3H� �� n;
6Li� n ! 3H� �� 48 MeV:

(The natural abundances of 6Li and 7Li are 7.4% and 92.6% respec-

tively.) The endothermic ®rst reaction can be brought about by the fast

neutrons produced in the deuterium±tritium reaction, and it is clear that

in principle a breeding ratio of greater than one is possible.

To achieve a temperature T in a deuterium±tritium plasma there must

be an energy input to the plasma of 4�d�3kBT=2� per unit volume, where

�d is the number density of deuterium ions and of tritium ions (i.e.

�t � �d, and the electron density is 2�d, giving 4�d particles per unit

volume). The reaction rate in the plasma is �2d�v. If the plasma is con®ned

for a time tc then, per unit volume of plasma,

fusion energy output

energy intput
� �2d�vtc�17:6 MeV�

6�dkBT

� �10ÿ19 m3 sÿ1��dtc;
�10:22�

evaluating the right-hand side at kBT � 20 keV with the help of Fig. 10.5.

The plasma heating is certainly inef®cient, so that a substantial frac-

tion of useful energy is lost in this process, and the conversion of fusion

energy to electricity is also (necessarily) inef®cient. Hence a requirement

for a useful device is that (fusion energy output)/(energy input) >1, say.

From equation (10.22), this is equivalent to the criterion

�dtc > 1019 mÿ3 s. This is known as the Lawson criterion. More stringent

formulations can be constructed for particular devices.

It should be appreciated that the engineering problems associated

with either magnetic or inertial con®nement as a basis for a working

power station are immense and have not so far been solved in practice.
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The Lawson criterion provides an estimate of how close a particular

design is to achieving practical results.

10.7 Muon-catalysed fusion

To end this chapter, we shall describe muon-catalysed fusion. This process

is experimentally well established, and quite well understood theoreti-

cally. The most interesting case, with power production in mind, is that

of muons incident on a dense mixture of deuterium D2 and tritium T2

molecules.

Muons result from the predominant mode of decay of negative pions

(see Fig. 3.5):

�ÿ ! �� ���:

The mean life of a charged pion is 2:60� 10ÿ8 s. The muon also decays

through the weak interaction (see }2.5):

� ! �� � eÿ � ��e;

but it has a much longer mean life of 2:2� 10ÿ6 s. Thus a beam of

negative pions is rapidly converted into a beam made up almost entirely

of muons. Pions are produced in nuclear reactions when particles accel-

erated to high energy interact with target nuclei. The energy cost of

producing muons by this route is estimated to be � 5 GeV per muon

(very much greater than the rest mass energy of the muon � 106 MeV).

The atomic and molecular physics of nuclei and muons is very similar

to that of nuclei and electrons, except for differences in scale. To a ®rst

approximation, binding energies scale by the mass ratio �m�=me� � 207,

and distances scale by �me=m�� � 1=207. The characteristic energy unit of

atomic and molecular physics, 1 Rydberg � me�e2=4�"0�2=2 »2 � 13:6 eV,

is replaced by its muonic equivalent,

m��e2=4�"0�2=2 »2 � 2:81 keV:

The Bohr radius, a0 � �4�"0� »2=mee
2 � 0:529 A

�
is replaced by the muo-

nic Bohr radius,

a� � �4�"0� »2=m�e
2 � 256 fm:
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In particular it is energetically highly favourable for muons to displace

electrons in atoms.

A muon incident on the D2±T2 mixture will lose energy mainly by

collisions with the electrons binding the D2 and T2 molecules (see Chapter

14), and when it has slowed suf®ciently it will break up a molecule and

take the place of an electron in either a deuterium or tritium atom.

Initially it is likely to be a highly excited state of this muonic atom, but

it will quickly cascade down to its ground state. Furthermore, muons

initially bound to deuterons in a �d�� atom will transfer to tritons in

subsequent collisions, since they are more tightly bound in the ground

state of a �t�� atom by 48 eV (Problem 2.9). The details of these processes

are complicated, but they are rapid, and happen in < 10ÿ8 s at liquid

hydrogen density.

The neutral �t�� atom is very small on the scale of a D2 molecule. It

can therefore move almost freely through the electronic cloud of a D2

molecule to join with a deuteron to form a �d�t�� ion. This ion is a

muonic analogue of the hydrogen molecular ion �H2��. The process of

formation is very rapid compared with other possible competing pro-

cesses, occurring in � 5� 10ÿ9 s. The reason for this is the existence of

a loosely bound (highly excited) state of the �d�t�� ion which, by hap-

penstance, is almost in resonance with an excited vibrational state of the

composite �d�t�� ee d molecule. Thus the energy released by the forma-

tion of the �d�t�� ion can be transferred and dissipated.

The �d�t�� ion will fall to its ground state, losing energy to electrons.

In this ground state the distance between the d and t nuclei is reduced by a

factor �200, compared with the distance �1 A
�

between the hydrogen

nuclei of a H�
2 ion, and hence is �500 fm. Quantum tunnelling through

the Coulomb barrier allows the deuterion and triton to interact in

�10ÿ12 s (see Problem 10.6):

d� t ! 4
2He� n� 17:62 MeV;

as in (10.21).

The nuclear energy released is taken up by the high recoil energies of

the �-particle and neutron. The muon is usually freed, to repeat the cycle

(Fig. 10.6). However there is a small `sticking probability' !s that the

muon is captured by the positively charged �-particle, and may remain

bound until it decays. Theoretical estimates give !s � 0:8%. Though

small, this probability (rather than the mean life of the muon) is the

limiting factor in the number of fusions a muon can on average catalyse.
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10.2 Why is the hydrogen content of the Earth so much less than that indi-

cated in Table 10.1?

10.3 In the ÿ-decay of 8B, the neutrino takes on average about half of the

energy released. Estimate the contribution to the Sun's luminosity per

hydrogen atom consumed in the PPIII chain.

10.4 From Fig. 10.1, at the centre of the Sun kBT � 1:35 keV and the mass

density of hydrogen is 5:6� 104 kg mÿ3.

(a) Using equations (10.5), (10.6) and (10.8) estimate the contribution to the

power density " from the PPI chain. Compare your result with Fig.

10.1(b).

(b) For the 12C±p reaction of the CNO cycle, S�0� � 1:4 keV b. Estimate

the mean time it takes for a 12C nucleus at the centre of the Sun to be

converted to 13N.

10.5 A deuterium±tritium plasma contains �d deuterium and �d tritium nuclei

per unit volume.

(a) Show that to a good approximation �d�t� varies with time as

d�d=dt � ÿ�2d�v, where � is the cross-section for the reaction

d� t ! He� n� 17:62 MeV:

(b) If the plasma is brought together at time t � 0 with �d � �0, and con-

®ned for a time tc at constant temperature, show that the proportion of

the plasma `burnt up' is

�v��0tc�
1� �v��0tc�

:

(c) At kBT � 20 keV, �v � 5� 10ÿ22 m3 sÿ1. What Lawson number ��0tc�
would be required to burn 5% of the fuel?

10.6 Take the SchroÈ dinger equation for the relative motion of a deuteron and

triton bound by a muon to be

ÿ� »2=2M�r2ý� V�r�ý � Eý

where V�r� � e2

4�"0r
� Kr2, M � mdmt

�md �mt�
� 1125 MeV=c2; M is the

reduced mass of the system. The term e2=�4�"0r� gives the Coulomb

repulsion between the nuclei and the term Kr2 models the muon binding.

(a) Sketch V�r�, and show that it has a minimum at r � r0 where

r30 � �e2=4�"0�=2K .

(b) Show that classically the system can make small oscillations about r � r0
with frequency !, where
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!2 � 3�e2=4�"0�=Mr30:

(c) What is the quantum energy of the system in its ground state, if

r0 � 500 fm?

(d) Using the formula (6.15), suitably modi®ed, estimate the probability of

tunnelling through the Coulomb barrier at this energy.

(e) Hence estimate the mean life of the system.
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11

Nucleosynthesis in stars

In the preceding chapter we explained how in a star like the Sun helium is

steadily formed from the fusion of hydrogen. In this chapter we sketch

some of the basic ideas of `nuclear astrophysics', a subject which seeks to

understand all the nuclear processes leading to energy generation in stars

in the various stages of stellar evolution, and to account for the observed

relative abundances of the elements in the Solar System in terms of these

processes.

The accepted theory of the Universe is that it is expanding, and began

with an intensely hot and dense `big bang' between 10� 109 and 20� 109

years ago. A few hundred thousand years after the big bang, the expand-

ing material had cooled suf®ciently for it to condense into a gas made up

of hydrogen and helium atoms in a ratio of about 100:7 by number,

together with photons and neutrinos. Apart from a small amount of

lithium, it is thought that the proportion of heavier elements produced

in this ®rst explosion was insigni®cant (essentially because there are no

stable nuclei with A � 5 or A � 8). If this is so, we must conclude that all

the heavier nuclei in the Solar System have been produced in previous

generations of stars and then thrown out into space again, perhaps in the

explosion of supernovae.

11.1 Stellar evolution

Consider a star which has condensed from the primordial hydrogen±

helium mixture, and in which hydrogen burning has set in at the core.

As the hydrogen in the core is consumed, the reaction rate eventually

becomes insuf®cient to sustain the temperature, and hence the pressure,
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that prevents further gravitational contraction. Thus more material falls

into the core region. If the star is massive enough, the gravitational energy

released raises the temperature of the core suf®ciently for helium to begin

burning at a signi®cant rate. As the helium in turn is consumed, further

stages of nuclear burning set in until the most tightly bound elements,

iron and nickel, are formed. At each stage a higher temperature is needed

to overcome a higher Coulomb barrier; the energy for this is provided by

gravitational contraction.

Before considering these later stages of nuclear burning in more

detail, it is important to appreciate that there are conditions under

which the central pressure can permanently balance the pressure exerted

by gravity. Then contraction will cease and the temperatures for further

steps in nucleosynthesis will not be reached. After completing as much

burning as it can, the star will simply cool. The ®rst contribution to the

pressure that may stop contraction is the `electron-degeneracy pressure'.

Since electrons are fermions, it follows from the Pauli principle that, even

in a cold star with T � 0 K, electron states are occupied up to an energy

"F � � »2=2me�k2F, where (Appendix B, equation (B.5)) k3F � 3�2�e, and �e
is the number density of electrons. Thus in matter at high density there

exist electrons with high kF and hence high kinetic energy, which neces-

sarily exert a high pressure. To obtain a simple order-of-magnitude esti-

mate of this effect, we set the density of matter in a star of mass M, radius

R, to be constant. Then the number of electrons in the star is

Ne � �M=��, where � is the stellar mass per electron. For material with

Z � N, we have � � 2 amu, to a good approximation. The electron

number density is �e � �M=��=�4�R3=3�, giving

k3F � 3�2�e �
9�

4

� �
M

�

� �
1

R3
: �11:1�

Assuming that the electrons can be treated non-relativistically, the total

kinetic energy of Ne electrons at T � 0 is �3=5�Ne"F (cf. Problem 5.2). At

T � 0 K, the sum of the electron kinetic energies and the gravitational

potential energy is therefore

E � 3

5

M

�

� �
»2

2me

9�M

4�

� �2
3 1

R2
ÿ 3

5

GM2

R
: �11:2�

The star begins its life with R large, and the electron energy is then

much smaller than the gravitational energy. As the star evolves it con-
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tracts, so that our `model' R decreases and E becomes more negative. The

energy released goes into heating the interior of the star and into radia-

tion. However, no more energy can be released by contraction when E

reaches its minimum value where dE=dR � 0, at

Rmin � 9�

4

� �2
3 »2

GmeM
1
3�

5
3

� 7:2
Mþ
M

� �1
3

�103 km; taking � � 2 amu:

�11:3�

(A calculation which does not make our assumption of constant density,

but determines the density self-consistently, gives a numerical coef®cient

of 8.8 instead of 7.2.)

The corresponding mass density in our model at this minimum radius

is

�mass �
M

�4�R3
min=3�

� 4M2G3m3
e�

5

27�3»6

� 1:27
M

Mþ

� �2

�109 kg mÿ3:

�11:4�

There are many stars with masses similar to, but generally smaller than,

the Sun which are close to this inert condition. They have high density

and small radii, and are called white dwarfs. It may be noted that the

minimum radius decreases as the mass increases.

The maximum electron momentum in our model when R � Rmin is,

using equation (11.1),

pF � »kF � �3�2�13��mass=��
1
3 » � 0:44

M

Mþ

� �2
3

MeV=c:

Since the rest mass of an electron is 0.511 MeV/c2, the assumption in our

calculation above that the electron can be treated non-relativistically, i.e.

that pF 5mec, is clearly suspect for stars with M � Mþ and is certainly

wrong for stars of large M. In the limit when M is large, we take

" � �p2c2 �m2
ec

4�12 � pc � »ck;
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for all the electrons, so that the total energy of Ne electrons at T � 0

becomes �3=4�Ne� »ckF� (Problem 11.1). Hence, using equation (11.1)

again, the expression (11.2) for the energy is replaced by

E � 3

4
»c

9�

4

� �1
3 M

�

� �4
3

ÿ 3

5
GM2

" #
1

R
: �11:5�

If M is suf®ciently large the coef®cient of �1=R� is negative and there

is no minimum energy: electron degeneracy alone cannot prevent the

collapse of the star. Our extreme relativistic approximation becomes

increasingly valid as R decreases. Equation (11.5) suggests that the critical

value of M is

M � 15

16

�5��12
�2

»c
G

� �3
2

� 1:74 Mþ:

A more careful calculation takes proper account of relativistic ener-

gies and determines the density distribution self-consistently. It is then

found that the electron-degeneracy pressure cannot stop the gravitational

collapse of a star of mass M if M > 1:44 Mþ. This result, due to

Chandrasekhar, is known as the Chandrasekhar limit.

At very high densities of matter it becomes energetically favourable

for electrons to be captured by protons, and a Fermi gas of neutrons is

formed. Thus ®nal collapse may be prevented by neutron-degeneracy

pressure. The number of neutrons in such a neutron star is approximately

(M=1 amu). Putting � � 1 amu and replacing me by mn in (11.3) and

(11.4) suggests a neutron star has a radius of

R � 1:26�Mþ=M�1=3 � 10 km; �11:6�

and a corresponding mass density 2.37 �M=Mþ�2 � 1017 kg mÿ3. Such a

mass density is comparable with the mass density of nuclear matter, so

that our simple expressions, which neglect nuclear interactions, are at best

only order of magnitude estimates. Nevertheless, we expect there to be a

mass limit, analogous to the Chandrasekhar limit, beyond which neutron-

degeneracy pressure cannot stop further gravitational collapse. Putting

� � 1 amu in (11.6) suggests this limit is about four times the

Chandrasekhar limit. More realistic calculations, taking into account

the compressibility of nuclear matter, give the maximum possible mass
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of a neutron star to be � 3Mþ. Neutron stars having a greater mass than

this will collapse. Newtonian gravitation theory becomes inadequate to

describe what will happen at very high mass density. According to the

general theory of relativity, the star will collapse into a black hole, man-

ifested only by its intense gravitational ®eld.

11.2 From helium to silicon

We return now to the problem of nucleosynthesis beyond helium. It is

clear that the fusion of hydrogen to helium already converts most of the

available nuclear potential energy into heat and radiation. The binding

energy per nucleon in 4He is 7.1 MeV, and there is only a further 1.7 MeV

per nucleon to be released in complete burning to iron. Also, as can be

seen from Fig. 10.3, as the elements involved become heavier and more

charged, higher and higher temperatures are required for there to be

signi®cant tunnelling through the Coulomb barriers. In fact, as we shall

see, the simple fusion process is superseded by another when elements

around 28
14Si have been produced.

A few of the important reactions associated with helium burning to

oxygen, and oxygen to silicon, are listed below, along with typical tem-

peratures and mass densities at which in a suf®ciently massive star they

are calculated to occur:

4He� 4He ! 8Be
kBT � �10--20 keV�4He� 8Be ! 12C� ÿ � 12� �0:61 MeV�

4He� 12C ! 16O� ÿ � 16� �0:45 MeV�
� � �105--108� kg mÿ3

16O� 16O ! 28
14Si� 4He� 32� �0:30 MeV� kBT � �100--200� keV

� � 109 kg mÿ3:

)

The initial stage of helium burning needs some explanation. As Table

4.2 indicated, 4He has the largest binding energy per nucleon of any

nucleus less massive than 12C. The most stable form of nuclear material

with A < 12 is therefore 4He, and in particular 8
4Be does not exist as a

stable nucleus. Nevertheless 8
4Be exists as a resonant state that is seen in

the laboratory in �±� scattering at an energy of 94 keV, in the centre-of-

mass frame, with a narrow width (due to the Coulomb barrier) of 2.5 eV.

In a 4He plasma this state is established with an equilibrium density such

that the rate of production equals the rate of decay. Thus the `mass gaps'
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at A � 5 and A � 8 can be bridged. The next step in the chain,
8Be� � ! 12C� ÿ, is in fact enhanced because it is a resonant reaction.

There is an excited state of 12C at 0.29 MeV above the 8Be� � threshold.

In the ®nal stages of oxygen burning, core temperatures in the star are

calculated to reach 300±400 keV, with mass densities in excess of

109 kg mÿ3.

11.3 Silicon burning

In all the preceding stages of stellar evolution, photons have always been

present in thermal equilibrium with the plasma. They have played an

important role in radiative heat transfer, but have been unimportant

for initiating the nuclear processes we have discussed. However, a photon

couples electromagnetically to a nucleus and can be readily absorbed by a

nucleus to form an excited state. If the photon has an energy above the

threshold for nuclear break-up of that nucleus, break-up can occur. This

process is called photodisintegration.

As the temperature in the core of a star approaches kBT � 1 MeV,

the increasing number of photons in the high-energy tail of the thermal

distribution makes photodisintegration an important process. In particu-

lar, protons, neutrons and �-particles are knocked out of nuclei.

Although this effectively undoes some of the nuclear binding that has

gone on before, protons and �-particles, as well as neutrons, are at

these temperatures readily accepted into any nucleus present, and a situa-

tion approaching thermal equilibrium is quickly established with the most

tightly bound elements, iron and nickel, copiously produced.

At this stage the core of a massive star is in an unstable condition.

There is no more nuclear fuel to burn to delay further gravitational con-

traction, so even higher densities and temperatures occur. It then becomes

energetically advantageous for electrons at the top of the Fermi distribu-

tion to undergo electron capture to form neutron-rich nuclei, which on

Earth would be þÿ-unstable. This process removes heat from the core by

producing neutrinos which escape, as well as removing electrons. Thus

the pressure falls, hastening contraction and leading to the removal of

even more electrons. Eventually there will be a catastrophic collapse of

the core, an implosion which can only be stopped by nucleon pressure

and the nucleon±nucleon short-range repulsion.

The cooler regions of the star outside the core will contain unburned

or only partially burned material. As the core implodes, these regions will

quickly fall inwards and rise in temperature so that the remaining fuel
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burns explosively, blowing the stellar outer mantle into space. This is the

scenario for neutron star formation accompanied by a supernova explo-

sion.

11.4 Supernovae

In a supernova, it is only the core of the star that collapses to form a

neutron star or a black hole. An important feature of core collapse is the

large gravitational energy release. We may understand the order of mag-

nitude of the energies involved using the simple model described in }11.1,
adapted to neutron degeneracy. If the core has collapsed to radius R, and

radiated all of the heat generated, its energy in the model is

E�R� � A

R2
ÿ B

R
;

where A � 3

5

9�

4

� �2=3 »2

2mn

M

mn

� �5=3

, B � 3

5
GM2, and M is the mass of the

core.

In equilibrium, the core will adopt the radius Rmin � 2A=B, which

minimises this energy. The energy taken in compressing the neutrons is

A=R2
min. Since

A

R2
min

� B2

4A
� B

2Rmin

;

this energy is only half the gravitational energy released. (Note that the

initial energies are negligible.) Almost all of the other half of the energy

goes into heating the core.

As an example, we shall consider a core with a mass of 2Mþ. This
core mass is above the Chandrasekhar limit. The core will contain N �
�2Mþ=mn� � 2:4� 1057 neutrons, and Rmin � 10:0 km, using equation

(11.6). The heat energy per neutron is

B

2RminN
� 83 MeV:

Such an energy release is almost 10% of the rest-mass energy of a

nucleon, and about ten times the energy per nucleon released in the

whole of the star's previous history (see }11.2)!
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After silicon burning, and at the start of collapse, about one-half of

the nucleons in the core are protons. The reaction

eÿ � p ! n� �e;

which takes place during collapse, will therefore produce �N=2 � 1:2�
1057 electron neutrinos. Detailed calculations show that collapse takes

place in �10ÿ3 s, and the average neutrino energy is about 10 MeV.

Thus these neutrinos carry away about 6% of the gravitational energy

released: the rest is left as heat in the collapsed core.

With heat energies of �80 MeV per neutron, and densities approach-

ing that of nuclear matter, a transient state of thermal equilibrium will

exist, containing not only neutrons, protons, and electrons, but also elec-

tron±positron pairs, photons, neutrinos and anti-neutrinos coupled in by

reactions such as

e� � n $ p� ��e; eÿ � p $ n� �e:

Muon and tau neutrinos and anti-neutrinos will also be present, induced

by reactions such as

e� � eÿ $ �� � ���; e� � eÿ $ �� � ���;

which proceed through the intermediary of the neutral Z boson.

For thermal equilibrium to be established, the mean free path of the

particles participating in equilibrium must be less than the size of the

system. Cross-sections for neutrino scattering will be discussed in

Chapter 13. At the density of nuclear matter this condition is easily

satis®ed (Problem 13.3), so that neutrinos and anti-neutrinos take part

in thermal equilibrium. On the other hand, their mean free path is very

large compared with that of photons or electrons, so that neutrinos and

anti-neutrinos take the place of photons in transferring heat from the

interior to the surface of the core, and radiating it away.

The time scale for this neutrino cooling of the core is of the greatest

interest. Detailed calculations suggest a neutrino will diffuse from the

core to the surface in �1 s (Problem 13.3), and that appreciable cooling

will take place in �10 s. A supernova is an impressive event: the star

emits ten times as much energy in �10 s as it has previously emitted in

billions of years of stellar evolution. Assuming an average energy of

10 MeV for neutrinos and anti-neutrinos, the total number of all types
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emitted must be �80N MeV=10 MeV � 2� 1058. This number greatly

exceeds the number of electron neutrinos squeezed out in the initial col-

lapse of the core.

Strong support for the supernova scenario we have outlined, and in

particular the role played by neutrinos, was provided by the observations

of a burst of neutrinos accompanying the 1987 supernova explosion in the

Large Magellanic Cloud. The LMC is a nearby galaxy at a distance D of

about 1:5� 1021 m from the Solar System. This was the ®rst, and so far is

the only, local supernova explosion to have occurred while neutrino

detectors have been in place. If in total N� neutrinos and anti-neutrinos

were emitted, we should expect N�=4�D
2 � �N�=10

57�3:5� 1013 mÿ2 to

arrive at Earth over a few seconds. Of the instrument types described

in }10.5, the water detector is most appropriate, since it gives the vital

information on the arrival times of those neutrinos and anti-neutrinos it

detects.

Note also that water detectors are sensitive to energetic electron anti-

neutrinos ��e, through the reaction

��e � p ! n� e�;

on the protons in the water. The cross-section for this reaction is of

similar size to the cross-sections of neutrinos in the gallium and chlorine

detectors, about two orders of magnitude greater than the cross-section

for neutrino±electron scattering.

Taking N� � 1058, gives an expected integrated ¯ux of �1014 mÿ2

supernova neutrinos and anti-neutrinos over a few seconds. For compar-

ison, the ¯ux of 8B and hep neutrinos calculated using the standard solar

model is �6� 1010 mÿ2 sÿ1. These are the neutrinos to which the

Kamiokande II detector was sensitive, and in the typical working condi-

tions of the detector gave an event rate of about one per day.

An observed burst of twelve events within 13 s, and with energies

between 6 and 36 MeV, was clearly high above any background of

solar neutrino events, and correlated with the optically observed super-

nova explosion. The IMB detector in the USA, which is another water

detector, also observed six events within 6 s, with energies between

20 MeV (the detector threshold) and 40 MeV.

Analysis of the data from the two detectors suggests that the surface

temperature T of the source was of the form

T4 � T4
0 e

ÿt=�;
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with T0 � 4:2 MeV and � � 4:6 s, and the integrated ¯ux of anti-neutri-

nos was 1:3� 1014 mÿ2. These measurements are entirely consistent with

the picture of stellar collapse we have outlined, and we can have some

con®dence in identifying the source as a supernova.

11.5 Nucleosynthesis of heavy elements

The most likely process for the formation of elements heavier than those

grouped around iron, produced in the silicon burning described above, is

neutron capture. If a supply of free neutrons is available, they can accrete

on an iron-group seed nucleus by radiative capture, unimpeded by

Coulomb barriers, to build up a neutron-rich isotope. As the neutron

number in the nucleus increases it will become unstable to þÿ-decay,
thus forming a new element of atomic number Z � 1 from an element

of atomic number Z. Successive neutron captures, interspersed with þÿ-
decays, can eventually build up many, but not all, of the heavy stable

nuclei. Since the build-up follows the neutron-rich side of the `þ stability

valley' (}4.6), some of the proton-rich stable isotopes are inaccessible in

this process. It is an interesting fact that such isotopes have a much

smaller natural abundance than their neutron-rich neighbours.

There are two basic time scales in this scenario of heavy element

synthesis by neutron accretion: the þ-decay lifetimes and the time inter-

vals between successive neutron captures (which are inversely propor-

tional to the capture cross-sections and the neutron ¯ux). If the rate of

neutron capture is slow compared with the relevant þ-decay rates (the s-

process) the nuclei that are built up will follow the bottom of the þ

stability valley very closely. If the rate of neutron capture is rapid (the

r-process) highly unstable neutron-rich isotopes will be formed which

cascade down to stable nuclei, some of which are inaccessible by the s-

process; thorium and uranium must have been formed in this way. The

observed nuclear abundances, especially in the regions of closed-shell

nuclei, suggest that both the r- and the s-processes have played a part

in the synthesis of nuclei found in the Solar System and, in particular, the

heavy elements found on Earth.

