

Проявление кластерных степеней свободы в периферических взаимодействиях релятивистских ядер

П.И. Зарубин

Лаборатория высоких энергий имени В. И. Векслера и А. М. Балдина Объединенный институт ядерных исследований

http://becquerel.jinr.ru/

Представлены результаты и перспективы исследования кластеризации при фрагментации легких стабильных и радиоактивных ядер с энергией свыше 1А ГэВ в ядерных эмульсиях. Благодаря рекордному пространственному разрешению и наиболее полному наблюдению релятивистских фрагментов такой подход позволяет сделать уникальные и доказательные наблюдения кластерных многочастичных распадов возбужденных состояний легких ядер.

Уникальные возможности эмульсионной методики рассматриваются в применении к процессам периферической и когерентной мультифрагментации. Представлены вероятности многочастичных каналов фрагментации некоторых изотопов бериллия, бора, неона, кремния. Отмечается важность этих результатов для задач физики нескольких тел и проблем нуклеосинтеза.

Advanced Composition Explorer

Cosmic Ray Isotope Spectrometer

Radioactive Clock isotopes

Эмульсии: разрешение 0.5 µт, идентификация зарядов релятивистских фрагментов и масс изотопов H и He

Фрагментация ядра ²⁸Si с энергией 3.65А ГэВ в эмульсии БР-2. На верхней фотографии: вершина взаимодействия и струя фрагментов в узком конусе с 4 сопровождающими однозарядными частицами и 3 фрагментами ядра мишени. При продвижении в направлении струи на ≈1 мм (нижняя фотография) можно различить 3 фрагмента Z=1 и 5 фрагментов Z=2. Яркий след на нижней фотографии (третий сверху) идентифицирован по глубине резкости как пара фрагментов Z=2 (распад ⁸Ве). 3-мерный образ события реконструирован как плоская проекция (ПАВИКОМ в ФИАН)

Кластерные «кирпичики»:

более чем один нуклон связан, нет возбужденных состояний над порогом распада на частицы– *ядра ²H*, ³H, ⁴He и ³He.

Преимущества релятивистской фрагментации

- 1. Выход на режим предельной фрагментации;
- 2. кратчайшее время реакции;
- 3. коллимация фрагментов в узком конусе;
- 4. минимальность ионизационных потерь;
- 5. Отсутствие порога при детектировании

Сравнение фрагментации ядра-мишени и ядра снаряда

4.5A \Gamma3B/c ^{16}O \rightarrow \alpha + C

Диссоциация при 4.5А ГэВ/с: ²⁰Ne→3He+⁸Be

Диссоциация при 4.5А ГэВ/с фрагментом мишени:

 $^{24}Mg \rightarrow ^{12}C^* + ^{8}Be \rightarrow 5He$

With the series of the series

Диссоциация при 4.5А ГэВ/с фрагментом мишени: ²⁸Si→¹²C*+⁸Be+He+H→6He+H

Nuclear Physics A516 (1990) 673-714 North Holland

ELECTROMAGNETIC DISSOCIATION OF 200 GeV/NUCLEON ¹⁶O AND ³²S IONS IN NUCLEAR EMULSIONS

2mm from origin

Fig. 3. Microphotograph of a complex projectile EMD (200 GeV/nucleon ¹²S).

 $1.11_{\rm MeV}$ Group Mass 14.149(1.15) , 1.5 , and 1.16 MeV

Fragmentation of 22Ne in emotion at 4.14 GeV/c

 A. E. Naghert, S. A. Krietzer, K. D. Leber, N. F. Andrewel, J. V. Avari, V. L. Barrak, J. Yu. Charkkov, J. Zh. Lignowski, E. B. Encondref, A. S. Ginnard, S. K. Kharkitski, P. B. Tangari, Tr. Stellywei, M. Ginzler, M. B. Stellywei, Y. Towar, V. A. Leker, Y. K. Leker, M. Borter, Y. Towar, Y. A. Leker, Y. K. Stellywei, Y. G. Senamer, Y. J. Diston, Y. M. Kanton, K. W. Bitarawar, Y. B. Laron, T. G. Samara, Y. M. Kanton, K. W. Barter, Y. S. Lewer, Y. G. Senamer, Y. J. Barter, Y. H. Leren, and Y. B. Darawar, Y. G. Barter, Y. A. Leker, J. J. Stever, Y. B. Leren, and Y. B. Darawar, Y. B. Barter, and Y. B. Darawar, A. B. Barter, and Y. B. Darawar, A. B. Barter, and Y. B. Darawar, A. B. Barter, and Y. B. Darawar, Y. B. D