The site of the r-process is believed to be in supernovae explosions

close to the region of neutron star formation, where over a short period of

time large neutron ¯uxes can be expected. The s-process probably occurs

during helium burning in massive stars, where a low neutron ¯ux can be

provided by a number of reactions, for example (Fig. 8.4),
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�� 13
6C ! 16

8O� n:

For nucleosynthesis of the heavy elements by the s-process there must be

iron present, derived from nucleosynthesis in previous generations of

stars and forming part of the gas from which the star in question con-

densed.

In this chapter we have attempted to provide no more than a quali-

tative sketch of a theory which is still being developed. Many of the basic

components of the theory are probably in place but important aspects are

still being investigated through laboratory measurements and theoretical

estimates of reaction rates, and computer studies of reaction networks,

combined with stellar models. A rich variety of facts and phenomena

remains to be explained.

Problems

11.1 In a plasma with high electron number density �e, using the extreme

relativistic approximation in which energy and momentum are related by

E � pc, show that the average energy of an electron is �3=4� »ckF, where
kF is given by k3F � 3�2�e.

11.2 The planet Jupiter is composed mostly of hydrogen. It has mass

1:9� 1027 kg and mean radius � 7� 107 m. Show that if it were uni-

formly dense its gravitational energy per particle would be only 7 eV,

too small to ignite nuclear reactions.

11.3 Estimate the mass density of (metallic) hydrogen at 0 K at which it is

energetically favourable to subtract electrons from the electron gas and

form neutrons by the inverse þ-decay

p� eÿ ! n� �:

11.4 Estimate the ratio of the number of protons and electrons to the number

of neutrons in a neutron star at the density of nuclear matter, in thermal

equilibrium at low temperature.

11.5 The Planck radiation law states that the number of photons per unit

volume in an energy range dE is

1

�2� »c�3
E2dE

eE=kBT ÿ 1
:

At a temperature kBT � 500 keV, estimate the number of photons per

unit volume with an energy greater than 8 MeV.

11.6 The cross-section for 8Be production in �±� scattering at energy E in the

centre-of-mass frame is given by the Breit±Wigner formula
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��E� � 2� »2

m�E

ÿ2

�E ÿ E0�2 � ÿ2=4
;

with E0 � 94 keV, ÿ � 2:5 eV. (Note the additional factor of 2 in the

Breit±Wigner formula for identical particles: see Problem D.1.) In a

plasma at temperatures kBT 4ÿ, the thermal energy v� is dominated

by energies in the neighbourhood of E0.

(a) Show that

v� � 16 »2ÿ
�

m�kBT

� �3
2

eÿE0=kBT :

(b) Hence show that the density �Be of
8Be in equilibrium with �-particles of

number density �� is in the ratio

�Be
��

� ��
2

»
ÿ

� �
v� � ��

4� »2

m�kBT

ÿ !3
2

eÿE0=kBT :

(c) Calculate this ratio for kBT � 15 keV and a helium mass density of

106 kg mÿ3.
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12

Beta decay and gamma decay

In this chapter we present some of the theory of þ-decay and ÿ-decay. In

both cases, a fuller treatment requires more quantum mechanics than is

usually contained in an undergraduate course, but we shall see that much

of the experimental phenomena can be understood qualitatively without

the complete relativistic theory.

12.1 What must a theory of þ-decay explain?

In þ-decay, introduced in }3.5, the charge of a nucleus changes while A

remains ®xed. This occurs either by the simultaneous emission of an

electron and an anti-neutrino, or a positron and a neutrino, or by the

capture of an atomic electron with the emission of a neutrino. The appro-

priate stability conditions were discussed in }4.6. Several nuclei, for exam-

ple 64Cu, can decay by any of these processes (Fig. 4.5). In electron

capture, the neutrino energy and the recoil energy of the nucleus are

sharply de®ned. In the other processes, the electron (or positron) can

take any energy between zero and the maximum allowed by energy con-

servation. Figure 12.1 shows the experimentally determined energy spec-

tra for electron emission and for positron emission from 64
29Cu. It was the

observation of continuous energy distributions such as these that led

Pauli to infer the existence of the neutrino in 1931: given that the energy

levels of a nucleus are discrete, the electron and nuclear recoil energies in

the centre-of-mass frame would by energy and momentum conservation

be likewise discrete, unless some third particle (the neutrino) were present

to share energy and momentum. The neutrino mass can be deduced to be

small since, when the electron takes its maximum energy, the energy
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balance to within the accuracy of present experiments is complete.

Maximum electron energy corresponds to the neutrino carrying no

momentum, so that the neutrino energy then would be its rest-mass

energy m�c
2. We consider recent experimental limits on m� in }13.2.

Because the neutrino interacts so weakly with other particles, it was not
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Fig. 12.1 Electron and positron energy spectra from the þ-decay of 64Cu, giving

the probability distributions in energy (both normalised to unity) from a large

sample of decays. The experimental points are from Langer, L. M. et al. (1949),

Phys. Rev. 76, 1725. The curves are ®ts to the data using equations (12.5) and

(12.6).



until 1959 that its existence was more directly con®rmed by the observa-

tion of the reaction

��e � p ! n� e�;

using the high anti-neutrino ¯ux associated with a nuclear reactor (which

arises from þ-decays of the neutron-rich ®ssion fragments).

As in the case of ÿ-decay mean lives, þ-decay mean lives span many

orders of magnitude. For example, the most common isotope of indium,
115
49In, is þ-unstable, but its mean life is �1014 years, whereas þ-decay mean

lives of the order of seconds or minutes are common. As with ÿ-decay,

mean lives depend strongly on the nuclear-spin change in the decay.

The ®rst experimental evidence for the violation of mirror symmetry

at the subatomic level was found in þ-decay by Wu in 1957, following a

suggestion by Lee and Yang. The experiment measured the angular dis-

tributions of electrons from the decay of 60Co:

60
27Co ! 60

28Ni� eÿ � ��e:

The 60Co nucleus, of spin 5 », has a large magnetic moment, and the

nuclei in the sample were polarised by a magnetic ®eld. The electrons

from the decays were observed to be preferentially emitted in the opposite

direction to the nuclear spins. Such a correlation violates the principle of

mirror symmetry, since in the mirror image of this experiment, more

electrons appear to be emitted in the same direction as the nuclear spin.

An examination of Fig. 12.2 will make this clear. (Any mirror plane may
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Fig. 12.2 A schematic representation of the 60Co decay experiment in real space

(a), and the mirror image of the experiment (b). In both (a) and (b) the spin of the

cobalt nucleus is pointing to the right; the spin is a pseudo-vector which does not

change direction under this re¯ection. The sample is polarised by the magnetic

®eld produced by a current ¯owing in the direction indicated.



be chosen, and will lead to the same conclusion.) Since the description of

the experiment and of its mirror image differ, it follows that parity cannot

be a symmetry of the weak interaction (}2.6). The breakdown of parity

conservation in the decay of the muon, described in }2.6, was discovered
shortly afterwards.

12.2 The Fermi theory of þ-decay

A simple theory of þ-decay was suggested by Fermi in 1934. Although

this theory is incomplete (it does not allow for parity violation, for exam-

ple), it is able to describe the spectra of Fig. 12.1, and gives a qualitative

understanding of the range of þ-decay mean lives.

To be speci®c, we consider in the shell model a decay in which a

proton outside a doubly closed shell changes to a neutron:

17
9F ! 17

8O� e� � �e:

A proton in the closed shell cannot change into a neutron since the

neutron shell is also full and the Pauli principle forbids the transition.

Thus the nucleons in the closed shells play no part in the decay and we

can take the initial state of the system to be simply

þ0 � ýp�rp�;

where ýp is the state of the single proton in the d5
2
shell. The ®nal state of

the system consists of a neutron in the same shell, a positron e�, and a

neutrino �e,

þf � ýn�rn�ýe�re�ý��r��;

(in an obvious notation). Note that we are ignoring the spins of the

particles involved and neglecting the recoil of the nucleus.

The transition rate from þ0 to þf is given in perturbation theory by:

transition rate =
2�

»
jHf0j2nf �E0�; �12:1�

where Hf0 is the matrix element linking the initial and ®nal states, and

nf �E0� is the density of (speci®ed) states þf at the energy E0 released in the

decay. This result is obtained in Appendix D (equation (D.6)) and is often

called `Fermi's golden rule' in texts on quantum mechanics.
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We saw in Chapter 2 that the weak interaction responsible for þ-

decay, mediated by the heavy bosons W�, is of very short range

� 2� 10ÿ3 fm. This fact was anticipated by Fermi, who suggested that

at the moment of interaction all particles were at the same point in space,

so that the interaction matrix element

Hf0 �
Z

þ�
fHþ0d

3rnd
3rpd

3red
3rv

could be of the form

Hf0 � Gw

Z
ý�
n�r�ý�

e �r�ý�
��r�ýp�r�d3r;

where the constant Gw is a measure of the strength of the weak interac-

tion.

We may take for the neutrino a plane wave state

ý��r� �
1

V
1
2

eik��r� ;

with the wave-function normalised in an arbitrarily large volume V for

mathematical convenience. We take the positron wave-function to be also

a plane wave

ýe�r� �
1

V
1
2

eike�re ;

though this is only a ®rst approximation; since a positron (or electron) is

charged, its wave-function will be modi®ed by the Coulomb ®eld of the

daughter nucleus. The matrix element Hf0 becomes in this approximation

Hf0 �
Gw

V

Z
ý�

n�r�ýp�r�eÿi�ke�k���rd3r:

The energies involved in þ-decay are generally at most a few MeV,

and the corresponding momenta »ke, »k� a few MeV/c. Hence the wave-

vectors ke, k� are �MeV/ »c � 10ÿ2 fmÿ1, and the exponent of the expo-

nential in the integral is small over the range of the nuclear wave-func-

tions. It is therefore an excellent approximation to expand the

exponential to give
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Hf0 �
Gw

V

Z
ý�
n�r�ýp�r�d3r

ÿ iGw

V
�ke � k�� �

Z
ý�

n�r�rýp�r�d3r� � � � ;

and keep only the ®rst non-vanishing term. This argument is clearly also

valid when the nuclear wave-functions involved are more complicated

than in our simple example.

A decay is said to be allowed if the ®rst term is ®nite. It is said to be

®rst forbidden if the ®rst term is zero as happens for example if the initial

and ®nal nuclear states are of opposite parity, but not the second, and so

on. The diversity of þ-decay rates is largely accounted for by the degree of

forbiddenness of the transition and this in turn by the change in nuclear

spin (as in ÿ-decay). In the case of indium, previously cited, the ®rst term

in the expansion not to vanish is found to be the ®fth and the decay is

fourfold forbidden.

We shall concentrate our discussion on allowed transitions, in which

case the matrix element is

Hf0 � �Gw=V�MF; �12:2�

where MF is the appropriate nuclear matrix element. In our example of

the decay of 19F, the spatial shell model wave-functions of the proton and

neutron are the same apart from Coulomb effects, and hence in this

simpli®ed theory

MF �
Z

ý�
n�r�ýp�r�d3r � 1:

12.3 Electron and positron energy spectra

Consider an allowed þ-decay in which the electron is emitted in a parti-

cular state of (relativistic) energy Ee. For simplicity we neglect the recoil

energy of the daughter nucleus, which is in any case always a small

correction. Then the relativistic neutrino energy E� is given by

E0 � Ee � E�, where E0=c
2 is the nuclear mass difference. The density

of ®nal states factor in the formula (12.1) is thus the density of neutrino

states, n��E0 ÿ Ee�, at energy �E0 ÿ Ee�. There are ne�Ee�dEe electron

states with energies between Ee, Ee � dEe, where ne is the density of
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electron states. Thus the total transition rate dR for decays to electron

states with energies in the range Ee, Ee � dEe, is

dR � 2�

»
jHf0j2n��E0 ÿ Ee�ne�Ee�dEe: �12:3�

We need expressions for the densities of states n�, ne. As is explained in

Appendix B, neglecting spin there are �V=�2��3�4�k2dk plane wave states

with jkj in the range k, k� dk. For the relation between E and k we must

use for both electrons and neutrinos the relativistic formula

E2 � p2c2 �m2c4 � � »k�2c2 �m2c4;

so that E dE � »2c2kdk, k � �E2 ÿm2c4�12= »c. Thus the relativistic den-

sity of states formula for a particle of mass m is

n�E�dE � V

�2��3
4�

»3c3
�E2 ÿm2c4�12E dE: �12:4�

Note that E is here the total energy, which includes the rest-mass energy.

Substituting in equation (12.3) and using (12.2) for the matrix element of

an allowed transition gives

dR � G2
wjMFj2

2�3 »7c6
S0�Ee�dEe �12:5�

where

S0�Ee� � ��E0 ÿ Ee�2 ÿm2
�c

4�12�E0 ÿ Ee��E2
e ÿm2

ec
4�12Ee:

The arbitrary normalisation volume V cancels out from the ®nal result

(12.5), as we should expect. We have allowed the neutrino mass to be

®nite in order to discuss the direct experimental evidence for its small or

zero value.

The electron (positron) energy dependence in the transition rate

(12.5) comes entirely from the lepton density-of-state factors included

in S0�E�: the other factors are independent of electron energy. The for-

mula can be improved by allowing for the interaction between the elec-

tron and the Coulomb ®eld of the daughter nucleus of charge Zd. Since

only the electron wave-function at the nucleus is important, S0�Ee� is

modi®ed to
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Sc�Ee� � F�Zd;Ee�S0�Ee�; �12:6�

where

F�Zd;Ee� �
ýe�Zd; 0�
ýe�0; 0�

þþþþ
þþþþ2;

and ýe�Zd; r� is the electron wave-function at energy Ee in the Coulomb

potential �Zde
2=4�"0r. Extensive tables of F�Z; e� are available for pre-

cise calculations, but a simple approximation is the non-relativistic for-

mula

F�Z;Ee� �
2��

1ÿ eÿ2��
;

where � � �Ze2=�4�"0 »v�; the positive sign holds for electrons, the nega-

tive for positrons, and v is the electron (positron) ®nal velocity.

As v ! 0, F�Z;Ee� ! 2�� for electrons. The �1=v� factor makes

Sc�Ee� non-vanishing at the origin, where Ee ! mec
2 � 1

2mev
2; the

decay rate is enhanced at low energies since the Coulomb ®eld for elec-

trons is attractive.

For positrons at low energies F�Z;Ee� ! 2�j�jeÿ2�j�j. The Coulomb

®eld is repulsive for positrons and we can recognise the exponential as the

tunnelling factor through the Coulomb barrier, which suppresses positron

emission at low energies.

Figure 12.1 shows ®ts to the experimental statistical spectra for elec-

tron and positron emission from 64Cu. The Coulomb-corrected Sc�Ee�
give excellent agreement with the shapes of the experimental curves.

The more detailed theory of þ-theory retains this factor.

The total transition rate for a particular allowed decay is obtained by

integrating the partial rate (12.5) over all electron energies, to give for the

mean lifetime � the formula

1

�
� G2

wjMFj2m5
ec

4

2�3 »7
f �Zd;E0�;

where
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f �Z;E0� �
1

mec
2

� �5Z E0

mc2
F�Z;Ee��E0 ÿ Ee�2�E2

e ÿm2
ec

4�12EedEe:

�12:7�

To obtain (12.7) we have set m� � 0. f �Z;E� is a dimensionless function

for which again there are extensive tables. Some representative graphs are

given in Fig. 12.3.

12.4 Electron capture

In an atomic environment, þ-decay by electron capture always competes

with positron emission, and is sometimes the only energetically allowed þ-

decay. To take our previous example, 17
9F can also decay by electron

capture:

17
9F� eÿ ! 17

8O� �e:

The electron and proton wave-functions now constitute the initial state,
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Fig. 12.3 The function f �Z;E0�. The sequence of curves is for Z � 90, 60, 30 and

0 for eÿ decay and continuing with Z � 30, 60, 90 for e� decay. (Formulae can be

found in Feenberg, E. & Trigg, G. (1950), Rev. Mod. Phys. 22, 399.)



þ0 � ýp�rp�ýe�re�;

and the electron is most likely to be a K-shell electron, since K-shell wave-

functions have the greatest overlap with the nucleus. To a good approx-

imation, these wave-functions are hydrogen-like, little in¯uenced by the

outer shell atomic electrons, so we can take

ýe�r� � �ÿ1
2

Zmee
2

4�"0 »2

ÿ !3
2

exp ÿZmee
2r

4�"0 »2

ÿ !
;

where Z is the atomic number of the parent nucleus. The ®nal state is

þf � ýn�rn�ý��r��:

For the neutrino we again take a plane wave state Vÿ1
2eik�r normalised in a

volume V .

In the simple Fermi theory, we now have

Hf0 � Gw

Z
ý�

n�r�ý�
��r�ýp�r�ýe�r�d3r:

Assuming that the transition is allowed, this reduces to

Hf0 �
Gw

V
1
2

ýe�0�
Z

ý�
n�r�ýp�r�d3r �

Gw

V
1
2�

1
2

Zmee
2

4�"0 »2

ÿ !3
2

MF;

since the electron and neutrino wave-functions can be treated as constant

over the nuclear volume.

Neglecting the nuclear recoil, the emitted neutrino has energy E�,

where E�=c
2 is the atomic mass difference � �E0=c

2 �me� (cf. (4.13)).

The appropriate density of states in the formula for the transition rate

is the neutrino density of states at this energy, given by equation (12.4).

Setting m� � 0,

n��E�� �
V

�2��3
4�

»3c3
E2
� ;

and we obtain
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decay rate for electron capture � 2�

»
jHf0j2n��E��

� G2
wjMFj2E2

�

�2 »4c3
Zmee

2

4�"0 »2

ÿ !3

:

Consistently with our neglect of electron spin, only one K electron is

included in the calculation. The ratio of the electron capture rate RK to

the positron emission rate Re� is independent of Gw and the nuclear

matrix element, and is

RK

Re�
� 2�

E�

mec
2

� �2
Z

137

� �3
1

f �Zd;E0�
:

Note that E� � E0 �mec
2, and e2=4�"0 »c � 1

137. For low values of Z this

ratio is usually small, but at high Z the Z3 factor, and the increasing

Coulomb barrier for positron emission which reduces f �Zd;E0�, make

electron capture the dominant process.

12.5 The Fermi and Gamow±Teller interactions

In the simple Fermi theory of þ-decay, the interaction matrix element was

written as a `contact' interaction. For our example of 17F decay,

Hf0 �
Z

þ�
fHþid�coordinates�

� Gw

Z
ý�

n�r�ý�
e �r�ý�

��r�ýp�r�d3r;

which we might represent diagrammatically as in Fig. 12.4. Reference to

spin has been suppressed, though we know that the particles involved are

all fermions with intrinsic spin quantum number s � 1
2.

In the full theory of þ-decay, the interaction is mediated by the

charged W bosons, so that the process above is represented by Fig.

12.5. At a more fundamental level, the interaction is with a quark rather

than a nucleon, as in Fig. 3.3, but phenomenologically the principal

missing feature of the simple Fermi theory is the description of spin

effects. We shall now describe how the results of the previous section

are modi®ed when spin is taken into account. The nucleon states in our

example can still be described non-relativistically, but in general include

`spin-up' and `spin-down' contributions (see Appendix C, }C.2):
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ý�r� � ý��r� 1
0

� �
� ýÿ�r� 0

1

� �
� ý�

ýÿ

� �
;

and hence are two-component wave-functions. The complex conjugate

wave-function generalises to the adjoint row matrix ýy�r� � �ý�
�; ý

�
ÿ�.

However, both the positron and neutrino move at relativistic speeds

and for these the relativistic wave-functions must be used. Except in

terms of the Dirac wave-functions, there is no simple form for the lepton

part of the matrix element.

The contribution to the interaction from the Coulomb-like part of the

W-®eld is most like the simple Fermi theory discussed in the previous

sections and it is called the Fermi interaction. This part does not change

the nucleon spins, and for allowed transitions the positron and neutrino

angular momenta must combine to give a total lepton angular momen-

tum of zero.

The contribution of the Fermi interaction to the interaction matrix

element is

HF
f0 � Gw

Z
ý
y
n �r�ýp�r�d3r� �lepton part�:

The subtlety of the weak interaction is contained in the bracketed

lepton part. This involves the neutrino and positron wave-functions eval-
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Fig. 12.4 þ-decay of a proton in a nucleus as a `contact' interaction.

Fig. 12.5 þ-decay of a proton in a nucleus mediated by the exchange of a virtual

W boson.



uated at the nucleon coordinate r, as in the simple Fermi theory, but also

describes the alignment of the neutrino and positron spins and the angu-

lar correlation between their directions. (The neutrino direction can be

inferred by measuring the small nuclear recoil.) The lepton part is given

very precisely by the Standard Model of particle physics and books on

this subject should be consulted for detailed calculations. However, an

experiment which only measures the electron energy spectrum and does

not distinguish these correlations corresponds to an averaging over direc-

tions and spins, and then the spectrum is given exactly as in the simple

theory. If only the Fermi interaction contributes to the decay, the energy

spectra, decay rates, mean lives and electron capture rates are given by the

previous formulae, but with the nuclear matrix element given by

MF �
Z

ýy
n�r�ýp�r�d3r:

The constant Gw is given in terms of more fundamental constants of

particle physics by

Gw � GFVud:

Here GF is the Fermi constant and Vud is an element of the `Kobayashi±

Maskawa matrix', which appears in the Standard Model theory of the

weak interaction between leptons and quarks. GF may be determined

experimentally from the decay rate of the muon and has the value

GF � 1:166 39�2� � 10ÿ11� »c�3 MeVÿ2: �12:8�

From a range of nuclear data, it is found that

Vud � 0:9744�10�:

But this is not the whole story, even for allowed transitions. The

magnetic-like part of the W-®eld leads to a term in the transition matrix

element, known as the Gamow±Teller interaction, in which the total

lepton angular momentum J has quantum number j � 1, and the nuclear

part of the interaction (again treated non-relativistically) contains the

Pauli operator r (see Appendix C). There is a term r � J in the interaction

Hamiltonian. The Gamow±Teller matrix element for our 17F example is
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HGT
f0 � gAGw

Z
ý
y
n �r�rýp�r�d3r � �lepton part�;

where (lepton part) is now a vector and � denotes a scalar product.

If we de®ne

MGT � gA

Z
ý
y
n �r�rýp�r�d3r � �Mx

GT;M
y
GT;M

z
GT�;

and sum over all allowed decays to the j � 0 and the three j � 1 states, the

total decay rate to electrons with energies in the range Ee, Ee � dEe is

given by

dR�Ee� �
G2

FV
2
ud

2�3 »7c6
�jMFj2 � jMx

GTj2 � jMy
GTj2 � jMz

GTj2�Sc�Ee�dEe;

and the mean life is given by

1

�
� G2

FV
2
udm

5
ec

4

2�3 »7
�jMFj2 � jMx

GTj2 � jMy
GTj2 � jMz

GTj2�f �Zd;E0�:
�12:9�

An allowed decay may be pure Fermi, pure Gamow±Teller, or a

mixture of both, depending on the details of the nuclear matrix elements.

Note that the electron energy spectrum is independent of these details. In

general, of course, the initial and ®nal nuclear states which enter into MF

and MGT are more complicated than those of our 17F example. MF and

MGT always vanish if the initial and ®nal nuclear states are of opposite

parity, since r is an axial vector. Thus there can be no parity change in the

nuclear states in an allowed transition.

The axial coupling constant gA which appears in the expressions above

is a parameter of the theory. It is not a fundamental particle physics

parameter. We shall see in }12.6 that gA � 1:26.

For a Fermi transition, the change �j in nuclear spin must be zero.

For a Gamow±Teller transition, �j � 0 or 1, by the rules for addition of

angular momentum, except that 0 ! 0 transitions are forbidden since the

matrix element of r vanishes between two spherically symmetrical states.
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12.6 The constants Vud and gA

In the decay

14
8O !14

7N
� � e� � �e

the transition occurs, with 99.7% probability, to the ®rst excited state of

the daughter nucleus, which has spin and parity 0�. The even±even

nucleus 14
8O also has spin and parity 0�, so that from the selection rules

above the transition is allowed, and pure Fermi. Also, in the nuclear shell

model, the nuclei differ only in that 14O has two protons in 1p1
2
states

outside a 12
6C core, and 14N* has one proton and one neutron. Thus,

because of the charge independence of the strong nuclear force and the

smallness of the Coulomb effects in these light nuclei, the wave-functions

of the initial and ®nal nuclear states are very similar, and jMFj2 � 2 (since

either of the two protons in 1p1
2

states can decay). The energy

E0 � 2:32 MeV, Zd � 7 and f �7; 2:32� � 42:8. The measured mean life

is 102 s. Thus from the formula (12.9) for the mean life we can calculate

GFVud=� »c�3 � 1:16� 10ÿ11 MeVÿ2:

From (12.8) we see immediately that Vud is close to unity. This mean life

measurement gave one of the ®rst estimates of the particle physics para-

meter Vud.