Rinse D'Agel Phone Liber (Marin SS)

elimiter, Control excitation of projection instruction or control to a firm on an off office track of the tracket and a first Way and the trackation of the distance projection of the proton of the many properties in proton and the distance of the proton of the tracket of the distance of the other structure and other proton of the tracket of the distance of the distance of the distance of the distance of the tracket of the distance of the distance of the structure of the structure of the distance of the distance of the distance of the distance of the distance.

Nuclear Physics A516 (1990) 673-714 North Holland

ELECTROMAGNETIC DISSOCIATION OF 200 GeV/NUCLEON ¹⁶O AND ¹²S IONS IN NUCLEAR EMULSIONS

G. BARONI⁸, V. BISI¹⁰, A.C. BRESLIN³, D.H. DAVIS⁶, S. DELL'UOMO⁵,
S. DI LIBERTO⁸, P. GIUBELLINO¹⁰, G. GRELLA⁹, K. HOSHINO⁷, M. KAZUNO⁴,
M. KOBAYASHI⁴, K. KODAMA³, A. MARZARI-CHIESA¹⁶, M.A. MAZZONI², F. MEDDI⁸,
M.T. MUCIACCIA³, K. NIL⁷, L. RAMELLO¹⁰, G. ROMANO⁶, G. ROSA⁸,
C. SGARID⁶, H. SHIBUYA⁴, S. SIMONE⁴, D.N. TOVEE⁴, N. USHIDA⁵,
C. WILKIN⁶ and S.K.C. YUEN⁶

Physics of Atomic Nuclei, Vol. 68, No. 3, 2005, pp. 455–465. Translated from Yadernaya Fizika, Vol. 68, No. 3, 2005, pp. 484–494. Original Russian Text Copyright © 2005 by Andreeva, Bradnova, Vokal, Vokalova, Gaitinov, Gerasimov, Goncharova, Dronov, Zarubin, Zarubina, Kovalenko, Kravchakova, Larionova, Levitskaya, Lepekhin, Malakhov, Moiseenko, Orlova, Peresadko, Polukhina, Rukoyatkin, Rusakova, Salmanova, Sarkisyan, Simonov, Stan, Stanoeva, Chernyavsky, Haiduc, Kharlamov, Tsakov, Schedrina.

Topology of "White Stars" in the Relativistic Fragmentation of Light Nuclei

N. P. Andreeva¹⁾, V. Bradnova²⁾, S. Vokal^{2),3)}, A. Vokalova²⁾, A. Sh. Gaitinov¹⁾, S. G. Gerasimov⁴⁾, L. A. Goncharova⁴⁾, V. A. Dronov⁴⁾, P. I. Zarubin^{2)*}, I. G. Zarubina²⁾, A. D. Kovalenko²⁾, A. Kravchakova³⁾, V. G. Larionova⁴⁾,
O. V. Levitskaya⁵⁾, F. G. Lepekhin⁵⁾, A. I. Malakhov²⁾, A. A. Moiseenko⁶⁾, G. I. Orlova⁴⁾, N. G. Peresadko⁴⁾, N. G. Polukhina⁴⁾, P. A. Rukoyatkin²⁾, V. V. Rusakova²⁾,
N. A. Salmanova⁴⁾, V. R. Sarkisyan⁶⁾, B. B. Simonov⁵⁾, E. Stan^{2),7)}, R. Stanoeva^{2),8)},
M. M. Chernyavsky⁴⁾, M. Haiduc⁷⁾, S. P. Kharlamov⁴⁾, I. Tsakov⁸⁾, and T. V. Schedrina²⁾ The BECQUEREL Collaboration

Received May 24, 2004; in final form, August 27, 2004

PHYSICAL REVIEW C 70, 014901 (2004)

Nuclear fragmentation in interactions of 3.7A GeV ²⁴Mg projectiles with emulsion targets

M. A. Jilany Physics Department, Faculty of Science (Sohag), South Valley University, Sohag, Egypt (Received 10 September 2003; revised manuscript received 29 April 2004; published 9 July 2004)

1988

Table 1. Charge-topology distribution of white stars in the dissociation of ²⁴Mg nuclei with an energy of 3.65 GeV per nucleon

Z_f	11	10	10	9	9	8	8	8	7	7	6	5	5	5	4	4	3	-	-	-
$N_{Z=1}$	1	2	-	3	1	4	2	-	3	1	2	5	3	1	6	4	5	6	4	2
$N_{Z=2}$	-	-	1	-	1	-	1	2	1	2	2	1	2	3	1	2	2	3	4	5
$N_{\rm ev}$	10	14	8	5	9	1	7	4	4	2	4	2	1	1	2	1	3	1	2	2

Table 2. Charge-topology distribution of white stars in the dissociation of ²²Ne nuclei with an energy of 3.3 GeV per nucleon

Z_f	9	8	8	7	6	6	5	5	5 + 3	4	4 + 3	_	_
$N_{Z=1}$	1	-	2	1	-	2	1	3	-	-	3	2	-
$N_{Z=2}$	_	1	_	1	2	1	2	1	1	3	-	4	5
$N_{\rm ev}$	22	51	6	7	5	2	1	1	1	2	1	1	3

Table 3. Charge-topology distribution of white stars in the dissociation of ²⁸Si nuclei with an energy of 3.65 GeV per nucleon

Z_f	13	12	12	11	11	10	10	10	9	9	9	8	8	8	7	7	7	6	6	6	6	5	5	4	-	-	-
$N_{Z=1}$	1	-	2	1	3	-	2	4	1	3	5	6	2	4	3	5	7	2	4	6	8	3	5	2	2	8	10
$N_{Z=2}$	-	1	-	1	-	2	1	-	2	1	-	-	2	1	2	1	-	3	2	1	-	3	2	4	6	3	2
$N_{\rm ev}$	9	3	15	11	6	2	7	2	2	8	3	2	5	6	1	3	3	3	5	8	1	1	3	1	1	2	3

Table 4. Charge-topology distribution of white stars in the dissociation of ³²S nuclei with an energy of 200 GeV per nucleon

Z_f	15	14	14	13	13	12	12	11	11	10	10	10	9	8	8	7 + 3	7	5 + 3
$N_{Z=1}$	1	-	2	1	3	2	4	3	5	2	4	6	3	-	6	4	3	4
$N_{Z=2}$	-	1	-	1	-	1	-	1	-	2	1	-	2	4	1	1	3	2
N_{ev}	99	11	48	7	6	3	4	4	1	1	2	1	1	1	1	1	1	1

Table 5. Charge-topology distribution of white stars in the dissociation of ¹⁶O nuclei with an energy of 3.65 GeV per nucleon

Z_f	7	6	6	5	5	4	4	_	_
$N_{Z=1}$	1	2	_	3	1	_	2	_	2
$N_{Z=2}$	_	_	1	_	1	2	1	4	3
$N_{\rm ev}$	18	7	21	2	10	1	1	9	3

Table 8. Charge-topology distribution of white stars in the dissociation of ¹⁴N nuclei with an energy of 2.1 GeV per nucleon

Z_f	6	5	5	4	3	3	_	_
$N_{Z=1}$	1	_	2	1	4	2	3	1
$N_{Z=2}$	_	1	_	1	_	1	2	3
$N_{\rm ev}$	6	3	2	1	1	1	1	10

Table 6. Charge-topology distribution of white stars in the dissociation of ¹⁶O nuclei with an energy of 200 GeV per nucleon

Z_f	7	6	6	5	5	4	3	3	_		_
$N_{Z=1}$	1	-	2	1	3	2	1	3	_	2	4
$N_{Z=2}$	_	1	_	1	_	1	2	1	4	3	2
$N_{\rm ev}$	49	6	10	5	1	3	2	2	2	4	2

Table 7. Charge-topology distribution of white stars in the dissociation of ¹⁰B nuclei with an energy of 1 GeV per nucleon

Z_f	4	3	_	_
$N_{Z=1}$	1	-	3	1
$N_{Z=2}$	_	1	1	2
$N_{\rm ev}$	1	5	5	30

Table 9. Charge-topology distribution of white stars in the dissociation of ⁷Be nuclei of energy 1.23 GeV per nucleon

Z_f	3	_	_	-
$N_{Z=1}$	1	4	2	_
$N_{Z=2}$	_	_	1	2
$N_{\rm ev}$	7	2	38	28

Number of events of ⁶Li coherent dissociation

·	Number o	of events
Dissociation channel	without the excitation of the target nucleus $(N_h = 0)$	with the excitation of the target nucleus $(N_h \neq 0)$
4 He + d	23	24
$^{3}\mathrm{He}+t$	4	1
t + d + p	4	3
d+d+d	0	2

Особенность фрагментации Ne, Mg, Si, and S состоит в подавлении парных расщеплений во фрагменты с зарядом больше 2. Рост степени фрагментации проявляется в нарастании множественности одно- и двухзарядных фрагментов вплоть до полного разрушения ядра. Над парными состояниями, образующимися при заметно более низких порогах., доминируют многокластерные системы.