The constant gA is most directly determined from the lifetime of a free

neutron, since there are then no uncertainities in the computation of

nuclear wave-functions. Indeed, if we neglect recoil, the spatial parts of

the initial neutron and ®nal proton wave-functions are the same. Suppose

the spin state of the neutron is j � 1
2i. If the proton spin state is j � 1

2i then,
using the properties of the r matrices (Appendix C), MF � 1 and

MGT � �gAGw��0; 0; 1�. If the proton spin state is j ÿ 1
2
i, MF � 0 and

MGT � �gAGw��1; i; 0�. The neutron±proton mass difference gives

E0 � 1:29 MeV and f �1; 1:29� � 1:6. The total decay rate to all possible

spin states is therefore, from equations (12.6) and (12.8), given by

1

�
� 1:6�1� 3g2A�G2

FV
2
udm

5c4

2�3 »7
:

The measured mean life of the neutron is 887 s, which yields

gA � 1:3, using this formula. However, there are `radiative corrections'
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to our simple expression and the present accepted value of gA is a little

lower,

gA � 1:26:

12.7 Electron polarisation

The lepton part of the interaction matrix element leads to angular corre-

lations between the various spins and momenta of the four particles

involved in a þ-decay. These correlations can be detected in suitable

experiments, as for example the spin-polarised 60Co experiment discussed

in }12.1; the observed angular distribution of electrons in this experiment

is in accord with the theory.

The non-parity conserving nature of the weak interaction is most

clearly seen in the lepton states. All neutrinos are `left-handed' and all

anti-neutrinos `right-handed'. The theory also predicts that in þ-decay

left-handed electrons are produced more copiously than right-handed

electrons, whereas positrons produced in þ-decay are predominantly

right-handed. More precisely, the probability of an electron emitted

with velocity v being in a left-handed state (with intrinsic spin s anti-

parallel to momentum p) is

PL � 1

2
1� v

c

� �
;

and the probability of its being emitted in a right-handed state (with s

parallel to p) is

PR � 1

2
1ÿ v

c

� �
:

Hence

P � PR ÿ PL

PR � PL

� ÿ v

c

(and for positrons P � �v=c�.
Figure 12.6 shows experimental measurements of P, the `longitudinal

polarisation', plotted against v=c for a variety of þ-decays. The complete

polarisation of the neutrino and anti-neutrino can be regarded as a gen-

eralisation of this result, since v � c for massless particles.
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12.8 Theory of ÿ-decay

In ÿ-decay, a nucleus in an excited state falls to a lower state with the

emission of a photon (}7.3). The electromagnetic interaction which gov-

erns this process is very well understood theoretically, but a full discus-

sion requires the quantised equations of the electromagnetic ®eld, rather

than the classical Maxwell equations, and is beyond the scope of this

book. However, we can understand the main features of ÿ-decay, and

in particular the great range of ÿ-decay lifetimes described in }7.3, using
semi-classical arguments to write down an approximate expression for the

interaction energy between a nucleus and a photon.

We again enclose our system in a large volume V . Consider the plane

electromagnetic wave

E � E0 cos�k � rÿ !t�; B � B0 cos�k � rÿ !t�:

The standard Maxwell theory tells us that in such a wave jBj � jEj=c, and
the energy is divided equally between the electric and magnetic ®elds and

is given in total by
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Fig. 12.6 Measured degree of longitudinal polarisation P for allowed eÿ decays.

(Data from Koks, F. W. J. & van Klinken, J. (1976), Nucl. Phys. A272, 61.)



"0

Z
E�r� � E�r�d3r � 1

2"0E
2
0V;

since the cosine squared averages to 1
2 over the volume V . If we identify

this wave with a single photon of wave-vector k and energy »! we must

therefore set

1
2
"0E

2
0V � »!; or jE0j � �2 »!="0V�12:

In a typical ÿ-decay, »! is at most a few MeV, so that

jkj � »!= »c � �1 MeV�=�197 MeV fm� � 10ÿ2 fmÿ1. Hence to a good

approximation we can neglect the change in �k � r� over the dimensions

of the nucleus (�fm), which we can take to be centred at r � 0. The

electric ®eld over the nucleus is then

E � E0 cos!t � 1
2E0�ei!t � eÿi!t�;

and the potential energy of the nucleus in such a ®eld is given classically

by

ÿe
X

protons

E � rp � ÿ e

2

X
protons

E0 � rp�ei!t � eÿi!t�:

In a ÿ-decay, we start with a state in which there is no photon present,

and end with a state in which there is one photon present and the nucleus

is in a lower energy state. As in our discussion of þ-decay, we shall neglect

the small nuclear recoil energy. It is clear from the derivation of the result

(D.6) in Appendix D that only the term with ei!t in the interaction can

contribute to this transition, so that the matrix element to be employed in

the formula for the decay rate is

ÿ e

2

Z
þ�

f

X
protons

E0 � rp
ÿ !

þ0d�coordinates� � ÿ e

2
E0 � Rf0;

where þ0, þf are the initial and ®nal nuclear states and

Rf0 �
Z

þ�
f

X
protons

rp

ÿ !
þ0d�coordinates�: �12:10�

If Rf0 is non-vanishing the transition is said to be electric dipole (E1).
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Let us assume Rf0 is non-vanishing and real. The treatment is easily

extended to the case when Rf0 is a complex vector R1 � iR2 since

jE0 � �R1 � iR2�j2 � jE0 � R1j2 � jE0 � R2j2:

For a given direction of photon emission, there are two independent

photon states with polarisations which we can take as in the plane de®ned

by Rf0 and k, and perpendicular to this plane (Fig. 12.7). For the latter

E0 � Rf0 � 0, so that the transition probability to this state vanishes.

If � is the angle between the direction k and Rf0, for the state with

polarisation in the plane we have

jE0 � Rf0j � jE0jjRf0j sin �

since E0 is perpendicular to k. The density of states at energy Eÿ � »!,
for photons emitted in a solid angle dÿ � sin � d� d�, is

V

�2��3 k
2 dk

dEÿ
dÿ � V

�2��3
!2

»c3
sin � d� d�;

since Eÿ � »! � »ck. Hence the `Fermi golden rule' formula gives the

transition rate

2�

»
e2

4
jE0j2jRf0j2

V

�2��3
!2

»c3
sin2 � dÿ: �12:11�

There is a characteristic sin2 � angular distribution of the emitted

photons. Such angular distributions can be observed experimentally, if

for example the nuclei in a sample are oriented in the same direction by a

strong magnetic ®eld.
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Fig. 12.7 Direction of emission k and polarisation vector E0 for an allowed

electric dipole transition.



The mean life is obtained by integrating the expression (12.11) over

all directions in space. Using jE0j � �2 »!="0V�12 we obtain

1

�E1
� 4

3

e2

4�"0

ÿ !
!3

»c3
jRf0j2

� Eÿ

1 MeV

� �3 jRf0j
1 fm

� �2

0:38� 1015 sÿ1;

�12:12�

where the last form indicates the order of magnitude to be expected for

the mean lives.

From equation (12.10), we see that þ0 and þf must be of opposite

parity for an electric dipole transition to take place, since if they have the

same parity the integral vanishes. It can also be shown from the angular

part of the integration, using the properties of spherical harmonics, that

the change �j in the nuclear spin quantum number for an electric dipole

transition must be �j � 0 or �j � �1, except that 0 ! 0 transitions are

forbidden (see }7.3). An estimate of the magnitude of jRf0j requires a

knowledge of the nuclear wave-functions. Even in the simple shell

model such calculations are not easy.

The nucleus also couples to the magnetic ®eld of the photon, and at a

similar level of approximation the interaction with the magnetic ®eld B is

given classically by ÿl � B0 cos!t, where l is the total magnetic moment

of the nucleus. The magnetic moment operator is given in the simple shell

model by equation (5.24),

l �
X

nucleons

�N�gLL� gss�= »;

where �N � e »=2mp is the nuclear magneton. The transition rate induced

by this interaction will be of the same form as (2.11), with eE0 � Rf0

replaced by B0 �Mf0 where

Mf0 �
Z

þ�
f lþ0d�coordinates�: �12:13�

If Mf0 is non-vanishing, the transition is said to be magnetic dipole (M1).

Since jB0j � jE0j=c, the mean life is given by

1

�M1

� 4

3

1

4�"0

� �
!3

»2c5
jMf0j2: �12:14�
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From (12.13), Mf0 is non-vanishing only if þ0 and þf have the same

parity, since l is a pseudo-vector (}2.6). Electric and magnetic dipoles

transitions are therefore mutually exclusive. The angular momentum

selection rules, �j � 0, �1�0 ! 0 forbidden) are the same as for electric

dipole transitions.

The ratio of mean lives for magnetic and electric dipole transitions at

the same energy is

�M1

�E1
� e2c2jRj2

jMj2 :

If we take jRj � nuclear radius � A
1
3 fm, and M � e »=mp, we obtain

�M1

�E1
� �mpc

2�2�A2
3 fm2�

� »c�2 � 20A
2
3:

Thus the mean lives for magnetic dipole transitions are generally longer

than those of electric dipole transitions at the same energy by a consider-

able factor, though this estimate is of course very crude.

If both Rf0 and Mf0 vanish, as is not uncommon, then we can no

longer neglect the variation in the photon ®eld over the dimensions of

the nucleus. The expansion of cos�k � rÿ !t� in powers of �k � r� gives

matrix elements for higher-order electric and magnetic transitions.

Each power of �k � r� introduces an additional factor of ÿ1 in the

parity selection rule, and an additional unit of orbital angular momen-

tum in the �j selection rule so that, for example, for electric quadru-

pole transitions there is no change in parity and �j � �2, �1, 0,

except that 0 ! 0 and 1
2 ! 1

2 transitions are both forbidden, by con-

servation of angular momentum. To each type of transition there cor-

responds a characteristic angular dependence and polarisation of

emitted ÿ-rays.

Each power of �k � r� reduces the order of magnitude of the matrix

element by a factor � �kR�, where R is the nuclear radius, and hence

increases the lifetime by a factor of �kR�ÿ2. For a 1 MeV photon and

A � 50, �kR�ÿ2 � 0:24� 104. The curves of Fig. 7.6 have been drawn

using only a more sophisticated version of this argument, but they are

nevertheless a useful guide to the interpretation of experimental

lifetimes.
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12.9 Internal conversion

A nucleus in an excited state can also decay electromagnetically by `inter-

nal conversion'. In this process, an atomic electron in a state �0�re� takes
up the energy released in the decay and is excited to a state �f �re� which
must be initially empty. If the energy release is greater than the binding

energy of the electron, as is usually the case, the electron is ejected from

the atom and the state �f �re� may be approximated by a plane wave.

Thus the initial state is of the form

þ0 � ýnuc
0 �0�re�

and the ®nal state of the form

þf � ýnuc
f �f �re�:

The main contribution to the interaction energy between the electron and

the nucleus is the Coulomb energy

X
protons

ÿe2

4�"0jrp ÿ rej

and the corresponding matrix element for the transition is

Hf0 �
Z

ýnuc�
f ��

f

X
protons

ÿe2

4�"0jrp ÿ rej
� ýnuc

0 �0d
3red�nuclear coordinates�:

We shall not pursue the evaluation of this matrix element, but note that it

can be non-vanishing for 0 ! 0 transitions between nuclear states of the

same parity.

The process of internal conversion always competes with ÿ-decay

with similar nuclear matrix elements appearing. As in the case of K-

capture in þ-decay, there is a factor Z3 in the transition rate arising

from the normalisation of the initial state electron wave-function. Thus

internal conversion becomes increasingly signi®cant in the electromag-

netic decays of the heavier elements. The internal conversion coef®cient

is de®ned as the ratio of the rate of internal conversion to the rate of ÿ-

emission, for a given type of electromagnetic transition. Extensive tables

of these coef®cients can be found in the literature.
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Problems

12.1 The product of a þ-decay half life T1
2
(}2.4) and the number f �Zd;E0� is

the `fT1
2
' value. From equations (12.7) and (12.9) the fT1

2
value gives a

direct empirical determination of the nuclear matrix element

jMFj2 � jMGTj2. Calculate the fT1
2

value for the decay
31
16S !31

15 P� e� � �, for which T1
2
� 2:60 s, E0 � 4:94 MeV and

f �15; 4:94� � 1830. In the simple shell model, this decay involves a 2s1
2

proton changing to a 2s1
2
neutron. Compare this fT1

2
value with that of a

free neutron. Why do the two values differ?

12.2 The cross-section for the reaction

��e � p ! n� e�

is given in perturbation theory by

� � 2�

»
1

�neutrino flux� jHf0j2n�Ee�;

where n�Ee� is the relativistic density of states (equation (12.4)). Show

that

� � G2
w

�� »c�4 �1� 3g2A��cpe�Ee:

Calculate this cross-section for a 2 MeV anti-neutrino.

12.3 If an electric dipole (E1) decay mean life is known, then equation (12.12)

can be used to calculate the corresponding dipole matrix element jRf0j.
The ®rst excited state of 11Be decays to the ground state through an E1

transition. The mean life is 1:79� 10ÿ13 s and the photon energy is

0.32 MeV. Calculate jRf0j.
An example of an electric dipole transition in atomic physics is the

decay of the 2p excited state of the hydrogen atom, for which the mean

life is 1:6� 10ÿ9 s and the photon energy is 10.2 eV. Calculate jRf0j and
compare it with the nuclear matrix element.

12.4 The nucleus 108
47Ag, which has spin and parity 1�, is þ-unstable with a

mean life of 3.4 minutes. It has an excited state at 109 keV excitation

energy, spin and parity 6�, which is an isomeric state with a mean life of

180 years. Explain how an excited state of a nucleus can be more stable

than the ground state.
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13

Neutrinos

Neutrinos are elusive particles: for many years their very existence was

only inferred from the part that they play in ÿ-decay. However, we have

seen in Chapter 10 and Chapter 11 that they are of great importance in

astrophysics, and in the forging of the nuclei of the heavy elements in

supernovae. Apart from ÿ-decay, other experimental results on neutrinos

are accumulating. In this chapter we describe some of these results, and

their possible interpretation.

13.1 Neutrino cross-sections

To design neutrino detectors, for example to measure the ¯ux of neutri-

nos striking the Earth, it is important to know their interaction cross-

sections with atomic nuclei and electrons. Unless the neutrino energy is so

high that its de Broglie wavelength � � �2� »=p� is comparable with or

less than the nuclear radius, the nuclear cross-sections for processes which

convert a neutrino to its charged lepton partner will involve matrix ele-

ments of the same form as those which appear in the theory of ÿ-decay.

For example the total cross-section for the reaction

��e � p ! n� e�;

with unpolarised protons, at a neutrino energy above the threshold

energy for the reaction, is (Problem 12.4)

� � G2
w

�� »c�4 �1� 3g2A��cpe�Ee: �13:1�
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In this expression pe and Ee are the electron momentum and electron

energy in the centre-of-mass system. (Note that the energy of the electron

is determined by the energy of the neutrino.)

More generally, the total cross-section for the reaction

�e �A ! B� eÿ;

when the nuclear matrix elements correspond to an allowed transition,

and the neutrino energy is above threshold, is given by

� � G2
w

�� »c�4 MF

þþ þþ2� Mx
GT

þþ þþ2� My
GT

þþ þþ2� Mz
GT

þþ þþ2h i
�cpe�EeF�Z;Ee�;

�13:2�

where Z is the atomic number of the ®nal nuclear state, and F�Z;E� is the
Coulomb correction factor introduced in equation (12.6).

The same formula holds for the anti-neutrino reaction,

��e � B ! A� e�:

The reactions described above involve the exchange of a virtual W�

boson. By the exchange of a virtual neutral Z boson, a neutrino can

scatter elastically from a nucleus. However for neutrino detection the

important elastic scattering is that from electrons (see }10.5). The pro-

cesses involved in electron neutrino scattering from electrons are repre-

sented diagrammatically in Fig. 13.1. At low energies the W boson

contribution to the scattering comes from matrix elements of the form

Hf0 � GF

Z
��
ef �r��eo�r���

�f �r���o�r�d3r: �13:3�

Reference to spin has been suppressed. The form echoes the Fermi inter-

action in ÿ-decay, but since only leptons are involved it is the Fermi

constant GF which appears. The contribution from the interaction with

the Z boson involves a new parameter of the Standard Model: the

Weinberg angle �W. For neutrino energies E� � mec
2 (but less than

MW) in the centre-of-mass system, the total cross-section �� for scattering

from unpolarised electrons is calculated to be
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�� �
G2

F

3�� »c�4 �3� 12 sin2 �W � 16 sin4 �W��cpe�Ee: �13:4a�

The corresponding cross-section for anti-neutrinos is

�� �
G2

F

3�� »c�4 �1� 4 sin2 �W � 16 sin4 �W��cpe�Ee: �13:4b�

In these expressions pe and Ee are the electron momentum and energy in

the centre-of-mass system. The accepted value of sin2 �W from experiment

is

sin2 �W � 0:231 24�24�:

13.2 The mass of the electron neutrino

In standard uni®ed theories the neutrino masses are assumed to be zero.

It is clearly important to test this assumption experimentally. A ®nite

neutrino mass of even a few eV/c2 would have signi®cant consequences

in, for example, cosmology. The signature of a ®nite neutrino mass would

in ÿ-decay appear in the shape of the electron energy spectrum near

maximum energy. From expression (12.5), this shape depends sensitively

on whether m� � 0 or m� 6� 0. The difference is clearer in a Kurie plot of
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Fig. 13.1 Processes contributing to the elastic scattering of electron neutrinos by

electrons: (a) exchange of a virtual charged W boson; (b) exchange of a neutral Z

boson.



dR=dEe

F�Zd;Ee�Ee�E2
e ÿm2

ec
4�12

" #1
2

against electron energy since from equation (12.5)

dR=dEe

F�Zd;Ee�Ee�E2
e ÿm2

ec
4�12

" #1
2

� �constant��E0 ÿ Ee�
1
2��E0 ÿ Ee�2 ÿm2

�c
4�14:

If m� � 0, this plot gives a straight line �E0 ÿ Ee� passing through E0; if

m� 6� 0 the line is curved and the tangent at maximum energy is vertical.

A much-studied decay in this context is that of tritium

3
1H ! 3

2He� eÿ � ��� 18:6 keV:

The low electron kinetic energies in this decay are experimentally advan-

tageous. Figure 13.2 shows experimental data and there is remarkable

overall agreement between the data and the ®tted theoretical spectrum.

A Kurie plot of data near Ee � E0 is also shown. The dif®culty of the

experiment is evident: the conclusion is that m� < 60 eV=c2. More recent

tritium experiments (Belesev, A. I. et al. (1995), Phys. Lett. B 350, 263)

suggest that

m� < 4:35 eV

with high probability.

We conclude there is not yet direct evidence that the electron neutrino

has mass, and there is no direct evidence of mass for the muon neutrino

or the tau neutrino. However, there is a growing body of experimental

results which suggest that neutrinos do have mass, but on a much smaller

scale than that probed by direct experiments.

In }2.4 and }3.6 we introduced all of the elementary fermions: the

leptons and the quarks. The three charged leptons and the six charged

quarks all have mass. Are the neutrinos the exception?

13.3 Neutrino mixing and neutrino oscillations

Let us assume there are three basic neutrino types, which we denote by

j�1i, j�2i, j�3i, having de®nite masses m1, m2, m3 respectively. These states
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are eigenstates of the mass operator, and may be taken to be orthogonal

and normalised. The mass operator acts on internal degrees of freedom of

the neutrino, and the mass eigenstates may be represented by 3� 1 col-

umn matrices. The formalism is somewhat similar to that of intrinsic

electron spin, in which `spin-up' and `spin-down' states are eigenstates

of the operator sz.
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Fig. 13.2 The electron energy spectrum from the decay of tritium. The experi-

mental points give the number of electrons N�Ee� observed in small energy `bins'

from a very large number of decays. (Taken from Lewis, V. E. (1970), Nucl. Phys.

A151, 120.) The spectrum is well ®tted using equations (12.5) and (12.6). Also

shown for comparison is the curve without the Coulomb correction. The inset

shows a Kurie plot of the spectrum near the electron end point. (For this data see

Bergkuist, K. E. (1972), Nucl. Phys. B39, 317.) The theoretical curves in the inset

include the effect of the ®nite size of the energy `bins'.



Mixing means that the electron neutrino state j�ei produced in a ÿ-

decay is not a basic neutrino, but a linear combination of the three mass

eigenstates. Similarly the muon neutrino and the tau neutrino are linear

combinations of the mass eigenstates, orthogonal to each other and to the

electron neutrino.

For mathematical simplicity we shall take a two-component model

and suppose that j�ei is well represented by

j�ei � cos �j�1i � sin �j�2i: �13:5�

Orthogonal to j�ei is the state

j�xi � ÿ sin �j�1i � cos �j�2i; �13:6�

as the reader may readily verify. j�xi might be a muon neutrino or a tau

neutrino. � is known as the mixing angle.

If the electron neutrino was created at t � 0 with momentum p in the

plane wave state eipz= », then at time t the state will have evolved to

j�eit � eÿiE1t= » cos �j�1i � eÿiE2t= » sin �j�2i; �13:7�

where E1 �
������������������������
p2c2 �m2

1c
4

q
, E2 �

������������������������
p2c2 �m2

2c
4

q
.

We can solve equations (13.5) and (13.6) for j�1i and j�2i in terms of

j�ei and j�xi:

j�1i � cos �j�ei ÿ sin �j�xi;
j�2i � sin �j�ei � cos �j�xi;

and then substitute in (13.7) to obtain

j�eit � eÿiE1t��cos2 � � ei�E1ÿE2�t= » sin2 ��j�ei
ÿ sin � cos ��1ÿ ei�E1ÿE2�t�j�xi�:

If after time t the neutrino is detected, the probability of it being an

electron neutrino is, by the usual rules of quantum mechanics,

Pe�t� � j�cos2 � � ei�E1ÿE2�t= » sin2 ��j2
� 1ÿ sin2 2� sin2f�E2 ÿ E1�t=2 »g;

�13:8�

and the probability of it being an x neutrino is
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Px�t� � sin2 � cos2 �j�1ÿ ei�E1ÿE2�t= »�j2
� sin2 2� sin2f�E2 ÿ E1�t=2 »g:

�13:9�

Unless m1 � m2, so that E1 � E2, it is evident that Pe < 1 if there is

mixing.

A neutrino may be detected and identi®ed by its conversion into its

charged leptonic partner (}10.5). In the case of neutrinos produced from

nuclear ÿ-decay, or from thermonuclear reactions in the Sun, the neutrino

energies are too small to produce a muon or tau lepton. Thus the x

neutrino will not be detected. If there is neutrino mixing, it will be seen

as a reduction by a factor Pe in the anticipated ¯ux of electron neutrinos.

Note that electron lepton number is no longer conserved (see }2.5): we are
straying outside the Standard Model of particle physics.

To analyse Pe further, we assume that the neutrinos are highly rela-

tivistic. We can then take the ®rst term in the Taylor expansion and write

E2 ÿ E1 �
������������������������
p2c2 �m2

2c
4

q
ÿ

������������������������
p2c2 �m2

1c
4

q
� ��m2�c4

2pc
; �13:10�

where �m2 � m2
2 ÿm2

1.

A relativistic neutrino wave packet will travel with velocity � c so

that, at a distance z from the source,

Pe�z� � Pe�t � z=c� � 1ÿ sin2 2� sin2f�E2 ÿ E1�z=2 »cg: �13:11�

Using (13.10) this becomes

Pe�z� � 1ÿ sin2 2� sin2��z=L�; �13:12�

where the oscillation length L is given by

L � 4��pc�� »c�
��m2�c4 ; �13:13�

which can be written as

L � 2:48
pc

1 MeV

� � 1 eV2

��m2�c4
ý !

m: �13:14�
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It is the sinusoidal nature of Pe as a function of z which gives rise to

the name neutrino oscillations for this phenomenon.

13.4 Solar neutrinos

Table 13.1 shows the results of ®ve independent measurements of the

ratio of the solar neutrino detection rate, to the expected rate calculated

from the standard solar model and the Standard Model of particle phy-

sics. Within the context of neutrino oscillations, this can be taken as a

measure of Pe. Pe is consistently less than one. Also, the measurements

are sensitive to different neutrino energy bands (}10.5), and Pe appears to

be energy dependent.

Can these results be explained by neutrino oscillations? Within our

two-neutrino model, if ��m2�c4 � 1 eV2 we see from equation (13.14) that

the oscillation length L is then very much smaller than the size of the

Sun's thermonuclear core, where solar neutrinos are created. (For solar

neutrinos, pc � 10 Mev.) Averaging over the core,

Pe � 1ÿ 1
2
sin2 2�:

This is independent of neutrino energy, and the maximum possible sup-

pression is Pe � 1
2. Thus ��m2�c4 � 1 eV2 would appear to be inconsistent

with the experimental data.

An alternative relevant length scale is the mean Earth±Sun distance of

� 1:496� 1011m � 1 astronomical unit. We can rewrite (13.12) as
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Table 13.1. The ratio of measured neutrino ¯ux to neutrino ¯ux predicted

by the standard solar model, in ®ve independent experiments

Experiment Type of detector Result/Theory

Homestake (USA) 37Cl 0:33� 0:029

Kamiokande (Japan) H2O 0:54� 0:07

GALLEX (Italy) 71Ga 0:60� 0:06

SAGE (Russia) 71Ga 0:52� 0:06

SuperKamiokande (Japan) H2O 0:474� 0:020

(See Bahcall, J. N. et al. (1998), Phys, Rev. D 58, 096016.)



Pe�z� � 1ÿ sin2 2� sin2 1:9
z

1 AU

� � 1 MeV

pc

� � ��m2�c4
10ÿ11 eV2

ý !" #

�13:15�

and 0 < pc � 10 MeV, z � 1 AU (ignoring the diurnal and annual var-

iations of z). Unless ��m2�c4 � 10ÿ11 eV2, the range of neutrino

momentum values will lead to an averaging of the sine-squared term,

and again we shall have a factor of 1
2
. However, a detailed analysis

suggests that the experimental data can be ®tted by this model if

��m2�c4 � 6:5� 10ÿ11 eV2, and sin2 2� � 0:75.