Рис.3. Зарядовая матрица для 2fсобытий. 1980 неупругих взаимодействий

Alpha-particle condensation in nuclei

P. Schuck, H. Horiuchi, G. Ropke, A. Tohsaki, C. R. Physique 4 (2003) 537-540

"По крайней мере легкие *nα*-ядра могут проявлять вблизи порога дезинтеграции *Nα* связанное состояние или резонанс, который имеет свойства *α*-частичного газа, т. е. они могут характеризоваться как самосвязанный газ почти не возмущенных *α*-частиц, находящихся в относительных *s*-состояниях по отношению к их центру масс и таким образом формируя состояние Бозе конденсата. Такое состояние совершенно аналогично недавно открытому конденсату бозе-атомов недавно сформированному в магнитных ловушках."

"Единственным ядром, которое демонстрирует хорошо развитую ачастичную структуру является ⁸Ве. Другие *па*-ядра коллапсируют в их основные состояния в заметно более плотные системы, в которых *а*-частицы сильно перекрываются и возможно почти полностью теряют свою идентичность. Когда эти *па*-ядра расширяются при некоторой меньшей плотности *а*-частицы возникают вновь, формируя Бозе-конденсат. Если энергия подходящая, то декомпрессия может задержаться в районе плотности *а*-конденсата и вся система распадается на *а*-частицы через когерентное состояние."

 $^{12}C \rightarrow 3\alpha, \dots, ^{40}Ca \rightarrow 10\alpha, ^{48}Cr \rightarrow 3 ^{16}O, ^{32}S \rightarrow ^{16}O+4\alpha$

Boltzmann constant, k /approx 10⁻⁴ eV K⁻¹ Typical Temperature Range, **F** /approx 5·10⁸⁻⁹ K per α $\mathbf{p}_{a} = \sqrt{(2\mathbf{m}_{a} \cdot \mathbf{T}_{a})}$ \mathbf{p}_{a} /approx 20-120 MeV Planck constant, h /approx 200 MeV fm $\lambda = \hbar/p$ de Broglie wave lengths /approx 1-10 fm λ^{coh}_{α} /approx R_{α} λ^{coh}_{He} /approx R_{He} $T_{a}/T_{H_{e}} = T_{a}/T_{H_{e}} = (R_{H_{e}}/R_{a})^{2}$ /approx 10¹⁰

Macroscopic quantum coherence phenomena in atomic physics /approx 1 K Macroscopic quantum coherence phenomena in nuclear physics /approx 10¹⁰ K

Вторичные ядра формируются в зарядово-обменных реакциях или при фрагментации ¹⁰В (⁸В и ⁹Ве).

событие с выбиванием фрагмента ядра мишени

событие с выбиванием фрагмента Н

Сорение и страние и стран

a

¹⁴N $(3*He + p)/(3*He + d) \approx 2:1$

¹⁰B (2*He + p)/(2*He + d) ≈ 1

⁶Li (He + p)/(He + d) ≈ 1

Диссоциация ¹⁴N при энергии 2.9А ГэВ/с

Распределение по инвариантной энергии возбуждения <u>для</u> пар _{Q2α} α-частиц для процесса ¹⁴N→3α+X. На вставке: часть распределения в интервале между 0-500 <u>keV</u>.

Прослеживанием по первичным следам среди 540 взаимодействий найдено 42 «белые» звезды (вторичные следы в конусе 8°).

3He+H - 33%, C+H - 31%, B+2H - 7%, B+He - 7%, Be+He+H - 2%, Li+He+2H - 2%, Li+4H 2%.

Dissociation of relativistic ⁷Li in photoemulsion and structure of ⁷Li nucleus

M I Adamovich[†], Yu A Alexandrov, S G Gerassimov, V A Dronov, V G Larionova, N G Peresadko and S P Kharlamov

⁷Li. «Белые звезды» составляют около 7% - 80 событий.

Каналы фрагментации ядер ⁷Ве.

Каналы	2	Не	He +	- 2 H	4	H	Li	+ H	Сумма
фрагментаци	nb=	nb#	nb=	nb#	nb=	nb#	nb=	nb#	
И	0	0	0	0	0	0	0	0	
⁴ He+ ³ He	30	11							41
³ He+ ³ He	11	7							18
⁴ He+2 p			13	9					22
⁴ He+d+p			10	5					15
³ He+ 2 p			9	9					18
³ He+d+p			8	10					18
³ He+2 d			1						1
³ He+t+p			1						1
3 p+ d					2				2
2 p+2 d						1			1
۶Li+p							9	3	12
Сумма	41	18	42	33	2	1	9	3	149

+

Пучок ядер ¹⁰В с импульсом 2А ГэВ/с и интенсивностью 10⁸ в цикл получен на нуклотроне ОИЯИ. Эмульсии облучены в пучке вторичных ядер с магнитной жесткостью, соответствующей Z/A = 5/8 (¹⁰B®⁸B). ⁸B®⁷Bep, ^{3,4}He³Hep, HeHHp, ⁶Lipp, and HHHpp.

Таблица 1. Распределение по зарядовой топологии числа взаимодействий периферического типа N_{pf} наблюдавшихся в эмульсии облученной во вторичном пучке ядер ⁸B; Q - суммарный заряд релятивистских фрагментов в угловом конусе до 8° в событии; N_z – число фрагментов с зарядом Z в событии; N_{ws} - число «белых» звезд; N_{tf} - число событий с фрагментами мишени;

Q			$\mathbf{N}_{\mathbf{Z}}$]	N _{pf}
	Z=5	Z=4	Z=3	Z=2	Z=1	N _{tf}	N _{ws}
7	-	-	-	2	3	_	1
7	-	-	-	1	5	1	-
6	-	-	-	2	2	8	2
6	-	-	-	1	4	6	4
6	-	-	-	-	6	1	-
5	-	-	-	1	3	61	14
5	-	-	-	2	1	44	12
5	-	-	1	-	2	8	-
5	-	-	1	1	-	1	-
5	-	1	-	-	1	17	24
5	1	-	-	-	-	17	1
5	-	-	-	-	5	21	4
4	-	-	-	-	4	5	1
4	-	-	-	2	-	24	1
4	-	-	_	1	2	42	-

Распределение по поперечному импульсу P_T протонов, рожденных в «белых» звездах ${}^8B \rightarrow {}^7Be+p$. На вставке: то же распределение P_T * в с. ц. м. ${}^7Be+p$.

"Тройной ³Не процесс"

⁹C ® ⁸Bp, ⁷Bepp, HeHepp, HeHHpp, ³He³He³He

Заключение

Несмотря на более чем полувековую историю историю исследования атомное ядро остается лабораторией квантовой физики полной сюрпризов. Одной из основных целей современной физики атомного ядра становится масштабная задача осознания богатства таблицы изотопов как ступенек в творении окружающего мира. Это разнообразие лежит в основе возникновения мира стабильных ядер в Природе при весьма разнообразных сценариях звездного нуклеосинтеза. Радиоактивные ядра, резонансные состояния ядер – не просто шлейф отходов от звездных реакций горения и процессов взрывного типа в космосе, а необходимые «станции ожидания» на пути наиболее эффективной генерации стабильных ядер.

Сотрудничеством БЕККЕРЕЛЬ изучается фазовый переход ядерной материи из квантовой жидкости в газ нуклонов легчайших ядер. Термин «легчайшие ядра» включает дейтроны, тритоны, ядра ³He и ⁴He, т. е. стабильные системы, не имеющие возбужденных состояний ниже порога распада на нуклоны. Современный интерес - свойства слабосвязанных состояний с пространственной протяженностью, превышающей размер фрагментов - состояния Ефимова, ядра со структурой молекулярного типа, Бозе конденсат разреженного газа легчайших ядер. Такие системы могут играть важную роль в процессах синтеза ядер в звездах.

Animals flew first, paving the way for man. Chimpanzees were physiologically manlike and easily trained. The Air Force's Aeromedical Field Laboratory provided them.

158 A GeV/c Pb

158 A GeV/c Pb