Another interesting possible mechanism for explaining the solar neu-

trino de®cit arises from the interaction of neutrinos with matter. As

neutrinos pass through matter they acquire an effective mass. An electron

neutrino can interact with electrons in matter through the exchange of a

virtual W boson, as in Fig. 13.1(a). At low energies this gives the Fermi

interaction matrix elements (13.3). These can be interpreted as arising

from a neutrino effective mass GFne=c
2, where ne is the number density

operator for electrons. Taking spin into account gives a factor
���
2

p
. The

effective mass from the Fermi interaction is thus given by

m�ec
2 �

���
2

p
neGF � 1:27�1 A

� 3
ne� � 10ÿ13 eV: �13:16�

The Gamow±Teller interaction contributes only in ferromagnetic materi-

als. This effective mass term is unique to the electron neutrino, because

matter has zero muon density and zero tau density. The neutrino inter-

action with electrons through the neutral Z boson (Fig. 13.1(b)) contri-

butes to the effective mass for all neutrino types, but does not induce mass

differences. It is therefore of little interest in the context of neutrino

oscillations.

These effective masses are calculated in the Standard Model of par-

ticle physics. They are small, both in terrestrial materials and in the Sun,

as equation (13.16) indicates. However, if we postulate the existence of

intrinsic neutrino masses and neutrino mixing, new resonance phenomena

appear. In passing through matter of varying electron number density, as

happens to a neutrino created in the core of the Sun (Fig. 10.1), the

matter modi®cation to the mass of the electron neutrino can cause a

large neutrino oscillation, even though the vacuum mixing angle is very

small. As the neutrino leaves the Sun, the oscillation is then effectively

frozen, since further oscillations have a small amplitude. It is found that,
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if these effects are to account for the solar neutrino de®cit,

��m2�c4 � 10ÿ5 eV2, sin2 2� � 10ÿ2.

13.5 Atmospheric neutrinos

A quite different scale on which to search for neutrino oscillations is given

by atmospheric neutrinos. The Earth is continually bombarded by cosmic

rays, which consist for the most part of high-energy protons and elec-

trons. The protons, in their collision with nuclei in the upper atmosphere,

produce �-mesons. The �-mesons while still in the upper atmosphere

decay by the chains

�� !�� � ��

! e� � �e � ���

�ÿ !�ÿ � ���

! eÿ � ��e � ��

The neutrinos and antineutrinos are produced at a mean height

H � 20 km, with energies extending to the multi-GeV region.

From the expressions in }13.1 the cross-sections for neutrino and

anti-neutrino scattering increase with energy, so that the detection of

these uncharged leptons becomes easier at higher energy. In water detec-

tors such as SuperKamiokande charged leptons are produced through

reactions essentially of the form

�e � n ! eÿ � p; ��e � p ! e� � n;

�� � n ! �ÿ � p; ��� � p ! �� � n

which take place within 22.5 kilotonnes of water.

The charged leptons give Cerenkov radiation which provides infor-

mation on the energy, direction, and identity of the incident uncharged

lepton. At high energy, the direction of the charged lepton is closely

correlated with that of the incident neutrino or anti-neutrino. Electrons

and muons may be distinguished by characteristics of their Cerenkov

signals. (Electrons are scattered more than muons in their passage

through the water. See }14.2.)
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Since neutrinos traverse the Earth almost unimpeded, the angle �z of

a neutrino's direction with the local vertical at the detector (the zenith

angle) determines its distance z from its point of production in the upper

atmosphere. To a good approximation z is given (using elementary geo-

metry) by

z � R2
� cos2 �z � 2R�H �H2

� ÿ1=2ÿR� cos �z;

where R� � 6380 km is the Earth's mean radius, andH � 20 km; z varies

between z � H when �z � 0, and z � 2R� �H when �z � �.

In Fig. 13.3, the ratio of observed to expected events is plotted as a

function of cos �z for electron-like events and for muon-like events. Data

from SuperKamiokande and Kamiokande has been combined.

In the electron data there is no sign of an oscillation. This is consis-

tent with both of the scenarios we have sketched for solar neutrinos. If

either ��m2�c4 � 10ÿ11 eV2 or ��m2�c4 � 10ÿ5 eV2, no oscillation would

be expected over a distance of � R�.
The muon data is quite different. There is a clear suppression for

cos �z < ÿ0:2, which suggests an oscillation length for the muon neutrino

comparable to R�. In a two-neutrino model we can write

P� � 1ÿ sin2 2�� sin
2 8:1

z

R�

� �
1 GeV

pc

� � ��m2
��c4

10ÿ3 eV2

ý !" #
:

�m2
� might be the difference in the squared masses of the tau neutrino

and the muon neutrino. There is no sign in the data of the muon neutrino

oscillating into an electron neutrino. Detailed ®ts to the data suggest

��m2
��c4 � 10ÿ3 eV2, and a large value for sin2 2��.

In neutrino physics, we see that nuclear physics, astrophysics, particle

physics, and indeed cosmology, come together, and present challenging

experimental and theoretical problems.

Problems

13.1 Consider allowed ÿ-decays which have a large energy release E0 (e.g. the

decay of 8B, }10.4). In such decays, the effects of Coulomb corrections

and ®nite lepton masses are small. Show that, neglecting these effects,

(a) the mean life depends on E0 as Eÿ5
0 ,

(b) the mean electron energy is E0=2.
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To examine the effect of a ®nite neutrino mass on the energy spec-

trum, only decays with energy in a small range �Ee � m�c
2 at the end-

point Ee � E0 are signi®cant. Show that the proportion of such decays is

very small, of order 10��Ee=E0�3.
13.2 In the K-capture

7
4Be�atom� ! 7

3Li�atom� � �,

with the beryllium source at rest, the recoil energy of the lithium atoms

(mass 6536 MeV/c2) was measured to be �55:9� 1:0� eV (Davis, R.

(1952), Phys. Rev. 86, 976). The mass difference between the two
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Fig. 13.3 The ratio of observed to expected events plotted as a function of cos �z,

for muon-like and electron-like events. (See Harrison, P. F. et al. (1999), Phys.

Lett. B 458, 79.)



atoms is 0.862 MeV/c2. Show that this experiment implied the neutrino

mass to be less than 160 keV/c2.

13.3 The cross-sections for neutrino interactions are typically of order

� � G2
F

� »c�4 E
2
� � E�

1 MeV

� �2

10ÿ17 fm2;

where E� is the neutrino energy in the centre-of-mass frame.

(a) In the core of a supernova, a neutrino will scatter mostly from neutrons.

Show that, in a core of radius 10 km and nucleon number 2:4� 1057, the

mean free path of a neutrino is

l � 1 MeV

E�

� �2

175 m:

(b) Consider scatterings in which a neutrino stays a neutrino (as will usually

be the case for muon and tau neutrinos). Show that the time taken for a

neutrino to diffuse from the centre to the surface of this core is of order

E�

1 MeV

� �2

2� 10ÿ3 s:

(Assume the neutrino path is a random walk, so that �R=l�2 steps are

needed to diffuse a distance R.)

13.4 For neutrinos in thermal equilibrium, the power emitted per unit area at

a surface is given approximately by a formula similar to the Stefan±

Boltzmann law for photons:

power per unit area = a�T
4;

where a� � 3� �7=8� � aphoton and aphoton � �2

60

k4B

c2 »3
.

(The factor 3 comes from the three neutrino types, and the factor (7/8)

from the Fermi±Dirac statistics.) Show that the core of a star with radius

10 km and surface temperature T given by

T4 � T4
0 e

ÿt=�;

where kBT0 � 4:2 MeV, � � 4:6 s, will radiate a total of 3� 1058 MeV

by neutrino emission.
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14

The passage of energetic particles through
matter

In this chapter we consider the passage of energetic particles through

matter. Nuclear reactions usually result in the production of such parti-

cles: �-particles, electrons, photons, nucleons, ®ssion fragments, or what-

ever. In passing through matter, an energetic particle loses its energy,

ultimately largely into ionisation. The instruments of nuclear physics

are designed to detect and measure this deposited energy, and so it is

upon these processes that our knowledge of nuclear physics rests.

The subject is also basic to an understanding of the biological effects

of energetic particles, since a living cell can be damaged by the ionisation.

This can be of positive bene®t, as in the destruction of malignant tissue in

cancer treatment, or a danger from which, for example, workers in the

nuclear power industry must be shielded. Shielding calculations also

depend on the physical principles set out in this chapter.

We limit the discussion to particles with kinetic energies up to around

10 MeV, in line with the nuclear physics described in Chapters 4±12. It is

intended to give the reader a qualitative comprehension, rather than a

compendium of the most accurate formulae and data available for quan-

titative work.

14.1 Charged particles

We consider ®rst the passage of charged particles, such as protons and �-

particles, through gases. For charged particles of energy <10 MeV, the

dominant mechanism for energy loss is the excitation or ionisation of the

atoms (or molecules) of the gas: electrons being excited to higher bound
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energy levels in the atom, or detached completely. The essential physics of

the process may be understood using classical mechanics.

We consider a `fast' particle, charge ze, velocity v, energy E, passing a

particle of charge z 0e, mass mR, initially at rest. We suppose that the fast

particle deviates a negligible amount from its initial straight-line path

along the x-axis (Fig. 14.1), and the rest particle at the point �0; b; 0�
moves only a negligible distance during the encounter. The distance b is

called the impact parameter.

The equation of motion of the fast particle is

dp

dt
� zeE;

where p is its momentum and E is the electric ®eld due to the `rest'

particle. The magnetic ®eld due to the `rest' particle will be negligible.

This equation remains valid for relativistic momenta.

The ®eld E has components

Ex � 1

4�"0

�z 0e�x
�b2 � x2�32

; Ey � ÿ 1

4�"0

�z 0e�b
�b2 � x2�32

:

Thus the change in momentum of the fast particle along its direction of

motion is small, for if we approximate its motion by x � vt,

�px � ze

Z 1

ÿ1
Ex dt �

zz 0e2

4�"0

ÿ !Z 1

ÿ1

vt dt

�b2 � v2t2�32
� 0;

whereas the particle acquires transverse momentum pT � �py given by
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pT � ze

Z 1

ÿ1
Ey dt � ÿ zz 0e2

4�"0

ÿ !Z 1

ÿ1

b dt

�b2 � v2t2�32
� ÿ zz 0e2

4�"0

ÿ !
2

bv
:

�14:1�

(The integral is easily evaluated by the substitution vt � b tan�.)

Since momentum is conserved overall, the `rest' particle acquires

momentum �ÿpT� and, assuming that it does not attain a relativistic

velocity, gains kinetic energy �p2T=2mR�. This energy must be lost by the

fast particle:

�E � ÿ p2T
2mR

� ÿ2
zz 0e2

4�"0

ÿ !2
1

b2v2mR

: �14:2�

Note that �E does not depend on the mass of the fast particle, and that

the calculation is valid for relativistic velocities of the fast particle.

In applying this result, the `rest' particles are the atomic nuclei and

atomic electrons of the gas. For an atomic nucleus of atomic number Z,

z 0 � Z, and (except for hydrogen) mR � 2Zmp. For an electron z 0 � ÿ1

and mR � me. Using the formula (14.2), when a fast charged particle

passes through a gas the ratio of the energy lost to the atomic electrons,

to the energy lost to the atomic nuclei, is � 2mp=me � 4� 103 (since each

nucleus has Z electrons). Thus the energy lost to the nuclei is negligible

compared with that lost to the electrons, and we shall only take the latter

into account. (We are implicitly assuming that the velocity of the fast

particle is large compared with the velocities of the atomic electrons in

their orbits.)

If the gas is of mass density �, and consists of atoms of atomic

number Z, atomic mass ma, the number of electrons per unit volume is

��=ma�Z. When the fast particle moves through a distance dx in the gas it

passes, on average, ��=ma�Z 2�b db dx electrons with impact parameter

between b and b� db, and the energy lost to these electrons is

d2E � ÿ4�
ze2

4�"0

ÿ !2
�Z

ma

1

v2me

db

b
dx:

Integrating this expression over all impact parameters between bmin and

bmax, the total rate of energy loss along the path, or stopping power, is
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ÿ dE

dx
� 4�

ze2

4�"0

ÿ !2
�Z

mame

1

v2
L; �14:3�

where L � ln�bmax=bmin�.
Since ma � A atomic mass units, where A is the mass number of the

atoms, we write this as

ÿ dE

dx
� D

Z

A

� �
�

zc

v

� �2
L; �14:4�

where

D � 4�
e2

4�"0

ÿ !2
1

me�931:5 MeV� � 0:307 MeV cm2 gÿ1:

and the mass density � of the material is expressed in g cmÿ3. (Note the

units.)

We have introduced parameters bmax and bmin. Our formula (14.2)

clearly breaks down for small b, since the energy transfer cannot be

inde®nitely large; it also breaks down at large b, since to ionise the

atom the energy transfer cannot be inde®nitely small. A quantum

mechanical calculation by Bethe which holds for charged particles

other than electrons and positrons gives equation (14.4) with

L � ln
2ÿ2mev

2

hIi

ÿ !
ÿ v2

c2

" #
; �14:5�

where hIi is a suitably de®ned average ionisation energy over atomic

electrons.

The form of (14.5) can be understood qualitatively from the following

considerations. In quantum mechanics a particle is represented by a

wave-packet, and for the classical treatment to be a good approximation

the dimensions of the wave-packet �x must surely be less than the impact

parameter b. By the uncertainty principle, the minimum size of a wave-

packet is »=p � »=�ÿmv�. (For a particle of mass m moving relativistically

we must include ÿ � �1ÿ v2=c2�ÿ1
2.) In the centre-of-mass frame of the

two particles, the uncertainty in position is the same for both. If the fast

particle is massive compared with an electron, then in the centre-of-
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momentum frame it is nearly at rest and the electron has velocity � v and

hence momentum p � ÿmev. This suggests we should in this case take

bmin �
»

ÿmev
:

At large impact parameters the energy transfer is small, and we must

recognise that the electrons are bound in atoms and have discrete energy

levels, so that there will be a minimum energy of excitation, of the order

of the ionisation energy I of the electron. In a `collision time' �c the energy

of a particle can be uncertain by �E � »=�c, so that to transfer energy I

requires �c < »=I . In our case the collision time �c � b=ÿv, where the

factor ÿ comes from relativistic considerations, so we take

bmax �
»ÿv
I

:

We have then

L � ln
bmax

bmin

� �
� ln

ÿ2mev
2

hIi

ÿ !
:

This expression is very similar to (14.5). hIi is usually treated as a para-

meter and determined by ®tting the formula to experimental data.

Though the formula is derived for gases, it is used for liquids and crystals

by adjusting hIi. For compounds `Bragg's additivity rule' is found to hold

quite well: the energy losses computed for each constituent separately

may simply be added.

The energy loss increases as the particle slows down, due to the 1=v2

factor. (The logarithm is only a slowly varying function of its argument.)

Hence the heaviest ionisation is found towards the end of the track. This

is indeed the case, but the formula was derived for fast particles. At low

velocities, of the order of the atomic electron velocities, it becomes inva-

lid, and �ÿdE=dx� decreases to zero as the particle comes to rest. Figure

14.2 plots the stopping power for protons in copper from experimentally

determined data, together with the Bethe formula (14.5) with a ®tted

value of hIi.
The energy-loss equation is of the form
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ÿ dE

dx
� ÿ dT

dx
� z2 � �function of v=c�;

where T is the kinetic energy of the fast particle. In relativistic mechanics,

T is given by

T � Mc2

�p
1ÿ v2=c2� ÿMc2;

so that we can express �v=c� as a function of �T=Mc2�, and write also

ÿ dT

dx
� z2F�T=Mc2�; �14:6�

whereM is the mass of the fast particle. We can use this result to scale the

data for, say, protons, to apply to other particles. For example, the
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tical curve is from equation (14.5) with hIi � 0:375 keV. The experimental points

are from Andersen, H. H. et al. (1966), Phys. Rev. 153, 338.



stopping power of copper for a 2.5 MeV proton is � that for a 5 MeV

deuteron, since md � 2mp and z � 1 for both. The validity of this scaling

is exempli®ed by the experimental data also shown in Fig. 14.2.

The result (14.5) holds for particles massive compared with an elec-

tron, and must be modi®ed for fast electrons or positrons passing

through matter. In particular, the momentum of either electron in the

centre-of-mass system is ÿmev= �p
2�ÿ � 1��, so that bmin becomes

» �p
2�ÿ � 1��=ÿmev. There are other quantum corrections, and the

expressions for electrons and positrons differ slightly. However, another

energy-loss mechanism becomes signi®cant for electrons and positrons

at the higher energies in our range. This is Bremsstrahlung or, in

English, `braking radiation', which is the energy loss by emission of

electromagnetic radiation when a charged particle accelerates and

decelerates during its collisions with the constituent atoms of the matter

it is passing through. We shall not treat this in detail. Bremsstrahlung is

most signi®cant in heavy elements, in which the Coulomb ®elds of the

nuclei are strongest. For electrons and positrons, the ratio of energy loss

rates is given approximately by

Bremsstrahlung energy loss

ionisation energy loss
� T�Z � 1:2�

700
;

where T is the kinetic energy in MeV, and Z the atomic number of the

material.

The range R�T0� of a fast particle of initial kinetic energy T0, mass M,

is the mean distance it travels before it stops. Using the energy-loss equa-

tion in the form (14.6),

R�T0� �
Z 0

T0

dT

dT=dx
� 1

z2

Z T0

0

dT

F�T=�Mc2�� �
Mc2

z2

Z T0=Mc2

0

du

F�u� :

Another useful scaling law follows from this equation (Problem 14.1).

Given the expression for F�T=�Mc2�� the integral can be performed

numerically. If a constant `mean' �L is used in the formula for dT=dx

we obtain the approximate result (Problem 14.2)

R�T� � �A=Z�
D�z2 �L

T2

Mc2 � T

ÿ !
: �14:7�
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Note the mass M appearing in the denominator. If Bremsstrahlung is

negligible, a similar result holds for electrons, with �L of the same order

of magnitude for the same material. Thus it is clear that in a given

material electrons and positrons travel a much greater distance on aver-

age than protons or other charged particles of the same kinetic energy. A

positron may annihilate with an electron whilst still in motion, but even in

lead, where electrons are abundant, the probability that it comes to rest

before it annihilates is greater than 80%.

In connection with energy loss, it is often of interest to know the total

amount of ionisation caused by the deposition of energy. The primary

electrons knocked out of atoms may have suf®cient energy to ionise

further atoms. It is found experimentally that the total number of elec-

tron±ion pairs produced is closely proportional to the energy deposited,

independently of the charge and velocity of the fast particle. The average

energy deposited per electron±ion pair formed is, typically, 30±40 eV for

gases, and 3±4 eV for semiconductors.

14.2 Multiple scattering of charged particles

We have assumed that the `fast' particle travels along an approximately

straight path, but it is of course de¯ected in collisions. The angle of

de¯ection �� in a single collision is given by

�� � pT
p

� zz 0e2

4�"0

ÿ !
2

bpv
;

using equation (14.1). This result agrees with the small-angle limit of the

well-known Rutherford scattering formula.

If the de¯ections occur randomly, as in a gas, the mean square trans-

verse momentum after several collisions (i� is given by

p2T �
X
i

�piT�2;

treating the vectors piT as a random walk.

Since for the atomic nuclei z 0 � Z, and for the atomic electrons

z 0 � ÿ1, it is the nuclei rather than the electrons which are responsible

for scattering the fast particle (except in hydrogen) and we can regard the

electrons as simply screening the Coulomb ®eld of the atomic nucleus at

large impact parameters.

206 The passage of energetic particles through matter



In a distance �x, the fast particle passes ��=ma� 2�b db �x nuclei

with impact parameters between b and b� db, so that

p2T � 2��

ma

zZe2

4�"0

ÿ !2
4

v2

Z
db

b
�x:

Again, we have to impose a maximum and minimum b. We should here

take bmax � an atomic dimension, beyond which the electrons screen out

the ®eld of the nucleus, and bmin � a nuclear dimension, since for an

energetic particle it is only when the impact parameter becomes compar-

able with the nuclear size that the Rutherford formula gives large-angle

scattering, and our approximate expression breaks down. Such large-

angle scatterings, though historically important (}4.1), are rare. At even

smaller distances the Coulomb ®eld of the nucleus is modi®ed and nuclear

interactions might occur.

Hence we have, roughly,
R
db=b � ln�A� =fm� � 10, and the mean

squared de¯ection in a path length �x is given by

�2 � p2T
p2

� �3 cm2 gÿ1 MeV2� ��x

�pv�2
Z2z2

A
: �14:8�

Thus the effect of multiple scattering increases rapidly with the atomic

number Z of the material. For heavy particles, pv � mv2 � 2T , and for

energetic electrons, pv � pc � T . Hence the mean square de¯ection per

unit length is not very sensitive to the mass of the particle, at given kinetic

energy. However, the effects of multiple scattering become more evident

for electrons and positrons because of their longer path length, and the

concept of a well-de®ned linear range is not applicable to these particles.

14.3 Energetic photons

An energetic charged particle loses its energy in small fractions as it

passes through matter, and for a given initial energy it travels a fairly

well-de®ned distance before it comes to rest. When an energetic photon

interacts with an atom, it is totally absorbed or scattered. The intensity of

an initially collimated beam of photons is thereby attenuated, while the

individual photons left in the beam are unscathed. It is useful to de®ne an

attenuation coef®cient, in terms of the total cross-section, �tot�E�, for a

photon of energy E � »! to interact with an atom. We consider a thin
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section of the material, of area S, thickness dx, normal to the direction of

the photons. If the material is of density � and made up of atoms of mass

ma, the section will contain ��=ma�S dx atoms. For suf®ciently small dx,

multiple scatterings can be neglected. If n incident photons impinge at

random on the slab, then from the de®nition of cross-section (Appendix

A) the number of photons dn lost from the beam is given by (Fig. 14.3):

dn

n
� ÿ area covered by cross-sections

total area

� ÿ ��=ma�S dx �tot
S

� ÿ��=ma��tot dx:

Integrating this equation yields

n�x� � n�0�eÿ�x;

where � � ��tot=ma is called the linear attenuation coef®cient. It is usual

to give data in terms of the mass attenuation coef®cient ��=�� � �tot=ma,

as a function of photon energy. The attenuation coef®cient for com-

pounds can be calculated to within a few per cent by assuming

� �
X
i

�i��i
tot=m

i
a�;

where i labels the ith constituent.

In the range of photon energies from 1 keV to 10 MeV there are three

main contributions to �tot: photo-electric absorption in atoms, the

Compton effect, and pair production. The relative importance of these
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Fig. 14.3 Effective total cross-section presented to photons incident normally on

a slab of area S, thickness dx.



contributions varies with energy (Fig. 14.4). These processes do not inter-

fere with each other and we can take

�tot � �a � Z�C � �p:

At low energies the photo-electric effect is dominant. In this process

the photon is absorbed completely by the atom, and an atomic electron is

raised to a higher unoccupied bound state or an unbound state. In Fig.

14.4 it will be seen that the cross-section for photo-electric absorption �a
rises sharply at the energies corresponding to the onset of ionisation of

the L and K shell electrons. These energies are higher in heavier elements

in which the core electrons are more tightly bound (Fig. 14.5).

At energies above the K shell absorption edge, the photo-electric

absorption falls off and the scattering of photons by electrons takes over

as themain contribution to the attenuation. This isCompton scattering, and

some of the photon energy goes into the recoil energy of the electron. At
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Fig. 14.4 Contributions to the mass attenuation coef®cient for photons in lead.

(Data for this ®gure and Fig. 14.5 from Review of Particle Properties (1983), Rev.

Mod. Phys. 56, S1.)



these energies the atomic binding of the electronsmay be neglected and they

may be treated as free. The momentum±energy conservation calculation is

elementary and well known. The calculation of the Compton scattering

cross-section �C, like those of �a and �p, is a well-understood calculation

in quantum electrodynamics, but the order ofmagnitude of �C can be found

from a simple classical calculation which is valid for low energies � »! �
mec

2� at which the electron recoil is negligible.

In a classical picture, the electron vibrates with the frequency of the

incident electromagnetic wave and emits a secondary wave at the same

frequency. The result of the classical calculation (Problem 14.7) is an

effective cross-section �T where
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Fig. 14.5 The mass attenuation coef®cient for photons in some elements span-

ning the periodic table. Note that both the horizontal and vertical scales are

logarithmic.



�T � 8�

3

e2

4�"0

ÿ !2
1

mec
2

� �2

� 0:665� 10ÿ28 m2 � 0:665 b:

This limiting value, which does not depend on frequency, is known as the

Thomson scattering cross-section. At higher energies �»!0mec
2� quan-

tum effects become important, and the Compton scattering cross-section

falls below this value. The corresponding Compton scattering from the

atomic nuclei is reduced by many orders of magnitude because of the

(mass)2 factor in the denominator.

Since there are Z electrons for each atom, the attenuation due to

Compton scattering is given by

�C � ��=ma�Z�C � �

1 amu

Z

A

� �
�C:

For elements other than hydrogen �Z=A� � 1
2
, so that their plots of ��=��

approximately coincide in the energy range where Compton scattering

dominates, as Fig. 14.5 shows. In this ®gure the value of ��=�� for hydro-
gen at low energies is close to ��T=mH� � 0:397 cm2 gÿ1.

At photon energies »! > 2mec
2 � 1:02 MeV pair-production becomes

possible (}2.3). This is the process

ÿ � �nucleus� ! e� � eÿ � �nucleus�;

which can occur most readily in the Coulomb ®eld of a heavy nucleus.

The cross-section �p increases with energy, and eventually pair-produc-

tion dominates over other processes. It can be regarded as the inverse

process to Bremsstrahlung, and the cross-section �p increases with Z

similarly. This is why the turn-up in the curves of Fig. 14.5 is most

pronounced in the case of lead.

14.4 The relative penetrating power of energetic particles

Table 14.1 sets out the ranges of �-particles and electrons of 1 MeV

energy, and the attenuation length, �ÿ1, of photons of 1 MeV energy,

in air and in soft tissue.

The high penetrating power of energetic photons (called X-rays or ÿ-

rays, depending on whether they come from atomic or nuclear processes!)
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is used in medical diagnosis, and in industry, for imaging. The familiar

`X-ray photograph' depends on differences in X-ray absorption in differ-

ent materials.

The short range of electrons in matter is also exploited. A source of þ-

activity of appropriate energy, provided that it is not a signi®cant source

of secondary ÿ emission (see }7.5), may be implanted in diseased tissue to

give a localised source of radiation, so that diseased tissue is destroyed

whilst neighbouring healthy tissue is unaffected. 32P is an example of such

a clean þ source.

In cases of accidental exposure to radiation, sources of �-radiation

and þ-radiation are usually only harmful if taken into the body: because

of the short ranges involved, external sources are effectively shielded from

the body by any intervening material.

The analysis of the effect of external X-rays or ÿ-rays is more com-

plex. The attenuation length for a photon is the mean distance it travels

before depositing any ionising energy. In the 1 MeV region, where

Compton scattering predominates, the recoil electron from the scattering

produces ionisation, but the scattered photon can still have suf®cient

energy to undergo further scattering and produce more ionisations until

its energy becomes so low that photo-electric absorption takes place. The

situation is best analysed by computer simulations, using so-called

Monte-Carlo techniques.

Problems

14.1 Show that if Rp�T� is the range of a proton of kinetic energy T , the range

RM�TM� of a charged particle of mass M, kinetic energy TM , and charge

ze is given by
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Table 14.1. Ionising path lengths for 1 MeV electrons and 1 MeV

�-particles, and 1 MeV photon attenuation lengths, in air and in soft

tissue

Air (cm) Soft tissue (cm)

Electron 380 0.43

Alpha particle 0.52 7� 10ÿ4

Photon 1:1� 104 14

(Data from American Institute of Physics Handbook, 3rd ed. 1972, New York:
McGraw-Hill.)



RM�TM� � M

z2mp

Rp�mpTM=M�:

14.2 If L in equation (14.4) is replaced by a constant �L, show that the integral

for the range of an ionising particle can be evaluated to give the approx-

imate result (14.7).

14.3 For `back-of-envelope' calculations, a useful estimate of the mean ioni-

sation energy hIi for an atom of atomic number Z is hIi � 12Z eV.

Show that for �-particles of kinetic energy 2 MeV in aluminium the L

of equation (14.5) � 2; for electrons of kinetic energy 2 MeV in alumi-

nium, L � 10. Use these values to estimate the range of 5 MeV �-par-

ticles and of 5 MeV electrons in aluminium (mass density 2:7 g cmÿ3).

14.4 Show that for a non-relativistic particle of mass M, velocity v,

�dE=dx� � M�dv=dt�. Replacing L by a constant �L in equation (14.4),

show that the time for a non-relativistic particle with initial velocity v0 to

come to rest is (4/3) (range)/v0.

Estimate the time taken by the �-particle of Problem 14.3 to come to

rest.

14.5 In a neutron detector of the type described in Problem 8.2, estimate

roughly the number of ion pairs produced in the helium gas per neutron

interaction and the distance over which the ionisation is deposited.

14.6 50 keV X-rays are in common use in dentistry. Estimate the thickness of

lead sheet (density 11:4 g cmÿ3) that will absorb 99.9% of such radiation

at normal incidence.

14.7 Larmor's formula for the power P radiated from a non-relativistic par-

ticle of charge e and acceleration a is

P � 2

3

e2

4�"0

ÿ !
a2

c3
:

Show that classically an electron in an electric ®eld E � E0 cos!t will

radiate energy at a mean rate

P � 1

3

e2jE0j2
m3

ec
3

e2

4�"0

ÿ !
:

The incident energy ¯ux in a plane electromagnetic wave is c"0jE0j2=2
(cf. }12.8). Hence obtain the Thomson scattering formula.
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15

Radiation and life

Life on Earth has evolved and is sustained by the light and heat of the

Sun. In addition to this essential and almost entirely benign ¯ux of elec-

tromagnetic energy, living organisms have always been subject to the

hazards of natural ionising radiation. In the twentieth century man's

activities added somewhat to these hazards. On the other hand, ionising

radiation is used to great advantage in industry and for diagnostic and

therapeutic purposes in medicine, and nuclear power is not without its

bene®ts. The interaction between ionising radiation and living tissue is

therefore a matter of great interest and importance.

15.1 Ionising radiation and biological damage

The basic unit of living tissue is the cell. Cells are complex structures

enclosed by a surface membrane. A cell has a central nucleus. This con-

tains DNA (deoxyribonucleic acid) molecules, which code the structure,

function, and replication of the cell. The famous `double helix' of the

DNA molecule has a diameter of about 2 nm. About 80% of a cell

consists of water.

The induction of cancer or of hereditary disease by low levels of

ionising radiation is believed to be related to damage to the DNA mole-

cules. This can happen by direct ionisation of the molecule, or indirectly

through ionisation of the water molecules in the cell. The break-up of a

water molecule may produce a hydroxyl (OH)ÿ ion that is highly reactive

chemically and may attack the DNA molecule.

A single broken strand of DNA is rapidly repaired (within hours) by

cellular enzyme systems, the unbroken strand of the DNA acting as
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template. However, if there is at the same time adjacent damage to the

other strand, neither can be repaired in this way. There may then be

errors in the repair processes, and consequent abnormalities in cell beha-

viour. The cell may, for example, die, which at low levels of radiation is

usually a matter of little consequence. Damage to a cell which causes later

uncontrolled cell division may lead ultimately to a tumour developing,

albeit usually after a long period of latency. A cell involved in reproduc-

tion which is damaged but survives may transmit genetic defects to sub-

sequent generations.

The relative biological damage caused by different types of radiation

can be understood in terms of their effectiveness in causing a double

break in DNA strands. For example, we saw in Chapter 14 that electrons

and positrons travel a much greater distance in a given material than �-

particles of the same energy, and produce roughly the same number of

electron±ion pairs. Thus the �-particle ionisations are more closely

spaced, and it is more likely that an �-particle will damage both strands

of a DNA molecule, compared with a þ-particle of the same energy.

15.2 Becquerels (and curies)

It will be helpful at this point to introduce some specialised units into our

vocabulary.

Radioactive nuclei may emit �-particles, electrons, positrons,

photons, or ®ssion products. The activity of a given nuclear species in a

given sample is the average number of decays per second of that species,

and is measured in becquerels: 1 Bq corresponds to an average of one

decay per second.

The total activity of a newly prepared sample may initially increase

with time, since the daughter products of a radioactive nucleus may also

be radioactive (Problem 15.2), though ultimately the total activity must

decay to zero.

The becquerel is the SI unit which has replaced the curie:

1 Ci � 3:7� 1010 Bq. The curie was de®ned originally as the 226Ra activ-

ity of a source containing 1 g of 226Ra. Since the mean life of 226Ra is

7:28� 1010 s, it is easy to check that the de®nition above is approximately

consistent with the older de®nition.
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15.3 Grays and sieverts (and rads and rems)

The absolute absorbed dose of radiation at any point in a material is

de®ned as the energy per unit volume that has been absorbed by the

material, divided by the mass density at the point. The SI unit for

absorbed dose is the gray, corresponding to one joule of absorbed energy

per kilogram of material. �1 Gy � 6:24� 1012 MeV kgÿ1:� An older unit

is the rad: 1 Gy � 102 rad. In practice, a quoted absorbed dose will be an

average over some region, for example a whole body average or an aver-

age over some particular organ of the body.

It has been found that radiation damage to living tissue is not simply

proportional to the absolute absorbed dose, but depends on several other

factors, of which one is the type of radiation. For example, for the same

number of grays, �-particles are more damaging than ÿ-radiation. From

medical experience, different types of radiation have been given radiation

weighting factors wR. The wR factors are dimensionless numbers. For

many purposes it is conventional to take these factors to be

1 for X-rays, ÿ-rays, þ-particles and muons,

5 for protons >2 MeV,

20 for �-particles.

Neutrons are uncharged and hence are not directly ionising.

However, in elastic collisions of neutrons with nuclei, the nuclei are set

in motion and become ionising. Neutron capture with ÿ-ray emission,

and nuclear ®ssion, are other possible processes which lead to ionisation.

The radiation weighting factor for neutrons has been found to be strongly

energy dependent and is taken to be

5 for <10 keV,

10 for 10±100 keV,

20 for 100 keV to 2 MeV,

10 for 2±20 MeV,

5 for >20 MeV.

The sievert (Sv) is a unit combining the wR factor with the absorbed

dose: the equivalent dose in Sv equals the absorbed dose in Gy, multiplied

by the wR factor for the radiation involved. The equivalent dose in Sv is

an indicator of the potential harm to living tissue of a given dose of

radiation. In practice equivalent doses are usually quoted in millisieverts.

The rem is related to the rad in the same way that the sievert is related to

the gray, so that 1 Sv � 102 rem.
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As an example, the equivalent dose delivered by a 5 MeV �-decay in

the body is 20� 5 � 100 times the equivalent dose delivered by a 1 MeV

þ-decay in the body.

Different organs and tissues of the human body (liver, bone marrow,

skin, etc.) have different sensitivities to ionising radiation. An effective

dose may be de®ned, weighting the equivalent dose received by the var-

ious major organs and tissues by an empirical factor related to the sus-

ceptibility to biological damage of these organs and tissues, and summing

over the whole body. This gives a crude but useful `single number' mea-

sure of radiation damage. In the rest of this chapter, effective dose is

abbreviated to dose.

15.4 Natural levels of radiation

There are three principal natural sources of ionising radiation: cosmic

rays, radioactive nuclei which participate in the chemistry of the body,

and radioactive elements present in rocks and soil.

Cosmic rays are very high energy particles which permeate the

Galaxy. Those which strike the Earth's atmosphere cause showers of

secondary particles; at sea level these secondaries deliver a dose of

about 0.25 mSv per year to the human body (Problem 15.3). The precise

dose depends on latitude and increases with altitude. At a height of

4000 m the dose would be about 2 mSv per year. Air travel adds an

average of 0.01 mSv per year to the UK cosmic ray dose.

The most signi®cant radioactive nucleus that is found in the body is
40K. Potassium enters the body with a normal diet, and accounts for

about 0.2% of total body weight. The isotope 40
19K, which has spin and

parity 4ÿ, has a long mean life of 1:85� 109 years, and that which

remains since the Earth's formation constitutes 0.0117% of natural potas-

sium. It is an odd±odd nucleus and can undergo all three types of þ-

decay, but the most common mode (89%) is electron emission with a

kinetic energy release of 1.32 MeV; the remaining 11% of decays are

mostly by electron capture to an excited state of 40Ar, which then itself

decays by emitting a 1.46 MeV ÿ-ray. From these decays the body

receives a dose of 0.17 mSv per year. Other radioactive nuclei in the

body give in total a contribution of similar magnitude. (This is excluding

the contribution from inhaled radon described below.)

The dose of ÿ-radiation arising from the decay products of radio-

active elements in the ground, principally from uranium and thorium,

depends on the local geology and is far more variable. Typically the ÿ-
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radiation dose is between 0.2 mSv and 0.4 mSv per person per year, but

in areas of granite rock may be several times higher. A greater hazard can

arise from the inhalation of the isotopes 222Rn and 220Rn of the inert gas

radon. These are decay products of uranium and thorium and being

gaseous can diffuse out into the air. In particular they may emanate

from some building materials, and accumulate in ill-ventilated rooms.
222Rn decays to a sequence of �-emitters (Table 6.1) which are solids

and remain deposited in the lungs. 220Rn, arising from the 232Th chain,

is similarly damaging. The dose received depends on building materials

and construction, subsoil, and ventilation, and obviously varies widely; it

has been estimated that the dose averaged over the UK is about 1.0 mSv

per person per year.

The average natural background radiation thus totals around

2.2 mSv per person per year.

15.5 Man-made sources of radiation

To the natural background radiation dose we must add the dose resulting

from man's activities since the early twentieth century. The most signi®-

cant contribution to this comes from the medical applications of ionising

radiation in diagnostic radiology and radiotherapy. There are, of course,

very wide variations in the dose an individual receives. The dose from a

chest X-ray is about 0.2 mSv, while someone given a computed tomogra-

phy scan might receive 10 mSv. Averaged over the UK, the dose per

person from medical applications is about 0.37 mSv per year.

The average dose due to the radioactive fallout from nuclear weapons

testing in the atmosphere in 1999 was 0.004 mSv per year in the UK,

compared with a peak of 0.014 mSv per year in 1963. The average dose

due to the Chernobyl reactor accident in 1986 has declined to 0.001 mSv

per year averaged over the UK, though there are considerable regional

variations. In normal operation the nuclear power industry does not add

appreciably to the average dose. The average dose from all stages of the

nuclear fuel cycle averages to 0.0002 mSv per year. Again there are wide

variations: it has been estimated that people living near some nuclear

facilities receive annual doses of 0.5 mSv.

Many individuals, through their work in medicine or in nuclear-

related (and other) industries, are habitually exposed to higher levels of

radiation than the average. It is necessary to monitor and protect these

people in so far as knowledge will allow. The National Radiation

Protection Board in the UK recommends a maximum exposure of
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15 mSv per year for such workers. Averaged over the entire population,

the average dose arising from occupational exposure is 0.007 mSv.

Thus the average dose per person from arti®cial sources of ionising

radiation is around 0.4 mSv per year in the UK. This is to be compared

with a natural background of 2.2 mSv per year.

15.6 Risk assessment

The gray and sievert are large units in terms of biological damage: whole

body doses of ÿ-radiation between 2.5 Gy and 3.0 Gy given over a short

period are likely to result in a 50% mortality rate within 30 days, in the

absence of medical intervention. At very low levels it is not yet established

with certainty whether or not a threshold for biological damage exists.

There is no way of identifying a cancer induced by ionising radiation from

other cancers of the same type which have appeared spontaneously. At a

low dose rate the number of radiation induced cancers is not statistically

signi®cant, so that extrapolation from data at high doses, where the

effects are evident, is the only way to make an estimate. Risks are usually

assessed on the assumpton of a proportionality between dose and effects,

but the extrapolation from high doses is not straightforward. At low

doses, a double break in DNA strands is likely to come from two distinct

tracks independently causing breaks in the two DNA strands at nearly the

same place in the molecule, with the second break occurring before the

®rst break has been repaired. Such a process may be expected to happen

with a probability proportional to the square of the dose.

Data for whole body exposure to ÿ-radiation come mainly from

studies of survivors of the atomic bombs dropped on Hiroshima and

Nagasaki in 1945, who were exposed to high and uncontrolled doses

for a short period. Information on the hazards of radon and its decay

products comes from studies of miners exposed to high concentrations of

radon. Other information comes from patients who have undergone

radiation treatment for medical reasons.

The International Commission on Radiological Protection has con-

cluded from these studies that, averaged over a `representative' popula-

tion, the lifetime risk of contracting fatal cancer from unit cumulative

dose of radiation is about 5� 10ÿ2 Svÿ1, and averaged over the working

population is somewhat lower: 4� 10ÿ2 Svÿ1 (since this latter average

excludes younger people, who have more years at risk). The emphasis

on fatal cancers allows comparisons to be made with other fatality rates.

For example, a radiation worker occupationally exposed to 1.5 mSv per
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year has an additional annual risk of death from radiation induced cancer

of � 4� 10ÿ2 � 1:5� 10ÿ3 � 6� 10ÿ5, or 1 in 17 000, which is about the

same as the fatality rate from accidents to workers in the UK construc-

tion industry. The annual risk of contracting fatal cancer induced by

natural radiation is � 5� 10ÿ2 � 2:2� 10ÿ3 � 1:1� 10ÿ4, or 1 in 9000.

Risk assessment is important as a guide to action. For example, about

half of the average natural radiation dose comes from radon in buildings.

It is clearly desirable to reduce the risk of those exposed to very much

higher than average radon concentration in their homes or workplaces, as

a consequence of local geology. Quite simple measures (fans, sealing) can

reduce the ¯ow of radon gas released from the soil and from construction

materials.

(The numerical data quoted in this chapter have been taken from

Living with Radiation, National Radiation Protection Board, 1998.)

Problems

15.1 5.9% of all 235U ®ssions produce a 137Cs nucleus within about 5 min-

utes. The mean life of 137Cs is 44 years. It is a particularly dangerous

radioactive isotope if released in the atmosphere.

Estimate the activity of 137Cs in a reactor that has been running at 3 GW

thermal power for one year. In the Chernobyl accident 13% of this

isotope was released. Estimate its mean activity per square metre if it

was spread over a million square kilometres.

15.2 The mean life of 226
88Ra (2300 years) is so long that the radium activity of

a newly prepared one curie source will be essentially constant. The mean

life of its daughter nucleus 222
86Rn is � � 5:52 days. Show that the radon

activity approaches the radium activity according to

Rn activity = �1ÿ eÿt=�� Ci.

The subsequent decays in the chain (see Table 6.1) down to 210
82Pb all

have mean lives of less than an hour, but 210
82Pb is relatively stable with a

mean life of 30 years. Estimate the total activity of the source one month

after preparation.

15.3 At sea level most of the ¯ux of ionising particles induced by cosmic rays

consists of muons, and over all angles the total ¯ux is about 170 particles

mÿ2 sÿ1. The mean muon energy is about 2� 103 MeV. In the body the

muons will lose energy predominantly by ionisation. Estimate the

annual body dose due to this source, taking the mean L of equation

(14.4) to be 14.
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15.4 The body contains about 18% by weight of carbon, of which a small

proportion is the þ-unstable isotope 14
6C. About one-third of the decay

energy of 0.156 MeV is taken by the electron, and there are no asso-

ciated ÿ-rays. The activity of 1 g of natural carbon is 15.3 decays per

minute. Estimate the annual whole body dose of radiation from this

source.

15.5 Check that the quoted value of 0.17 mSv per year body dose from 40K is

consistent with the information given. (Assume that about half of the

1.32 MeV energy release in eÿ emission is taken by the anti-neutrino,

and take the attenuation length of a 1.45 MeV ÿ-ray in the body to be

17 cm.)
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Appendix A

Cross-sections

We begin this appendix by considering neutron cross-sections. There is

some simpli®cation in the case of neutrons, since they are electrically

neutral and do not interact through the long-range Coulomb force. To

a good approximation they can be considered to interact only through the

short-range nuclear force. The concepts developed for neutrons may be

applied almost immediately to other electrical neutral particles, such as

photons. We then turn to the case of charged particles.

A.1 Neutron and photon cross-sections

We consider a neutron approaching from a distance a nucleus which is at

rest. (Any interactions between the neutron and the atomic electrons will

be neglected.) We suppose that, if the nucleus were not present, the prob-

ability of the neutron passing anywhere through a circle of radius a,

centred on the nucleus and perpendicular to the direction of the neutron's

motion, would be uniform (Fig. A.1), i.e. the probability of it passing

through an area �A would be �A=��a2�. We can think of the neutron as a

classical particle, or better, as a quantum-mechanical wave-packet. The

radius a must be large compared with both the size of the wave-packet

and the size of the nucleus. With the nucleus present, an interaction can

take place, for example scattering, induced ®ssion, or radiative capture. It

is found that, provided a is large enough, the probability of an interaction

is inversely proportional to the area �a2, i.e.

probability of interaction =
�tot
�a2

: �A:1�
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The constant of proportionality introduced here, �tot, is called the total

cross-section. Clearly �tot has the dimensions of area. It can be regarded as

the effective area presented to the neutron by the nucleus, but it must be

realised that the cross-section is a joint property of the neutron and

nucleus, and for a given nucleus it is a sensitive function of neutron

energy. The probability of interaction is a quantum-mechanical property:

�tot can be very much larger than the geometrical cross-section of the

nucleus.

The system of a moving particle incident on a nucleus at rest is called

the laboratory system. With ®xed targets, it is the situation most easy to

simulate in the laboratory. It is also useful to consider interactions in the

frame of reference in which the nucleus has momentum equal in magni-

tude but opposite in direction to the neutron. It is clear from the de®ni-

tion that the total cross-section is the same viewed in this `centre-of-mass'

system as in the laboratory system.

There will usually be several possible reaction channels, i.e. types of

interaction that can occur. Examples are:

Elastic scattering: the incoming neutron changes direction but, in the

centre-of-mass system, loses no energy.

Inelastic scattering: the incoming neutron changes direction and, even in

the centre-of-mass system, loses energy in exciting the nucleus.

Radiative capture: the incoming neutron is captured by the nucleus. The

resulting nucleus is formed in an excited state, which eventually decays

by photon emission.

Given that a reaction occurs, each reaction channel `i' has a de®nite

probability pi, where

X
i

pi � 1:

Cross-sections 223

Fig. A1 Neutron incident on area centred on nucleus at rest.



The partial cross-section, �i for the ith channel, is de®ned to be

�i � pi�tot, and may be regarded as the effective area presented by the

target nucleus to the neutron for that particular reaction. We have

�tot �
X
i

�i:

Photon cross-sections can be de®ned in direct analogy with neutron

cross-sections, but since photons interact with atomic electrons as well as

with nuclei it is more appropriate to consider the target to be an atom.

Various contributions to the total cross-section for a photon to interact

with an atom are discussed in Chapter 14.

A.2 Differential cross-sections

In considering a particular reaction channel it is often useful to subdivide

it further. For example, in the elastic scattering of neutrons it can be of

interest to know the probability distribution of the angle at which the

neutron emerges from the interaction. Given that an elastic scattering

occurs, if pe��; ��dý is the probability that the neutron is scattered into

a small solid angle dý � sin � d� d�, at a polar angle � and azimuthal

angle � with respect to its incident direction, we write (Fig. A2)

pe��; �� dý � 1

�e

d�e
dý

� �
dý: �A:2�
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angle dý � sin � d� d� about a polar angle � and azimuthal angle �.



This de®nes the elastic differential cross-section d�el=dý, and

Z
d�e
dý

dý � �e: �A:3�

Differential cross-sections are usually measured in the laboratory with

respect to a ®xed target. In the centre-of-mass frame the direction of a

scattered neutron, and hence the angular dependence of the cross-section,

will be different. The kinematic transformation between the frames is

straightforward, and experimental data is often presented in the centre-

of-mass frame to facilitate comparison with theory.

A.3 Reaction rates

Consider a broad collimated beam of mono-energetic neutrons. Let �n be

the number density of neutrons in the beam, and v the neutron velocity.

The neutron ¯ux, i.e. the number of neutrons crossing a unit area normal

to the beam per unit time, is �nv. Hence in time dt, the number of

neutrons passing through a circle of radius a centred on a nucleus is

�nv dt � �a2. From (A.1), the probability of a reaction with the nucleus

taking place in the time interval t, t� dt, given the nucleus is in its ground

state at time t, is �nv�tot dt. Thus the reaction rate per nucleus is �nv�tot or

reaction rate = flux � cross-section:

We may also consider a single neutron, moving with velocity v in a

random array of nuclei of number density �nuc. By the same argument (in

the frame in which the neutron is at rest and the nuclei are regarded as a

beam) the reaction rate is �nucv�tot. Given that the neutron exists at t � 0,

the mean time � before an interaction takes place is, therefore,

� � ��nucv�tot�ÿ1, and the mean free path l, the distance it travels in this

time, is

l � v� � 1=��nuc�tot�: �A:4�

(We have assumed that � is very much shorter than the quarter of an hour

intrinsic mean life of the neutron.)
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A.4 Charged particle cross-sections: Rutherford scattering

The dif®culties that arise in charged particle scattering stem from the long

range of the Coulomb force. In }14.2 it is shown that a charged particle,

say a proton, passing a ®xed target, say a nucleus of charge Ze, is

de¯ected through an angle � given approximately by

� � Ze2

4�"0

ÿ !
2

bpv
; �A:5�

where p is the momentum and v the velocity of the proton, and b is the

impact parameter, the distance at which the proton would pass the

nucleus if there were no interaction (Fig. 14.1).

Impact parameters between b and b� db correspond to scattering

angles between � and � ÿ d� where

d� � db

b2
2Ze2

4�"0pv

ÿ !
:

The effective area presented to the proton which corresponds to this

range db of impact parameters is 2�b db, and we can interpret this as a

contribution to the elastic scattering cross-section,

d�e � 2�b db

� 2�
2Ze2

4�"0pv

ÿ !2
d�

�3
; using (A.5):

The differential scattering cross-section for small angles is therefore

d�e
dý

� 1

2� sin �

d�e
d�

� 2Ze2

4�"0pv

ÿ !2
1

�4
;

where we have replaced sin � by �. This is the small-angle limit of the

famous Rutherford scattering formula. The same expression is obtained

from a quantum-mechanical calculation.

The differential cross-section becomes very large when � is very small,

and the total elastic cross-section, de®ned by the integral (A.3), and hence

the total cross-section, is in®nite. Physically this is because the Coulomb

force is still felt by the proton no matter how large the impact parameter.

226 Appendix A



In practice this formally in®nite result is not a serious dif®culty, since

there is always a limit to the experimentalist's ability to measure small-

angle scattering, and if one is interested only in elastic scattering through

angles greater than some minimum angle the cross-section is ®nite.

At large impact parameters the Coulomb force is weak, and can only

give rise to small-angle elastic scattering. The cross-sections for other

possible processes are all ®nite.

Appendix B

Density of states

Consider a particle moving freely inside a cubic box of side L, volume

V � L3. We take the potential to be zero inside the box, and represent the

walls by in®nite potential barriers. The SchroÈ dinger equation for the

particle,

ÿ »2

2m
r2ý � Eý; �B:1�

is separable in �x; y; z� coordinates, and the solutions must vanish at the

walls which we can take to be the planes x � 0 and x � L, y � 0 and

y � L, z � 0 and z � L. These solutions are easily seen to be standing

waves of the form

ý�x; y; z� � �constant� sin�kxx� sin�kyy� sin�kzz�; �B:2�

provided that we choose k � �kx; ky; kz� from the values

kx �
nx�

L
; nx � 1; 2; 3; . . . ; ky �

ny�

L
; ny � 1; 2; 3; . . . ;

kz �
nz�

L
; nz � 1; 2; 3; . . .

to satisfy the boundary conditions. Negative integer values of nx, ny, nz do

not give new states, since they merely change the sign of the wave-func-

tion, and such a phase factor has no physical signi®cance.

Thus the allowed values of k form a cubic lattice of points in the ��;

�;�� quadrant of `k-space'. Each eigenstate (B.2) corresponds to one

point of the lattice, and counting states is equivalent to counting lattice

points. The spacing between these lattice points is ��=L�, so that the
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number of points per unit `volume' in k-space is �L=��3. The number of

lattice points with k�� jkj� less than some ®xed value k0 is the number

enclosed within the quadrant of the sphere centred at the origin and of

radius k0. This number must of course be an integer, but for large values

of k0 it will be approximately given by:

(volume of quadrant of sphere)� (density of lattice points)

� 1

8

4�k30
3

L

�

� �3

� V

�2��3
4�k30
3

:

�B:3�

The number of points with k lying in the range k0 < k < k0 � dk0 is the

differential of (B.3):

V

�2��3 4�k
2
0 dk0: �B:4�

We will consider the case of a spin 1
2 fermion (for example, an electron

or a nucleon). Then two states (`spin-up' and `spin-down') can be assigned

to each k value, from (B.3) the number of states N 0 with k < k0 is

N 0 � 2
V

�2��3
4�k30
3

; or k30 � 3�2N 0

V
: �B:5�

For the non-relativistic SchroÈ dinger equation (B.1), the energy E of a

particle in a state of speci®ed �nx; ny; nz� and either spin, is related to k by

E � »2

2m
�k2x � k2y � k2z� �

»2

2m
k2: �B:6�

The integrated density of states N�E� is de®ned as the number of states

with energy less than E. From (B.6) k � �2mE= »2�12; hence using (B.5) we

have

N�E� � V

3�2

2mE

»2

� �3
2

: �B:7�

The density of states n�E� � dN =dE, so that n�E� dE is the number of

states with energy between E and E � dE:
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n�E� � dN
dE

� V

2�2

2m

»2

� �3
2

E
1
2: �B:8�

If the spin factor is omitted,

n�E� � V

4�2

2m

»2

� �3
2

E
1
2: �B:9�

In scattering problems, it is convenient to consider a large volume L3

and impose `periodic boundary conditions' on the wave-functions:

ý�x� L; y; z� � ý�x; y; z�;
ý�x; y� L; z� � ý�x; y; z�;
ý�x; y; z� L� � ý�x; y; z�:

Instead of the standing waves (B.2), the solutions of the wave-equation

consistent with the boundary conditions are the travelling waves

eik�r � eikxxeikyyeikzz;

where, to satisfy the periodicity conditions, we must now take

kx � 2nx�

L
; nx � 0;�1;�2; . . . ; etc:

The density of points in k-space becomes �L=2��3. However, permuta-

tions of sign ��kx;�ky;�kz� now correspond to different states (travel-

ling waves in different directions), and the lattice points corresponding to

distinct states with jkj < k0 ®ll the whole sphere of radius k0 in k-space.

We thus arrive again at the results (B.3) and (B.5); (B.7) and (B.8), which

hold for non-relativistic spin 1
2
fermions, are also still valid.

In fact, in the limit when the linear dimensions of the box become

large compared with the de Broglie wavelength of the particle at energy E,

the result for the density of states at energy E becomes independent both

of the boundary conditions imposed and of the shape of the box, pro-

vided this remains simple. The integrated density of states in a sphere is

illustrated in Fig. 5.2.
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Problems

B.1(a) For a single particle in a large volume V, show that the number of

allowed k-values in a small volume d3k � dkx dky dkz of k-space is

V

�2��3 d
3k:

(b) Show that, for two particles (1) and (2), the wave-vector associated with

the centre-of-mass motion is K � k1 � k2 and with the relative motion is

k � �m1k2 ÿm2k1�=�m1 �m2�. Hence show

d3K d3k � d3k1 d
3k2

and that the number of �K;k� values with K in the range K , K � dK and

k in the range k, k� dk is �V2=4�4�K2 dK k2 dk if the particles are dis-

tinguishable, but �V2=8�4�K2 dK k2 dk if the particles are identical.

Appendix C

Angular momentum

Students are referred to texts on quantum mechanics for the derivations

of the results summarised in this appendix, which is intended as no more

than an aide-meÂ moire.

C.1 Orbital angular momentum

In the shell model of both atomic and nuclear physics the single-particle

SchroÈ dinger equation, neglecting effects of the intrinsic spin of the parti-

cle, is of the form

Hý � ÿ »2

2M
r2 � V�r�

ÿ !
ý�r� � Eý�r�; �C:1�

where the potential energy V�r� is spherically symmetric, a function of the

radial coordinate r only. Because of spherical symmetry, the operator r2

is most useful in spherical polar coordinates �r; �; ��, in which the

SchroÈ dinger equation takes the form

ÿ »2

2M

1

r

@2

@r2
�rý� � L2

2Mr2
� V�r�

ÿ !
ý � Eý; �C:2�

230 Appendix C



where L2 � L2
x � L2

y � L2
z and L is the orbital angular momentum opera-

tor,

L � r� p � r� �ÿi »r�:

L acts only on the angular coordinates ��; ��. For example,

Lz � ÿi » x
@

@y
ÿ y

@

@x

� �
� ÿi »

@

@�
:

From the de®nition of L, it is not dif®cult to obtain the commutation

relations

�Lx;Ly� � i»Lz; �Ly;Lz� � i »Lx; �Lz;Lx� � i »Ly;

�L2;Lx� � �L2;Ly� � �L2;Lz� � 0:
�C:3�

Because Lx, Ly, Lz do not commute, it is not generally possible for a

wave-function to be simultaneously an eigenstate of any two of them, but

it is always possible to construct simultaneous eigenstates of L2 and any

one of Lx, Ly, Lz. It is conventional to choose L2 and Lz.

The simultaneous eigenstates of L2 and Lz are denoted by Ylm��; ��,
where

L2Ylm � l�l � 1� »2Ylm

LzYlm � m »Ylm:
�C:4�

The allowed values of l are the integers l � 0; 1; 2; 3; . . . and, for a given l,

m takes one of the �2l � 1� values ÿl;ÿl � 1; . . . ; l ÿ 1; l. The functions

Ylm��; �� are well-known spherical harmonics, and are normalised so that

Z
Y�

l 0m 0Ylm dý �
Z �

0

d� sin �

Z 2�

0

d�Y�
l 0m 0 ��; ��Ylm��; ��

� �ll 0�mm 0 :

For example, Y00 � 1=
������
4�

p
; a state of zero orbital angular momentum is

spherically symmetric. Also
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Y11 � ÿ
������
3

8�

r
x� iy

r
� ÿ

������
3

8�

r
sin � ei�

Y10 �
������
3

4�

r
z

r
�

������
3

4�

r
cos �

Y1ÿ1 �
������
3

8�

r
xÿ iy

r
�

������
3

8�

r
sin � eÿi�:

Note that these states with l � 1 can be formed from the components of

the unit vector �x=r; y=r; z=r�.
These examples illustrate a general rule: the parity of a state of given l

is �ÿ1�l .
From (C.2), the eigenfunctions of the SchroÈ dinger equation are of the

form

ýnlm � unl�r�Ylm��; �� �C:5�

where unl satis®es the ordinary differential equation

ÿ »2

2M

1

r

d2

dr2
�runl� �

»2�l � 1�
2Mr2

� V�r�
ÿ !

unl�r� � Enlunl�r�:

There are several examples of potentials V�r� for which the radial func-

tions unl�r� are elementary, and many others for which the numerical

solutions are easy to program on computers.

Note that the energy eigenstates (C.5) are also eigenstates of L2 and

Lz. This is only possible because of the spherical symmetry of V�r�, which
allows L2 and Lz (which act on � and � only) to commute with the energy

operator.

C.2 Intrinsic angular momentum

A particle may have an intrinsic angular momentum or spin s, satisfying

the same commutation relations as (C.3). The eigenvalues of s2 are

s�s� 1� »2, and ms can take �2s� 1� values from ÿs to �s. In the case

of orbital angular momentum treated above, l must be a positive integer.

This condition stems from the single-valuedness of the wave-function in

space. The quantum number s is not subject to this restriction, since the

coordinates on which s acts are internal to the particle, and we require

only that �2s� 1� should be an integer. Thus we may have s � 1
2, as is the

case with leptons and nucleons. For s � 1
2
there are two eigenstates, cor-
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responding to ms � � 1
2
;ms � ÿ 1

2
. We may denote these by j � 1

2
i and

j ÿ 1
2
i. A general wave-function for the spin 1

2
fermion is a superposition

of `spin-up' and `spin-down' states of the form

ý�r;ms� � ý��r�j � 1
2
i � ýÿ�r�j ÿ 1

2
i:

The two independent spin states j � 1
2
i, j ÿ 1

2
i may be represented by

column vectors

j � 1
2
i � 1

0

� �
; j ÿ 1

2
i � 0

1

� �
:

sx, sy, sz are then represented by 2� 2 matrices. It is convenient to take

out a factor � »=2� and write s � � »=2�r � � »=2���x; �y; �z�. It is easy to

verify that the commutation relations are satis®ed using the Pauli

matrices:

�x � 0 1
1 0

� �
; �y � 0 ÿi

i 0

� �
; �z � 1 0

0 ÿ1

� �
:

j � 1
2i and j ÿ 1

2i are eigenvalues of �z with eigenvalues �1 and ÿ1.

C.3 Addition of angular momenta

The total angular momentum of a spin 1
2 fermion is the sum of its orbital

and intrinsic angular momenta:

J � L� s:

It is easy to see that J satis®es commutation relations similar to (C.3), and

also �J;L2� � 0, �J; s2� � 0. It is therefore possible to ®nd states which are

simultaneous eigenstates of L2, s2, J2 and jz, speci®ed by quantum num-

bers �l; s; j; jz�. These states have parity �ÿ1�l.
For a given value of l and s � 1

2 there are 2� �2l � 1� � 4l � 2 inde-

pendent states, Ylmj � 1
2
i. We seek the linear combinations of these which

are the eigenstates of J2 and Jz. Since Jz � Lz � sz, the maximum value of

jz is l � 1
2
, corresponding to the state Yllj � 1

2
i. This must also be the

maximum value of j, and the state must also be an eigenstate of J2

corresponding to j � l � 1
2
, jz � l � 1

2
.

There are two independent states giving jz � l ÿ 1
2, i.e. Yl;lÿ1j � 1

2i,
Yl;lj ÿ 1

2
i. From these we must be able to construct the state correspond-
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ing to j � l � 1
2
, jz � l ÿ 1

2
. Another independent state can also be con-

structed; this clearly must correspond to j � l ÿ 1
2
, jz � l ÿ 1

2
.

The value j � l � 1
2

gives 2�l � 1
2
� � 1 � 2l � 2 states; the value

j � l ÿ 1
2
gives 2�l ÿ 1

2
� � 1 � 2l states. Altogether, we have �4l � 2� inde-

pendent states, corresponding to the values j � l � 1
2
, j � l ÿ 1

2
, and there

can be no more allowed values of j. We can think of the intrinsic spin s of

the particle as either aligned or anti-aligned with the orbital angular

momentum vector L, in so far as the uncertainty principle allows.

More generally, for two particles, or two systems, with angular

momenta J1 and J2, we may form

J � J1 � J2:

By an extension of the argument above, it can be shown that, for given

values of j1 and j2, the allowed values of j are

j � j1 � j2; j1 � j2 ÿ 1; . . . ; j j1 ÿ j2j;

so that

j j1 ÿ j2j 4 j 4 j1 � j2:

C.4 The deuteron

The total intrinsic spin S of two spin 1
2
fermions is

S � s1 � s2;

where from the rules above the quantum number S can take the values

S � 1 and S � 0. Explicitly, the three S � 1 states jS, Smi are found to be

j1; 1i � j � 1
2i1j � 1

2i2
j1; 0i � �j � 1

2
i1j ÿ 1

2
i2 � j ÿ 1

2
i1j � 1

2
i2�= 2

p

j1;ÿ1i � j ÿ 1
2i1j ÿ 1

2i2
�C:6�

and the S � 0 state is

j0; 0i � �j � 1
2i1j ÿ 1

2i2 ÿ j ÿ 1
2i1j � 1

2i2�= 2
p

: �C:7�

(The factors 2
p

are for normalisation.)
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The deuteron is a neutron±proton bound pair having total spin

J � L� S with quantum number j � 1 and total intrinsic spin S with

quantum number S � 1. Neglecting a small l � 2 wave component, its

spatial wave-function is an l � 0 state. The wave-function of a deuteron

at rest is therefore approximately of the form

u�r�j1;msi;

where r is the distance between the two nuclei.

From (C.6), it will be seen that this wave-function is symmetric under

the interchange of proton and neutron. Thus such a state is not accessible

to two protons, or to two neutrons, since the wave-functions of two

identical fermions must be anti-symmetric under particle interchange

(}1.1). Although two nucleons with net intrinsic spin zero experience a

strong attraction, this attraction is not suf®cient to produce a bound state

and the deuteron is the only bound state of two nucleons.

Problems

C.1 Show that l � 0 wave-functions ý�r� (functions only of the radial coor-

dinate r) are also eigenstates of Lx, Ly, Lz.

C.2 Explain why the single particle states speci®ed by �l; s; j; jz� introduced in

}C.3 have parity �ÿ1�l .
C.3(a) Show that the state j0; 0i given by equation (C.7) is an eigenstate of

Sx�� s1x � s2x�, Sy and Sz and hence that it has total spin zero.

(b) Show that

Szj1; 1i � »j1; 1i

and

S2j1; 1i � 2 »2j1; 1i:

Appendix D

Unstable states and resonances

In discussing unstable states, we have in mind a system like an excited

nucleus, or a þ-unstable nucleus. An unstable state of a system will decay,

and often there are several alternative modes of decay. For example, an

excited state of a nucleus can have several states of lower energy to which
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it can decay by emitting a photon, and some þ-unstable nuclei can decay

by either þ� or þÿ-emission. Such distinct modes of decay are called

decay channels.

An unstable state has certain probabilities per unit time, called partial

decay rates, to decay into any of its channels. We shall denote these

probabilities by 1=�i, where the �i have the dimension of time and i labels

the ith decay channel. The total decay rate 1=� is the sum of the partial

decay rates:

1

�
�

X
i

1

�i
: �D:1�

We shall also ®nd it useful to de®ne partial widths ÿi and total widths

ÿ by ÿi � »=�i, ÿ � »=�. These have the dimensions of energy, and

clearly

ÿ �
X
i

ÿi: �D:2�

The probability that the unstable state will decay to the ith channel is

the ratio of the partial decay rate into that channel to the total rate, i.e.

ÿi=ÿ.

For many of our applications it will be important that ÿ is a small

energy on the nuclear energy scale of MeV. For example, in ÿ-decay a

mean life � 10ÿ14 s corresponds to ÿ � 0:1 eV.

We have seen (}2.3) that a decay rate 1=� implies that a state will

decay according to the exponential law

P�t� � P�0�eÿt=�;

where P�t� is the probability of the state surviving at time t. Thus we can

identify the total decay rate with the inverse of the mean life.

D.1 Time development of a quantum system

We denote the wave-function of the unstable state by ý0, and the states

into which it can decay by ý1; ý2; . . . ; ým; . . . . (For example, the state ý0

might be that of a nucleus prior to �-decay, and the states ým�m > 0�
describe the residual nucleus and �-particle in their ground states, and the

energy and direction of their relative motion.) We shall use periodic

boundary conditions, supposing our system enclosed in a large volume
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V , so that all the states are discrete and may be normalised to unity. They

can always be chosen to be orthogonal to each other. We may therefore

take

Z
ý�
mýn dq � �mn;

where dq � d(all relevant coordinates).

ý0 is not an exact energy eigenstate: if it were, it would not decay.

Thus the state þ�t� of the system, which is ý0 at t � 0, develops an

admixture of the ®nal states. We can express þ�t� as a superposition of

the states ým, and write

þ�t� �
X1
m�0

am�t�eÿiEmt= »ým: �D:3�

The phase factors, with

Em � Hmm �
Z

ý�
mHým dq;

where H is the Hamiltonian of the system, have been inserted for con-

venience. If all the states were exact eigenstates of H, the coef®cients am
would not depend on time. However, we are interested in the case when

the matrix elements Hmn �
R
ý�
mHýn dq are in general non-vanishing for

m 6� n. Inserting the expansion (D.3) in the SchroÈ dinger equation

i»
@þ

@t
� Hþ

gives

X
m

�i » _ameÿiEmt= »ým � Emame
ÿiEmt= »ým� �

X
m

ame
ÿiEmt= »Hým:

Multiplying by ý�
n and integrating, the orthogonality relation picks out

the time dependence of an:

i » _an �
X
m 6�n

Hnme
ÿi�EmÿEn�t= »am �D:4�

(noting En � Hnn�.
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So far our equations are exact. The initial conditions at t � 0 are

a0�0� � 1, am�0� � 0 for m 5 1.

We now work to ®rst order in the quantities Hnm, supposed small

when n 6� m. Then for n 5 1 we have approximately

i » _an � Hn0�eÿi�E0ÿEn�t= »�a0: �D:5�

The state ý0 is unstable. We make the ansatz that a0�t� � eÿÿt=2 » so

that ja0�t�j2 � eÿt=�, and the probability of ®nding the system in the state

ý0 decays exponentially with time. The equations (D.5) can then be inte-

grated to give

i »an�t� � Hn0

Z t

0

eÿi��E0ÿEn�ÿiÿ=2�t 0= » dt 0

� »
i
Hn0

eÿi��E0ÿEn�ÿiÿ=2�t 0= » ÿ 1

�En ÿ E0� � iÿ=2

( )
:

For times t4 »=ÿ, eÿÿt=2 » ! 0 and for such times

an�t� �
Hn0

�En ÿ E0� � iÿ=2
:

Thus the probability of decay to the state ýn is

jan�t�j2 �
2�

ÿ
jHn0j2P�En ÿ E0�;

where

P�En ÿ E0� �
ÿ

2�

1

�En ÿ E0�2 � ÿ2=4
:

The function P�E ÿ E0� is shown graphically in Fig. D1. The factor ÿ=2�

has been inserted so that

Z 1

ÿ1
P�E ÿ E0� dE � 1:

An important aspect of our result which is exhibited in this ®gure is that

the energy of the ®nal state En is not identically equal to E0, and indeed is

not absolutely determined. This feature is not to be interpreted as a
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violation of energy conservation, but as a consequence of the fact that the

state ý0 does not have a de®nite energy. The instability of the state

implies that it has a small spread of energy of width ÿ about its mean

energy E0 �
R
ý�

0Hý0 dq. The function P�E ÿ E0� can be regarded as the

probability distribution in energy of the state ý0.

It is interesting to remark that we can now interpret the relationship

�ÿ � »

as a relationship between uncertainty in energy and lifetime, somewhat

similar to the Heisenberg uncertainty relation between momentum and

position.

To obtain the probability of decay to a channel i, we must sum over

all the states n in i. For example, consider the �-decay of 238U nucleus at

rest:

238
92U ! 234

90Th� 4
2He:
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In this case, i is the �-decay channel. All the nuclei involved have zero

spin, so that the states n in channel i are completely speci®ed by their

energy, and the direction of emission of the �-particle. Since there are no

spin orientations to be considered, the matrix elementHn0 will not depend

on the direction of emission, and the probability of decay to channel i is

X
n in i

jan�t�j2 �
2�

ÿ

Z
jHn0j2P�E ÿ E0�ni�E� dE;

where ni�E� is the density of states in channel i at energy E (Appendix B).

For ÿ small, the integral comes almost entirely from around the peak

in P�E ÿ E0� at E0. Assuming that ni�E� and jHn0j2 vary slowly with E

over the width of the peak, we may evaluate them at E0 and treat them as

constant in the integration to give

X
n in i

jan�t�j2 �
2�

ÿ
jHn0j2ni�E0�:

Since the probability of decay to channel i is simply ÿi=ÿ, it follows

that the partial decay rate, when no spins are involved, is

1

�i
� ÿi

»
� 2�

»
jHn0j2ni�E0�: �D:6�

This result is known as Fermi's golden rule.

In the more general situation when the decay products have spin, and

the initial unstable state has spin j, we will include in the channel i all the

spin states of the ®nal particles, and consider the case when the spin of the

unstable state is not polarised in any particular direction. We must then

average over all �2j � 1� initial spin states. After averaging, the result does

not depend on direction and the formula (D.6) becomes

1

�i
� ÿi

»
� 2�

»
ni�E0�
2j � 1

X
jHn0j2; �D:7�

where the sum is over all initial spin states and ®nal spin states, and ni�E�
is the density of states neglecting spin.
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D.2 The formation of excited states in scattering: resonances and
the Breit±Wigner formula

We now consider a channel i which consists of two particles. We take as

an example a neutron interacting with a nucleus I at an energy close to an

energy at which the two can combine to form the unstable excited state

X�. If created, X� will then decay into one of its decay channels, say

channel f . The overall process can be represented by

n� I ! X� ! �channel f �:

Such scattering processes which proceed through an intermediate

unstable state have important characteristics we wish to discuss. We con-

sider a situation where initially the amplitude a0 of the unstable state is

zero, i.e. a0�0� � 0, and the system is in an initial state, ý1 say, which

belongs to channel i, so that a1�0� � 1. The amplitude a0 develops in time

according to the exact equation (D.4) with n � 0:

i » _a0 �
X
m 6�0

H0me
ÿi�EmÿE0�t= »am:

Again working to ®rst order in the small quantities H0m we have

i » _a0 � ÿi�ÿ=2�a0 �H01e
ÿi�E1ÿE0�t= »:

The term involving ÿ which we have introduced gives the decay of the

unstable state in accordance with our ansatz and takes account, in a

phenomenological way, of the small terms in the exact equation that

have otherwise been neglected.

We can write this equation as

i »
d

dt
�a0eÿt=2 »� � H01e

ÿi�E1ÿE0�iÿ=2�t= »;

so that

i »a0eÿt=2 » �
Z t

0

H01e
ÿi�E1ÿE0�iÿ=2�t 0= » dt 0:

For times t long compared with »=ÿ we obtain
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a0�t� �
H01e

ÿi�E1ÿE0�t= »

E1 ÿ E0 � iÿ=2
;

and the probability of ®nding the state ý0 is

ja0�t�j2 �
jH01j2

�E1 ÿ E0�2 � ÿ2=4
:

The decay rate into the channel f is therefore

ja0�t�j2
1

�f
� jH01j2

�E1 ÿ E0�2 � ÿ2=4

ÿf

»

� �
: �D:8�

Suppose, for the moment, that the initial particles and the excited

state have spin zero. Then it is useful to de®ne

ÿi�E� � 2�jH10j2ni�E� �D:9�

which is a generalisation of (D.6), and, since jH10j2 � jH01j2, we can re-

write the decay rate into channel f as

1

2� »
1

ni�E1�
ÿi�E1�ÿf

�E1 ÿ E0�2 � ÿ2=4
:

If the relative motion of the interacting particles is given by the wave-

function Vÿ1
2eik�r (in the centre-of-mass coordinate system; see Appendix

A), the ¯ux of particles is given by (particle density) � velocity = Vÿ1v.

The cross-section ��1 ! f � for scattering into channel f is de®ned by

�flux of 1� � ��1 ! f � � decay rate into channel f :

Hence

��1 ! f � � V

v

1

2� »
1

ni�E1�
ÿiÿf

�E1 ÿ E0�2 � ÿ2=4
:

The density of states in the ith channel is given by (Appendix B)

ni�E� dE � V

�2��3 4�k
2 dk

dE
dE;
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and dE=dk � »2k=m � »v. (m is the reduced mass of the particles.)

Hence, substituting, we obtain

��1 ! f � � �

k21

ÿiÿf

�E1 ÿ E0�2 � ÿ2=4
: �D:10�

This result is the Breit±Wigner formula for the special case when the

incoming particles and the compound nucleus have zero spin. For small

ÿ, the cross-section peaks sharply at E1 � E0. The phenomenon is known

as resonance scattering and is common in nuclear physics; experimental

resonance peaks can often be well ®tted by an expression of this form.

The formula for the general spin case is more complicated. Suppose

the initial spins of the particles are s1 and s2. For example, for neutrons

interacting with 234U the spin of the neutron is s1 � 1
2
and the spin of 235U

is s2 � 7
2. If, as in a nuclear reactor, the neutrons and the uranium nuclei

are not polarised, then we have to average the cross-section over the

�2s1 � 1� � �2s2 � 1� initial spin states. Consider also the formation of

an excited state of 236U with spin j. Any of its �2j � 1� sub-states can

be formed, and they all contribute to the production of the ®nal state.

Equation (D.8) which gives the decay rate into channel f (a ®ssion chan-

nel, for example) has to be modi®ed to:

Decay rate into channel f

� 1

�2s1 � 1��2s2 � 1�
ÿf

»
1

�E1 ÿ E0�2 � ÿ2=4

X
spins

jH01j2:

This, using (D.7) and (D.9), yields the general Breit±Wigner formula:

��1 ! f � � �

k21

�2j � 1�
�2s1 � 1��2s2 � 1�

ÿiÿf

�E1 ÿ E0�2 � ÿ2=4
: �D:11�

The total cross-section is obtained by summing over all channels f :

�tot �
�

k21

�2j � 1�
�2s1 � 1��2s2 � 1�

ÿiÿ

�E1 ÿ E0�2 � ÿ2=4
: �D:12�

The mechanism of formation of the unstable states, and their subsequent

decay, is discussed in more detail in Chapter 7.

This expression is a good approximation when one unstable state

dominates the cross-section, but scattering which proceeds by other
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mechanisms than the formation of an unstable state is not included in our

discussion. For example, direct reactions, mentioned in Chapter 7, are not

included.

Problems

D.1 The Breit±Wigner formula of }D.2 was derived for a particle incident

upon a nucleus. It has to be modi®ed if, as in the case of �±� scattering,

the `particle' and the nucleus are identical. Show that for �±� resonant

scattering through the formation of 8
4Be

� � 2�

k21

ÿ2

�E1 ÿ E0�2 � ÿ2=4
:

(See Problem B.1.)
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Further reading

Texts at a somewhat more advanced level than this one include:

Jelley, N. A. (1990), Fundamentals of Nuclear Physics,

Cambridge: Cambridge University Press.

Krane, K. S. (1987), Introductory Nuclear Physics, New York:

Wiley.

Wong, S. S. M. (1998), Introductory Nuclear Physics (2nd edn.),

New York: Wiley.

The student may also ®nd interesting:

Cameron, I. R. (1982), Nuclear Fission Reactors, New York:

Plenum.

Clayton, D. D. (1983), Principles of Stellar Evolution and

Nucleosynthesis, Chicago: University of Chicago Press.

Cottingham, W. N. and Greenwood, D. A. (1998), An

Introduction to the Standard Model of Particle Physics,

Cambridge: Cambridge University Press.

Phillips, A. C. (1994), The Physics of Stars, Chichester: Wiley.

Pochin, E. (1983), Nuclear Radiation: Risks and Bene®ts, Oxford:

Clarendon Press.
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Answers to problems

(Unless otherwise stated, the mass of a nucleus of mass number A is

approximated as A amu.)

Chapter 1

1.1 Ratio = Gm2
e�4�"0=e2� � 2:4� 10ÿ43.

1.2(b) (i) +1, (ii) ÿ1, (iii) ÿ1.

1.3(a) Wavelength

� � 2�c=! � 2�� »c�=� »!� � 2��197 MeV fm�=�1 MeV� � 1240 fm.

Chapter 2

2.1 Group velocity = d!=dk � c2k=! � c2 »k= »! � c2p=E.

For a particle of velocity v, E � ÿmc2 and p � ÿmv.

Hence group velocity = particle velocity.

2.2 From equation (2.8) the electrostatic energy is of order of magnitude

e2=4�"0a0.

From equation (2.13) and after, the weak interaction energy is of order

of magnitude "ÿ1
0 � »=MZc�2e2=a30.

Ratio = 4�� »=a0MZc�2 � 10ÿ15.

2.3 By momentum conservation the momenta of the two photons must be

equal in magnitude (and opposite in direction). They will therefore have

equal energy.

2.4 There is a frame of reference (the centre-of-mass frame) in which the

total momentum of the e�eÿ pair is zero. The photon would therefore
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have zero momentum and hence zero energy: energy conservation would

be violated.

2.5 Since E � 1 MeV is much less than the rest energy of the muon

we may use non-relativistic mechanics, and the velocity

v � c �p
2E=m�c

2� � 4:1� 107 msÿ1. In time �� the muon travels

v�� � 90 m.

2.6(a) Not allowed. Such a process need not violate the conservation laws of

energy, momentum, angular momentum or electric charge, but it would

violate the conservation laws of electron number and muon number.

Although searched for, this decay has never been seen. (b) and (c) can

occur.

2.8 Consider a point charge e at position R; then

E�r� � e

4�"0

rÿ R

jrÿ Rj3 :

Under re¯ection in the origin, r ! r 0 � ÿr, R ! R 0 � ÿR and

E 0�r 0� � e

4�"0

r 0 ÿ R 0

jr 0 ÿ R 0j3 � ÿE�r�:

The magnetic ®eld due to a current I in a loop is

B�r� � �0I

4�

Z
dR� �rÿ R�

jrÿ Rj3 :

Under re¯ection the vector product does not change sign. Hence

B 0�r 0� � �B�r�; B�r� is an axial vector ®eld.

2.9 The reduced masses are

m�md=�m� �md� � 100:025 MeV for d±� system,

m�mt=�m� �mt� � 101:829 MeV for t±� system.

The difference in binding energies is

1

2
��m�c2�e2=4�"0 »c�2 � 48 eV:

Chapter 3

3.1 The nucleon magnetic dipole moments are vectors aligned with the

nucleon spin. In the deuteron the spins are parallel and the moments

add to give a net magnitude �p � �n � �2:792 84ÿ 1:913 04�e »=2mp �
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0:8798e »=2mp (from equation (3.2)).

The measured magnitude is

�d � 0:8574e »=2mp � �1ÿ 0:026���p � �n�:

The discrepancy (0.026) could be due to a contribution to the magnetic

moment from the orbital motion of the nucleons, associated with the

small d-wave component of the deuteron wave-function. (Appendix C,

}C.4.)

3.2(a) The magnetic ®eld at distance r from dipole (1) is

B � ÿ �0

4�

� �
r �r1 � r

r3

� �
� �0

4�

� �
ÿ�r1

r3
� 3��r1 � r�r

r5

� �
:

The energy of dipole (2) at r in this ®eld is

ÿ�r2 � B � ÿ �0

4�

� ��2

r3
þT:

3.3 Subtracting 1 MeV from the rest energies of the charged particles gives

(udd) 940, (uud) 937; 3 MeV for the extra d quark;

(dds) 1196, (uds) 1192, (uus) 1188; 4 MeV for the extra d quark;

(d�s) 498, (u�s) 493; 5 MeV for the extra d quark.

Interchanging a d quark for a u quark always increases the rest energy,

in this sample by an average of 4 MeV.

3.4(a) Not allowed. Does not conserve electric charge.

(b) Not allowed. Does not conserve baryon number or electron number.

(c) Not allowed. Does not conserve baryon number.

(d) Allowed.

3.5 ��ÿ ! Kÿ ��0 Strong. Does not require the weak or the electro-

magnetic interaction.

�0 ! �0 � ÿ Electromagnetic.

�0 ! p� eÿ � ��e Involves an anti-neutrino, therefore weak.

Kÿ ! �ÿ � �0 An s quark changes to a d quark, therefore weak.

�0 ! ÿ � ÿ Electromagnetic (Fig. 3.6).

�ÿ ! �ÿ � ��� Weak (cf. Fig. 3.5).

�ÿ ! eÿ � ��e � �� Weak (Fig. 2.2).

Chapter 4

4.2(a) Since q � kf ÿ ki, where ki and kf are the initial and ®nal wave vectors,

q2 � k2f � k2i ÿ 2kfki cos �:
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Neglecting the electron mass, ki � pi= » � E= »c, and in scattering from

a ®xed target there is no energy loss. Hence kf � ki � E= »c and

q2 � 2E2�1ÿ cos ��= »2c2; q � �2E= »c� sin��=2�:

4.3 By the uncertainty principle, the mean magnitude of the lepton momen-

tum p � »=a. But p � mv, so that �v=c� � »=amc � e2=4�"0 »c � 1
137.

The characteristic time t � a=v � 137a=c � 1:2� 10ÿ19 s, and

���=t� � 2� 1013.

4.4(b) This follows from perturbation theory in quantum mechanics. Since the

integral is over nuclear dimensions r4R, it is reasonable to approxi-

mate ý�r� by ý�0� � �ÿ1
2�Z=a�32, which with Problem 4.4(a) gives the

result.

4.5 The total binding energy of two �-particles is 56.60 MeV, 0.1 MeV

greater than the binding energy of 8
4Be.

8
4Be decays to two �-particles

and to conserve energy the 0.1 MeV of nuclear energy is converted into

the kinetic energy of their motion. 126C is more strongly bound than three

�-particles by 7.26 MeV. The binding energy of 6
3Li is 31.99 MeV,

1.47 MeV greater than the total binding energy of 2
1H and 4

2He.

Energy is conserved overall, and the nuclear energy released is taken

by the ÿ-ray and the kinetic energy of the 6
3Li.

4.6 Treating A as a continuous variable, the maximum is where

d�B=A�=dA � 0, i.e. at

A

2
� Z � b

d
� 25:7

The nearest integer is Z � 26, which gives the maximum of �B=A�.
4.7 For A � 100, the formula gives Z � 43. 10043Tc is an odd±odd nucleus and

unstable. Both 100
42Mo and 100

44Ru are stable. For A � 200, the formula

gives Z � 80, and 200
80Hg is stable.

4.8 Suppose the sample contains N 14C nuclei. Then the mean number of

decays per second is N=� � 15:3=60 sÿ1, and hence N � 6:7� 1010. The

atomic mass of natural carbon is 12.01 amu = 2� 10ÿ23 g. Therefore

1 g of carbon contains 5� 1022 atoms, and the proportion of 14C in the

sample is 1:3� 10ÿ12.

Assuming (i) that the proportion of 14C in the atmosphere remains

constant, (ii) that the hut had been built from new timber, and (iii) that

the carbon in the timber had all been bound in at the time of its growth,

the average number of decays per minute would be reduced by a factor

eÿt=� , where � is the mean life of 14C and t the age of the specimen. Thus

the expected rate would be 9.4 decays per minute. Conversely, an aver-

age of 9.4 decays per minute would suggest an age of 4000 years.
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In practice, carbon dating is far more complicated than this problem

suggests. In the past there have been small variations in the proportion

of 14C in the atmosphere, as appears when radiocarbon dating can be

calibrated against dating obtained by other methods, such as dendro-

chronology (counting tree rings). These variations can lead to ambigu-

ities in the inversion of the calibration curve.

4.9 The number of atoms of 82Se in the sample is

N � �0:97� 14 g�=�82� 1:66� 10ÿ24 g� � 1:00� 1023. If � is the mean

life, in a time t � � there will be Nt=� decays, giving

� � Nt=(number of events)

� 1023� 7960 hr/(35/0.062)

� 1:6� 1020 yr.

(The condition t � � is well satis®ed!)

4.10 In the absence of neutrinos to share the energy released in the decay, the

sum of the energies of the two electrons emitted would be sharply peaked

at the decay energy. (The recoil energy of the nucleus would be small.)

4.11 As a rough rule, for A odd there is only one þ-stable nucleus and for A

even, two. Up to and including A � 209 there are 105 odd-A nuclei and

104 even-A nuclei, and so about 310 þ-stable nuclei. All these have

Z4 83 which implies an average of about 3.7 stable isotopes per ele-

ment.

Chapter 5

5.2(a) From equations (5.4) and (5.5), for neutrons with kinetic energy E,

N�E� � N�E=EF
n �

3
2.

The density of states is n�E� � dN =dE � 3
2NE

1
2�EF

n �ÿ
3
2.

Hence the total neutron kinetic energy isZ EF
n

0

En�E�dE � 3

5
NEF

n :

A similar result holds for the protons, noting that proton kinetic energies

are given by �Ep ÿ �U�.
(b) Again consider the neutrons; since EF

n is proportional to N
2
3 we can write

EF
n � EF

0 �N=N0�
2
3 � EF

0 �1��N=N0�
2
3:

The result follows on expansion.

Similarly EF
p ÿ �U � EF

0 �1ÿ�N=N0�
2
3:
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(c) 3
5NEF

n � 3
5N0E

F
0 �1��N=N0�

5
3

� 3
5N0E

F
0 1� 5

3

�N

N0

� �
� 5

9

�N

N0

� �2
ÿ !

:

Adding the proton kinetic energy, one obtains the total kinetic energy

3
5E

F
0 A� 1

3E
F
0

�N ÿ Z�2
A

:

5.3 �Uc �
�Z ÿ 1�e2
4�"0R

4�R3

3

ÿ !ÿ1Z R

0

4�r2
3

2
ÿ r2

2R2

ÿ !
dr

� 6

5

�Z ÿ 1�e2
4�"0R

� 21:5 MeV for20882Pb:

5.4 Since Z � N, the energy due to the strong nucleon±nucleon interaction

should be the same for a neutron as for a proton in a similar state; thus
�U should be given by the Coulomb contribution, �Uc of Problem 5.3(a).

This yields �U � 8:7 MeV. The separation energy is the binding energy at

the Fermi level. Assuming EF
p � EF

n � �U, it follows that

Sp � �15:6ÿ 8:7� MeV.

5.5 In the simple shell model, 3115P has an odd proton; Table 5.1 suggests this

is in the 2s1
2
shell, giving nuclear spin and parity jP � 1

2

�
.

67
30Zn has an odd neutron. Suggested shell f5

2
; jP � 5

2

ÿ
.

115
49In has an odd proton. Suggested shell 1g9

2
; jP � 9

2

�
.

These suggestions are all in agreement with experiment.

5.6 The spins and parities of all but 26
13Al are in accord with pairing and shell

®lling as in Table 5.1. 26
13Al is odd±odd; the model suggests the odd

neutron and proton both to be in 5
2

�
states. Such a con®guration

would have the measured parity of 26
13Al; and the measured spin of 5

suggests that the spins are paired parallel.

For the magnetic moments, equation (5.26) gives:

43
20Ca, odd neutron, l � 3; j � l � 1

2
; � � ÿ1:92 �N

93
41Nb, odd proton, l � 4; j � l � 1

2 ; � � 6:80 �N
137
56Ba, odd neutron, l � 2; j � l ÿ 1

2
; � � 1:15 �N

197
79Au, odd proton, l � 2; j � l ÿ 1

2 ; � � 0:12 �N.

26
13Al. The fact that the two angular momenta appear to be aligned

suggests that we can simply add the Schmidt values to obtain the esti-

mate � � 2:9 �N.

5.7 For a proton, j � 1
2 ; � � 2:80 �N.

For 43
20Ca, j � 7

2 ; � � ÿ1:32 �N.
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Taking the nuclear magneton �N � 3:15� 10ÿ14 MeV Tÿ1 and using

equation (5.21) gives

� � !=2� � 43 MHz for protons,

� � !=2� � 2:9 MHz for 43
20Ca.

5.8 The volume of the ellipsoid is �4�=3�a2b and hence the charge density is

3Ze=4�a2b.

Qzz �
3Z

4�a2b

Z Z Z
�2z2 ÿ x2 ÿ y2� dx dy dz;

where the integral is through the ellipsoid.

Make a change of scale: x � ax 0; y � ay 0; z � bz 0; then

Qzz �
3Z

4�

Z Z Z
�2b2z 02 ÿ a2x

02 ÿ a2y
02� dx 0 dy 0 dz 0;

where the integral is now through the unit sphere. AlsoZ Z Z
x

02 dx 0 dy 0 dz 0 � 1

3

Z 1

0

r
024�r

02 dr 0 � 4�

15
; etc:;

giving

Qzz �
2Z

5
�b2 ÿ a2�:

Taking the density of nuclear matter to be �0 � 0:17 nucleons fmÿ3 and

4�

3
a2b�0 � A;

these equations lead to b � 7:7 fm, a � 5:6 fm.

Chapter 6

6.1 Q � 0:094 MeV, rs � 2� 4
1
3 � 1:1 fm = 3.5 fm,

rc � 4e2=4�"0Q � 61 fm:

rs=rc � 0:057 and Fig. 6.3 or equation (6.16) gives G = 0.70.

The reduced mass is m�=2. Hence G � 13.

Taking �0 � 7� 10ÿ23 s, as in other �-decays, leads to the estimate

� � 3� 10ÿ17 s, though this excellent agreement is fortuitous.

6.2(a) To apply equations (6.2) and (6.15) to a positron, 2Zd ! Zd and m

becomes the positron mass.

Thus rc � 112 fm. Values of rs between rs � 0 and rs � 1:1A
1
3 fm =
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6.37 fm are reasonable, giving G=1, 0.70; G=1.81, 1.27, and a suppres-

sion factor eÿG in the range 0.16 to 0.28.

(b) Q � 1:8 Mev, rc � 123 fm, rs � 8:1 fm, G = 0.68, G � 154,

which with �0 � 7� 10ÿ23s gives a partial mean life for �-decay

�� � 1037 years.

(Age of Solar System � 109 years.)

6.3 In �-decay in material, the kinetic energy is largely converted into heat

and N atoms of 238Pu would on average produce N�5:49 MeV�=� of

power.

For 1 kW � 6:24� 1015 MeV sÿ1 we need N � 4:6� 1024, or 1.8 kg of
238Pu.

The decay rate of the by-product 234U is so low that the heat from its

decay is negligible.

For the remaining mass of plutonium to be 1.8 kg after 50 years requires

2.7 kg initially.

6.4 Suppose that when the sample of rock was formed, say T years ago, it

contained no lead but N1 atoms of 238U (mean life �1) and N2 atoms of
235U (mean life �2). Then it would now contain N1e

ÿT=�1 atoms of 238U

and, since each decayed uranium atom becomes a lead atom,

N1�1ÿ eÿT=�1 � atoms of 206Pb. Setting �1ÿ eÿT=�1 �=eÿT=�1 � 0:0797 sug-

gests T � 497� 106 years. Similarly for 235U and 207Pb,

�1ÿ eÿT=�2 �=eÿT=�2 � 0:675 suggests T � 531� 106 years. (The discre-

pancy could be due to the effect of water on the rock, for example.)

6.5 Neglecting the excitation energy, the kinetic energy of the fragments can

be estimated using equation (6.18), which gives �B � 178 MeV. Each

fragment would then have velocity 12� 106 m sÿ1. In the frame in which

the fragment is at rest, a 2 MeV neutron has velocity 20� 106 m sÿ1. In

the laboratory frame, the distribution of emitted neutrons is peaked in

the direction of the moving fragment.

Chapter 7

7.3(a� Ei � E0 � Ef� (excitation energy) + (17O* recoil energy).

Hence the recoil energy is 0.26 MeV and the recoil velocity is

v=c � 5:7� 10ÿ3 (approximating the mass of 17O* by 17 amu).

(b) If the photon has energy Eÿ it has momentum Eÿ=c, and to conserve

momentum this must be the recoil momentum of the 17O. Hence the 17O

recoil energy ER is ER � �Eÿ=c�2=�34 amu).

To conserve energy, Eÿ � ER � 0:87 MeV.

We could solve these equations for Eÿ , but clearly ER is small, and to

two signi®cant ®gures it is suf®cient to take Eÿ � 0:87 MeV in the ®rst

equation to give ER � 24 eV.
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(c) The photon energy will be a maximum if it is emitted parallel to the

motion of the 17O*. By a Lorentz transformation to the laboratory

frame

Elab
ÿ � �1� v=c�Eÿ=�1ÿ v2=c2�12

and hence E lab
ÿ ÿ Eÿ � 5 keV.

Similarly the photon energy will be a minimum if it is emitted anti-

parallel, in which case Elab
ÿ ÿ Eÿ � ÿ5 keV.

7.4 11
6C is less bound than 11

5B by 2.762 MeV. The difference of Coulomb

energies of uniformly charged spheres of net charge 6e and 5e and radius

R � 1:1� 11
1
3 fm is

3

5

e2

4�"0R
�62 ÿ 52� � 4 MeV:

This is a 50% over-estimate of the observed energy difference, and we

would need to take RC � 1:45 R to obtain agreement. The approxima-

tion of a uniform charge distribution is inadequate for precise calcula-

tions, especially for light nuclei. In reality some charge is displaced to

larger distances (see Fig. 4.3) thereby reducing the energy. Calculations

using the more realistic distributions are in better accord with the data.

7.5 The decay by neutron emission with a kinetic energy release of 0.41 MeV

need involve only the strong interaction. There is no Coulomb barrier,

and only a small angular momentum barrier: to conserve angular

momentum and parity the angular momentum of the 16O±n pair must

be l � 1.

The mean life is still quite long on the nuclear time scale of � 10ÿ22 s.

ÿ � »c=�c � 0:04 MeV.

7.6 The nuclear transition is 1
2

ÿ ! 3
2

ÿ
, so the photon will have positive parity

and angular momentum quantum number 25 j5 1. The most likely

transition is with j � 1, which would be magnetic dipole. The photon

energy is about 2.13 MeV. From Fig. 7.6, a rough estimate of the mean

life is � � 10ÿ17 � �100=A�23 � 20A
2
3 s � 4� 10ÿ15 s. (The experimental

mean life is 5:2� 10ÿ15 s.) An electric quadrupole transition with j � 2

is also possible, but Fig. 7.6 suggests its partial decay rate to be much

slower than the magnetic dipole rate.

7.7 The lowest six energy levels (comprising 26 states) all have positive

parity. 10
5B has three protons in the p3

2
shell and three neutrons in the

p3
2
shell. There are many combinations of the single nucleon p-states and

they all have positive parity, �ÿ1�6. The lowest observed states can be

considered to be constructed from these.

The 1.74 MeV level can decay to the 0.72 MeV level by a magnetic
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dipole �0� ! 1�� transition with Eÿ � 1:02 MeV. This level can in turn

decay to ground by an electric quadrupole �1� ! 3�� transition with

Eÿ � 0:72 MeV. Neglecting internal conversion the ratio of photons

emitted is clearly one-to-one.

The 1.74 MeV level can also decay directly to ground with

Eÿ � 1:74 MeV but this �0� ! 3�� transition is magnetic octapole and

very slow. Using Fig. 7.6 the number of photons emitted with energies

1.02 MeV, 0.72 MeV and 1.74 MeV should be in proportion 1:1:10ÿ8.

Chapter 8

8.2 A neutron with kinetic energy 0.1 eV has v=c � 1:46� 10ÿ5 giving

� � 2670 b, l � 1:56 cm. The probability of a neutron penetrating a

distance x into the gas without interaction is eÿx=l. For this probability

to be 0.1, we require x � 3:6 cm. The active region of the detector

should be at least of this thickness.

8.3(a) � � »=ÿ � »c=ÿc � 1:3� 10ÿ21 s:

(b) In this example the elastic width equals the total width to a good approx-

imation, since there is not enough energy to induce other nuclear reac-

tions. The spin of the neutron is s1 � 1
2
and the spin of 4

2H is s2 � 0.

Hence the statistical factor in the Breit±Wigner formula is

�2j � 1�=�2s1 � 1��2s2 � 1� � 2, and the cross-section at energy E is

��E� � 2�

k2
ÿ2

�E ÿ E0�2 � ÿ2=4
�equation (D.11)�:

At energy E � E0, � � 8�=k2 � 4� »2=mE0, where m is the reduced

mass. Hence � � 3:2 b.

8.4 The coef®cient of the �1=v� term is large if the incident neutron can easily

induce a nuclear reaction (as in the case of 235U ®ssion), or if there is an

excited state close to zero incident neutron energy. Neither of these

conditions is apparently satis®ed in the case of 238U. However, one

would expect to see a small �1=v� contribution at even lower neutron

energies due for example to residual radiative capture.

8.5 The total width ÿ is given approximately by ÿ � ÿÿ � ÿn, and the rela-

tive probability of neutron radiative capture is

ÿÿ=ÿ � 1=�1� ÿn=ÿÿ�:

In this application of the Breit±Wigner formula the neutron spin s1 � 1
2

and the spin of the even±even nucleus 238U is s2 � 0. Also j � 1
2. Hence at

resonance
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�ÿ � 4�

k2
ÿnÿÿ

�ÿn � ÿÿ�2
;

where k2 � 2mE0= »2.
From Fig. 8.5, E0 � 6:7 eV and �ÿ � 2� 104 b. Hence

ÿnÿÿ

�ÿn � ÿÿ �2
� ÿn=ÿÿ

�1� ÿn=ÿÿ �2
� 0:052:

Since we are told that ÿn=ÿÿ is small, we take the solution

ÿn=ÿÿ � 0:058. Hence capture is 95% probable.

Chapter 9

9.1 The molecules CH4 � 2O2 have a mass � 80 amu and release 9 eV in

chemical reaction, i.e. 0.11 eV per amu. 235U has a mass � 235 amu and

releases about 200� 106 eV on ®ssion (Table 9.1 and discussion), giving

0:85� 106 eV per amu.

Ratio � 8� 106.

9.3 Sn � B�N;Z� ÿ B�N ÿ 1;Z�. The quoted difference comes from the

pairing energy terms. All other terms in the mass formula give contribu-

tions to Sn which for a heavy nucleus vary only slowly with A.

9.4 The probability of the neutron inducing ®ssion at the nth collision is

p�1ÿ p�nÿ1.

By de®nition the mean number of collisions is

�n �
X1
1

np�1ÿ p�nÿ1 � ÿp
d

dp

X1
1

�1ÿ p�n:

Summing the geometric series

�n � ÿp
d

dp
�1ÿ �1ÿ p��ÿ1 � 1

p
:

9.5(a) If v is the neutron velocity in the laboratory frame, its velocity in the

centre-of-mass frame is

vÿ mnv

M �mn

� Mv

M �mn

:

In the centre-of-mass frame it loses no energy on scattering, but suppose

it is de¯ected through an angle �. In the laboratory frame it will then

have a component of velocity v�mn �M cos ��=�M �mn� in the original

direction and a perpendicular component Mv sin �=�M �mn�. The result
follows on averaging over all angles �.
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(b) On average, after N collisions a neutron with initial energy E0 will have

energy EN � �NE0, where

� � M2 �m2
n

�M �mn�2
� 0:86:

For E0 � 2 MeV, EN � 0:1 eV, the number of collisions required is

N � 110.

The mean time between collisions for a neutron of energy E is

�t � 1=��v � 1=�� �p
2E=mn�, and it loses energy �E � �1ÿ ��E.

Approximating the mean rate of change of energy by

dE

dt
� ÿ�E

�t
� ÿ�1ÿ �����2=mn�

1
2E

3
2

gives the time to `cool' to EN � 0:1 eV:

time � 1

�1ÿ ����c
mnc

2

2

� �s Z E0

EN

dE

E
3
2

� 1

�1ÿ ����c
2mnc

2

EN

ÿ !1
2

� 8� 10ÿ5s:

9.6 From the text l � 3 cm, l=v � 1:5� 10ÿ9s, � � 2:5 and tp � 9� 10ÿ9 s.

Substituting the form ��r; t� � f �r�e�t into the equation yields

�f �r� � ��ÿ 1�
tp

f �r� �D

r

d2

dr2
�rf �r��;

which has solutions of the form f �r� � �1=r� sin�kr� provided

� � ��ÿ 1�
tp

ÿDk2:

To satisfy the boundary condition,

k�R� 0:71l� � n�; n � 1; 2; . . .

To avoid an exponential increase in density �4 0 for all n and therefore

�R� 0:71l�2 4 tp
��ÿ 1�D�2;

i.e.

R4 �
tpv

3��ÿ 1�l
� �r

ÿ 0:71

� �
l;

and the critical radius in this approximation is 8.8 cm.

9.7(a) Suppose that the probability of a neutron induced ®ssion to result in a

fragment which produces a delayed neutron is �d, and that the number

of such fragments at any time is N�t�, then
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dN

dt
� ÿN�t�

�þ
� q�d

tp
n�t�:

This equation has the solution

N�t� � q�d
tp

Z t

ÿ1
eÿ�tÿt 0 �=�þn�t 0� dt 0:

Including delayed neutrons in equation (9.1) gives

dn

dt
� ��q ÿ 1�

tp
n�t� �N�t�

�þ
;

which is the equation quoted.

(b) � � ��qÿ 1�
tp

� �dq

tp�1� ��þ�
or

���þ�2 � ���þ��1ÿ ��qÿ 1��þ=tp� ÿ ��þ=tp����� �d�qÿ 1� � 0:

(c) Clearly � � ��qÿ 1�=tp � 1 s when �d � 0.

(d) Substituting the given values in the quadratic equation gives

���þ�2 � 781���þ� ÿ 10 � 0.

The positive solution for ���þ� corresponds to an exponentially increas-

ing n�t�, with time scale 1=� � 13 min.

9.8(a) Take the energy release per ®ssion to be �178� 15� MeV (Table 9.1).

The number of ®ssions in time dt 0 is then Pdt 0=�193 MeV�. For steady
power output, the rate of release of ionising energy at time t after shut-

down at time t � 0 is, from equation (9.2),

dE

dt
� P

�193 MeV�
Z 0

ÿT

2:66
1 s

tÿ t 0

� �1:2

dt 0 MeV sÿ1

� 0:07P
1 s

t

� �0:2

ÿ 1 s

t� T

� �0:2
" #

.

(b) 7.8 MW, 4.3 MW, 0.8 MW.

9.9 The mean free path l of a ®ssion neutron is given by l � 1=�nuc�, where

�nuc is the number density of 239Pu nuclei, and � is the total neutron

cross-section. If Rc is the radius of the critical mass M at atmospheric

pressure,

�nuc � �M=mnuc�=�4�=3�R3
c :
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Hence if Rc � Kl, where K is a constant,

Rc � �4�=3�KR3
cmnuc=�M:

A mass m and its critical radius rc are related by a similar equation, so

that

rc
Rc

� �
� m

M

� �1=2
:

If r is the radius of m at atmospheric pressure,

Rc

r

� �
� M

m

� �1=3

:

Eliminating Rc,

rc
r

� �
� m

M

� �1=6
:

If m � 0:8M, rc=r � 0:96.

Chapter 10

10.1(a) 6:5� 1014 mÿ2 sÿ1.

(b) Neutrino mean free path l � 1=��nuc and �nuc 4 �1 A
� �ÿ3 � 1030 mÿ3.

Hence l � 1015 km � 1011 Earth diameters.

10.2 Thermal velocities in the gaseous state of hydrogen exceed the escape

velocity in the Earth's gravitational ®eld. Only hydrogen that is chemi-

cally bound remains.

10.3 4.86 MeV.

10.4(a) �p � 3:4� 1031 mÿ3; �2eÿ� � 2:5� 10ÿ4;

�pp � v�pp � 1:4� 10ÿ49 m3 sÿ1.

The p±p reaction rate � 1
2
�pp�

2
p � 8:1� 1013 mÿ3 sÿ1.

Each p±p reaction produces 13.1 MeV and hence the contribution to

" � 170 W mÿ3.

(b) The p-12C reaction rate � �p�c�pc, and hence the mean time for one

carbon nucleus to react is 1=�p�pc � 106 years.

10.5(a) The reaction rate per unit volume is �2d�v and each reaction reduces �d
by one. Since this is the dominant reaction (Fig. 10.4)

d�d
dt

� ÿ�2d�v:

(b) This equation can be integrated to give
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�vt � 1

�d
ÿ 1

�0
;

and hence the proportion `burned' is

�0 ÿ �d
�d

� �0tc�v

1� �0tc�v
:

(c) 1020 mÿ3 s:

10.6(a)
dV

dr
� 0 at r � r0 where r30 �

�e2=4�"0�
2K

.

(b) A Taylor expansion of V�r� about r � r0 gives

V�r� � V�r0� �
1

2
M!2�rÿ r0�2;

where M!2 � 3�e2=4�"0�=r30.
Classically a particle of mass M in this potential undergoes simple har-

monic motion about r � r0 at angular frequency !.

(c) The lowest quantum state in this potential has angular momentum

L � 0 and energy

E0 � V�r0� �
1

2
»!:

Taking r0 � 500 fm gives

! � 1:66� 1018 sÿ1;E0 � 4:87 keV:

(d) Neglecting the Kr2 term in the potential, we may estimate the tunnelling

probability to be exp�ÿG�E0�� where

G�E0� �
�

»c
e2

4�"0

������������
2Mc2

E0

s
G�rs=rc�

(see equation (6.15)).

Since rs � 3 fm and rc � 300 fm, G�rs=rc� � 1 and G�E0� � 15:6:

Tunnelling probability � exp�ÿG�E0�� � 1:68� 10ÿ7.

(e) In a semi-classical picture, the deuteron and triton approach each other

at intervals of 2�=! � 3:8� 10ÿ18 s.

The mean number of approaches �n before tunnelling (and presumably

fusion) takes place is (cf. }2.3)

�n � exp�G�E��:

The corresponding time is �2�=!� �n � 2:3� 10ÿ11 s.
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Chapter 11

11.1 All states are occupied up to k � kF (equation (B.5)). Using equation

(B.4) the mean value of k is

�k � R kF
0 k3 dk=

R kF
0 k2 dk � �3=4�kF:

For extreme relativistic electrons, E � pc � »ck; hence the mean energy

is »c �k � �3=4� »ckF.
11.3 The reaction is endothermic and requires an energy input of 0.78 MeV

= Q. The reaction will proceed if "F > Q. (At T � 0 K the proton

Fermi energy is less than the electron Fermi energy EF
e by a factor

� me=mp.) Using the non-relativistic formula "F � »2k2F=2me for a

rough estimate, and equation (B.5), the number density of electrons �e
must satisfy

�e 5
1

3�2

2mec
2Q

� »c�2
ÿ !3

2

� 3� 10ÿ9 fmÿ3:

The corresponding hydrogen density is � 5� 109 kg mÿ3.

11.4 At low temperature, only particles at the top of the Fermi distributions

can take part in the reactions

n ! p� eÿ � ��e; p� eÿ ! n� �e:

In thermal equilibrium

"F�n� � "F�p� � "F�e�;

where

"F�n� � mnc
2 � »2

2mn

kF�n�2; "F�p� � mpc
2 � »2

2mn

kF�p�2;

and "F�e� � »ckF�e�; since we expect the electrons to be highly relativ-

istic.

For electrical neutrality, the number density of electrons must equal

the number density of protons. Hence

kF�e�3 � kF�p�3 � 3�2�p; kF�n�3 � 3�2�n:

The equilibrium condition becomes

mnc
2 � � »c�2

2mnc
2
�3�2�n�2=3 � mpc

2 � � »c�2
2mpc

2
�3�2�p�2=3 � »c�3�2�p�1=3:
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Taking �n � 0:17 nucleons fmÿ3 and solving for �p gives

�p � �e � 8:44� 10ÿ4 fmÿ3, and �p=�n � 5:0� 10ÿ3.

11.5 If E > E0 � 8 MeV, kBT � 0:5 MeV, then E=kBT > 16. Hence

n � 1

�2� »c�3
Z 1

E0

E2eÿE=kBTdE � 1

�2� »c�3 E
2
0kBTeÿE0=kBT ;

giving n � 5� 1031 mÿ3.

11.6(a) From }10.3,

v� � 2

�

� �1
2 m�

2kBT

� �3
2
Z 1

0

v�eÿE=kBTv2 dv

where E � 1
2 �m�=2�v2, i.e.

v� � 1

m�kBT

� �3
2

8�
1
2 »2ÿ2

Z
eÿE=kBT

�E ÿ E0�2 � ÿ2=4
dE:

Integrating over the narrow resonance peak gives the result.

(b) In the plasma, the rate of production of 8Be is 1
2
�2�v� (equation (10.6)).

The rate of decay per unit volume is �Be=� � �Beÿ= ». In equilibrium

these rates are equal.

(c) 2:3� 10ÿ10.

Chapter 12

12.1 fT1
2
� 4760 s. For a free neutron fT1

2
� 1015 s, from }12.8. In the simple

shell model the 1s neutron and proton spatial wave-functions would be

the same if Coulomb distortions were neglected, and the spin states

similar to those of a free neutron and free proton. Thus the predicted

fT1
2
value would be the same. However, since Z � 15, Coulomb distor-

tions are not insigni®cant. Also shell model predictions for the Gamow±

Teller matrix elements, like those for the similar magnetic moment

matrix elements (}5.6), are not accurate.

12.2 Note there is no Coulomb factor in the matrix element.

Ee � 0:71 MeV; � � 3:3� 10ÿ20 b:

12.3 11Be decay: jRf0j � 0:7 fm, a nuclear size.

Atomic decay: jRf0j � 0:4 A
�
, an atomic size.
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Chapter 13

13.1 Replacing S0�Ee� in equation (12.5) by �E0 ÿ Ee�2E2
e , the mean electron

energy is clearly E0=2 by symmetry. The mean life is inversely propor-

tional to

f �Zd;E0� �
1

mec
2

� �5Z E0

0

�E0 ÿ Ee�2E2
e dEe �

1

30

E0

mec
2

� �5

:

The proportion of decays within �E of the end-point is

1

f �Zd;E0�
1

mec
2

� �5Z E0

E0ÿ�E

�E0 ÿ Ee�2E2
e dEe �

1

f

E2
0�E3

3�mec
2�5 :

Substituting for f , the result follows.

13.2 By momentum conservation

p2�c
2 � p2Lic

2 � 2� 6536 MeV� �55:9� 1:0� eV
� �0:7307� 0:0131� MeV2;

and by energy conservation

m2
�c

4 � ��0:862�2 ÿ 0:7307� 0:0131� MeV;

giving 0 �m�c
2 4 160 keV.

13.3(a) From equation (A.4), l � 1=��nuc��.
(b) Number of steps = �R=l�2.

Time for each step = l=c.

Total time = R2=�lc�.
13.4 Measuring kBT in MeV,

a� �
3� 7

8

�2c

60� »c�3 � 1:6� 1046 MeVÿ3 sÿ1 mÿ2:

Since
R1
0 eÿt=�dt � �, the total energy loss is

� a��kBT0�44�R2� � 3� 1058 MeV:
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Chapter 14

14.1 Rp�T� � mpc
2

Z T=mpc
2

0

du=F�u�:

RM�TM� � �Mc2=z2�
Z TM=Mc2

0

du=F�u�

� �M=z2mp�mpc
2

Z TM=Mc2

0

du=F�u�

� �M=z2mp�Rp�mpTM=M�:

14.2 T � �Mc2= �p
1ÿ v2=c2�� ÿMc2

gives

v2

c2
� 1ÿ 1

�1� u�2 ; where u � T=Mc2:

Taking a constant �L, the integration is straightforward.

14.3 �-particle range � 20 mm; electron range � 1 cm, a much greater dis-

tance.

14.4
d

dx
�1
2Mv2� � Mv

dv

dx
� M

dx

dt

dv

dx
� M

dv

dt
:

From equation (14.4), in the approximation L � �L,

dv

dx
� constant

v3
and

dv

dt
� constant

v2
:

Hence

(time to stop)/(range) =

Z v0

0

v2 dv
.Z v0

0

v3 dv � 4=3v0:

For the �-particle of question (13.3), time � 1:7� 10ÿ12 s.

14.5 The kinetic energy of ionising particles is 0.76 MeV. From the end of

}13.1, the number of ion pairs produced is

� 0:7 MeV=35 eV � 2� 104:

The proton will have the longest range. The proton energy is

�mt=�mp �mt�� � 0:76 MeV � 0:57 MeV:

To estimate its range take I � 24 eV (Problem 13.3) and estimate
�L�� 2:5�, which gives a range � 0:5 cm.

14.6 From Fig. 13.4, at 50 keV the photon cross-section for lead is predomi-

nantly due to absorption and the linear attenuation coef®cient
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� � 93:2 cmÿ1.

For the thickness x to be such that eÿ�x � 10ÿ3, we require

x � 0:76 mm.

Chapter 15

15.1 Since the mean life 137Cs is 44 yr, we may neglect its radioactive deple-

tion over 1 yr, and estimate the activity as

137Cs activity � 0:059� �3� 109 W� � �1 yr�
�200 MeV� � �44 yr� � 1:3� 1017 Bq:

If 13% of this activity were spread over 106 km2, the activity per square

metre � 2� 104 Bq. (Each 235U ®ssion releases � 200 MeV energy. See

}9.3.)

15.2 Radon will be produced from the radium decay at a rate R � 1 Ci, but

itself decays. Suppose n�t� is the number of radon nuclei after time t.

Then

dn

dt
� Rÿ n

�
:

With the initial condition n�0� � 0, the solution of this equation is

n�t�
�

� R�1ÿ eÿt=�� � �1ÿ eÿt=�� Ci:

But n�t�=� is the radon activity at time t.

After one month, the radon activity will be approximately constant at

R � 1 Ci. Similarly the other decay products up to 210Pb with their even

shorter decay times will be in quasi-equilibrium, each with activity R,

and the total activity will be 6 Ci.

15.3 4 GeV muons are highly relativistic. Hence in equation (14.4) we take

u � c. Also �Z=A� � 0:5, L � 14, � � 1 g cmÿ3 � 103 kg mÿ3. Then

ÿ dE

dx
� 0:307� 0:5� 14 MeV cmÿ1 � 2 MeV cmÿ1.

Thus a muon passing through the body loses only a small fraction of its

energy to ionisation, and

dE

dt
� dE

dx

dx

dt
� c

dE

dx
� ÿ10ÿ2 J sÿ1:

The number density n of muons in the body is
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n � flux

c
� 150

3� 108
mÿ3 � 5� 10ÿ7 mÿ3:

Hence in 1 s, the received dose is

� �5� 10ÿ7� � 10ÿ2

103 kg
J � 5� 10ÿ12 Sv:

This suggests an annual dose of � 0:16 mSv from this process.

15.4 Taking a total body weight of 70 kg, the activity due to 14C is

� 3200 Bq. Assuming all the electron energy is deposited in the body

(cf. Table 14.1), the dose per second is

3200� 0:052� 1:6� 10ÿ13 J=70 kg � 3:8� 10ÿ13 Sv:

The annual dose is 12 mSv.

15.5 From the given data, a 70 kg body contains 2:47� 1020 40K nuclei,

which will yield 1:33� 1011 decays per year. If we assume that all an

electron energy, and 10% of a photon energy, is deposited in the body,

the average energy per decay is

� ��0:89� 0:66� � �0:11� 0:145�� MeV

� 0:6 MeV:

Annual dose � 1:33� 1011 � 0:6� 1:6� 10ÿ13=�70 kg�
� 0:18 mSv:

Appendices

B.1(b) The centre-of-mass coordinate R � �m1r1 �m2r2�=�m1 �m2�, and

the relative coordinate r � r2 ÿ r1. The two particle wave-functions

exp�ik1 � r1� exp�ik2 � r2� and exp�ik � R� exp�ik � r� must be identical. The

result follows on equating coef®cients for r1 and r2. The Jacobian of the

transformation is unity. If the particles are identical, only one hemi-

sphere of the angular integration of the k-vector gives distinct states,

since k and ÿk are equivalent.

C.2 The wave-functions of the state are linear combinations of spatial func-

tions of ®xed l, each of which has parity �ÿ1�l. The effect of the parity

operator on the internal states j � 1
2i, j ÿ 1

2i of spin 1
2 fermions (e.g. elec-

trons, protons) is in fact a matter of convention, and they are taken to

have positive parity. It is usually the relative parity of two states which is

signi®cant.
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Index

(P) denotes the reference is to a problem

activity, 215

allowed transitions, 168, 174±6

alpha decay, 50±2, 74±82

mean life, 80

series, 82

alpha particles, 33, 40

angular momentum, 16, 230±5

addition of, 233±4

conservation of, 4, 77, 97

intrinsic, 2, 16, 232±3

nuclear, 40, 56, 65

orbital, 230±2

photon, 97

anti-particle, 13, 26

atom, 1

atomic

mass unit, 40

number, 1

attenuation coef®cients, 207±8

axial coupling constant, 176

axial vector, 16

barn, de®nition of, 4

baryon, 29

number, conservation of, 30

becquerel, 215

beta decay, 12, 15, 28, 44±50, 163±79

allowed transitions in, 168, 176

electron capture in, 171

energy spectra, 163, 168±71

Fermi theory, 166±8

mean life, 165, 176

muon, 15

parity violation in, 16, 165, 178

stability conditions, 44±8

stability valley, 48, 49

Bethe formula, 202

`big bang' 151

binding energy, 39±41

of atomic electrons, 39

of last nucleon, 40, see also

separation energy

of light nuclei, 40±1

per nucleon, 48±9

boson, 2

Breit±Wigner formula, 103±6, 107,

110, 241±4

Bremsstrahlung, 205

carbon dating, 55(P)

centre-of-mass system, 223, 230(P)

chain reaction, 119
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Chandrasekhar limit, 154

channel, 99, 223

CNO cycle, 140

compound nucleus, 104

conservation laws

baryon number, 30

charm, 29

electric charge, 15

lepton number, 16

linear and angular momentum, 3

parity, 4, 16

strangeness, 29

symmetry and, 3

cosmic rays, 217

Coulomb barrier

in alpha decay, 76

in nuclear reactions, 109±11, 140

in positron decay, 87(P), 170

critical mass, 121

critical radius, 121, 128(P)

cross-section, 103, 222±7

charged particle, 226

Compton, 209

Coulomb barrier in, 109±11

differential, 34, 224

elastic, 223

®ssion, 116

inelastic, 89, 117, 223

partial, 224

radiative capture, 117, 223

resonant, 103±6, 241±4

Thomson, 211

total, 105, 222

curie, 215

de Broglie relation, 8, 10

decay

channel, 99, 236, 240

rate, 13, 99, 236, 240

rate, partial, 99

delayed neutrons, 86, 118, 122

density of states, 227±30

in beta decay, 169

in gamma decay, 172

integrated, 58, 61, 228

shell model, 58. 61

deuterium, 131, 143

deuteron, 21, 23, 234

quadrupole moment, 23, 25

stripping, 91

dipole, see magnetic dipole moment;

transitions

Dirac equation, 13, 34, 174

direct nuclear reaction, 107, 244

DNA, 214±15

Doppler broadening, 111±12, 124

Einstein mass±energy relation, 8, 10, 39

electric quadrupole moment, 68±72,

73(P)

of deuteron, 23

electromagnetic

®eld, 3, 7

interaction, 8, 12, 179±84

electron, 1, 13

binding energy in atom, 39

capture, 45, 156, 171±3

degeneracy pressure, 152

scattering by nuclei, 34

spin in beta decay, 173±9

electro-weak theory, 9±12, 173

endothermic reaction, 103

energy level diagram, 92

excitation energy, 89

excited states

decay of, 97±9, 236±40

density of, 95

experimental determination, 89±93,

99, 104

mean life, 12, 99

exclusion principle, 2, 43, 58, 152

exothermic reaction, 103

exponential decay law, 12, 236, 238

fermi, de®nition of, 4
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Fermi

constant, 175

energy, 58, 72(P), 152

golden rule, 240

interaction, 173

theory of beta decay, 166±8

fermion, 2, 13, 19, 21

Feynman diagram, 9

®ssile nucleus, 116

®ssion, 52

energy release in, 83, 118

induced, 115, 119

mean life, 86, 118

spontaneous, 83±7

¯avour, 29

¯ux, 107, 225

forbidden transitions, 168

f T1/2 value, 185(P)

fusion, 130±5

muon catalysed, 146±8

gamma decay, 97

mean life, 98, 182

theory, 179±83

Gamow±Teller interaction, 173±6

gluon, 3, 22, 26

gravitation, 3, 130, 152±5

gray, 216

hadron, 3, 19±31

half life, 13

hyper®ne structure, 56

impact parameter, 200, 226

internal conversion, 184

ionisation, 199, 206, 209

energy, 203, 213(P)

isobar, 33

isomeric state, 99, 185(P)

isotope, 33, 55(P)

isotopic spin, 22

K-capture, see electron capture

k-space, 227

Kurie plot, 188±9

Lawson criterion, 145

lepton, 3, 10, 13±17

liquid drop model, 42, 83, 96

magic number, 62, 65

magnetic dipole moment, 13, 66±8

of nucleon, 20

operator, 67

mass number, 33

mean free path, 119, 225

mean life, 12, 236, see also alpha

decay; beta decay; gamma decay

meson, 26

� meson, 26

� meson, 27

mirror nuclei, 93, 101(P)

moment, see electric, magnetic

multiple scattering, 206

multi-pole, see transitions

muon, 14, 36

catalysed fusion, 146±8

muonium, 18(P)

neutrino, 14±17, 132, 163

atmospheric, 195±6

burst, 159

cross-sections, 186±8

detector, 142±3, 159, 193

mass, 143, 163, 188±9

mixing, 189±93

oscillations, 192±3

solar, 140±3, 193±5

spin, 16, 188

neutron, 1

cross-sections, 116±18, 222±4

detector, 113(P)

magnetic moment, 20

mass, 19

mean life, 28, 177

radius, 19

star, 154, 157
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nuclear

angular momentum, 41, 56, 65

binding energy, 39±43

charge distribution, 33±36

electric quadrupole moment, 68±72

®ssion, see ®ssion

fusion, see fusion

magnetic dipole moment, 66±68

magnetic resonance, 67

magneton, 67

mass, 39±43

matter density, 38

parity, 41, 65

potential, 56±8

power, 121±5, 143±6

radius, 39

reaction, 91, 103±13

spin, see angular momentum

time scale, 59

nucleon, 19

±nucleon interaction, 22±8, 52

nucleosynthesis, 155±7, 160±1

pair-production, 14, 208, 211

pairing energy, 40, 43, 65, 116

Paris potential, 24±6, 52

parity, 4, 5, 77, 97, 232, 233

non-conservation of, 16, 165, 178±9

partial decay rate, 99

partial width, 99

Pauli matrices, 233

photodisintegration, 156

photo-electric effect, 209

photon, 3, 8

angular momentum, 97

cross-sections, 207±11, 224

parity, 97

spin, 3, 97

plasma, 132, 135, 144

plutonium, 87(P), 124±5, 129(P)

positron, 13, 45

positronium, 18(P), 30

PP chains, 132, 139±40

prompt neutrons, 85, 118, 123

proton, 1

magnetic moment, 20

mass, 19

radius, 19

pseudo vector, see axial vector

quantum electrodynamics, 14, 210

quark, 3, 21±2, 26±31, 173

rad, 216

radiation

absorbed dose, 216

equivalent dose, 216

man-made sources, 218±19

natural background, 217±18

weighting factor, 216

radiative capture, 105, 116, 160, 223

radon, hazard of, 218

range, 205, 212(P)

reaction rates, 135±9, 225

reactor

control of, 122±4

fast, 122, 125

fusion, 143±6

thermal, 121

thermal stability of, 124

rem, 216

resonant reactions, see Breit±Wigner

formula

risk assessment, 219±20

r-process, 160

Rutherford scattering, 33, 206, 226

scalar potential, 7±8, 10

scattering, see also cross-section

elastic, 223

inelastic, 89, 117, 223

Schmidt values, 68

selection rules

in allowed beta decay, 176

in gamma decay, 182±3

semi-empirical mass formula, 41±3, 83
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separation energy, 59, 93, 127(P)

shell model, 41, 48, 56±72, 94

sievert, 216

silicon burning, 156±7

spherical harmonics, 60, 231

spin, see angular momentum

spin±orbit coupling, 63±5

s-process, 160

Standard Model, 31, 175, 192

stopping power, 201±6

strong interaction, 3, 19±28

Sun, 130±3

supernova, 157±60

neutrino burst, 159

symmetry

and conservation laws, 3

energy, 43, 58, 72(P)

tau lepton, 14

tensor potential, 24±5

Thomson scattering, 211, 213(P)

threshold energy, 92

transitions, 97±100, see also decay

electric dipole, 180±2

magnetic dipole, 182±3

multipole, 99, 183

tritium, 144, 146, 189

tunnelling, 77±82, 110±11, 155, 170

uranium, 106, 115±27

(1/v) law, 107±8

vector potential, 7,9

virtual process, 9, 15

waste, radioactive, 125

wave-equation, 7, 10, 27

W boson, 3, 9, 15, 28, 167, 174

weak charge, 10

weak interaction, 3, 4, 9±12, 28, 44±8,

131, 134, 163±79

weapons testing, 218

Weinberg angle, 187

white dwarf, 153

width

excited state, 99

partial, 99, 236

resonance, 105, 110±12

total, 236

Z boson, 3, 9, 15
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