ЯДРА

КОРРЕЛЯЦИИ α-ЧАСТИЦ В РАСЩЕПЛЕНИЯХ ЯДЕР ¹²С НЕЙТРОНАМИ С ЭНЕРГИЕЙ 14.1 МЭВ

© 2013 г. Р. Р. Каттабеков^{1,2)}, К. З. Маматкулов^{1,3)}, Д. А. Артеменков¹⁾, В. Браднова¹⁾, П. И. Зарубин^{1)*}, И. Г. Зарубина¹⁾, Л. Майлинг⁴⁾, В. В. Русакова¹⁾, А. Б. Садовский¹⁾

¹⁾Объединенный институт ядерных исследований, Дубна, Россия ²⁾Физико-технический институт АН РУ, Ташкент, Узбекистан ³⁾Джизакский педагогический институт, Джизак, Узбекистан ⁴⁾Институт ядерной физики, Ржеж, Чешская республика

Поступила в редакцию 28.08.2013 г.

В ядерной эмульсии, облученной нейтронами с энергией 14.1 МэВ на статистике 400 событий расщеплений ${}^{12}C \rightarrow 3\alpha$ изучаются корреляции α -частиц. Выполнены измерения пробегов и углов вылета α -частиц. Получены распределения по энергии α -частичных пар и троек.

Ядерная эмульсия, облученная нейтронами энергией 14.1 МэВ, рожденными в низкоэнергетической реакции $d + t \rightarrow n + \alpha$, позволяет изучать ансамбли троек α -частиц, возникающих в расщеплениях ядер углерода из состава эмульсии. Энергия, передаваемая α -частицам, оказывается достаточной для измерения их пробегов и направлений, и, в то же время, остается ниже порогов фоновых каналов. Такая постановка экспериментального исследования возникла с появлением нейтронных генераторов. Наиболее полно реакция ¹²C(n, n')3 α исследовалась достаточно давно [1]. Первоначальная цель настоящего анализа ограничивалась α -калибровкой ядерной эмульсии, недавно воспроизведенной компанией "ТД Славич" [2]. С нахождением значительного числа α -троек из реакции ¹²C(n,n')3 α , за небольшое время достигшей 1200, появилась возможность ее анализа на большой статистике, а также создания общедоступного доступного массива экспериментальных данных. Этот массив полезен для непосредственного сравнения с α -кластерными моделями ¹²С.

Актуальный физический интерес к реакции ${}^{12}C(n,n')$ 3а состоит в следующем. Для описания структуры легких ядер фундаментальное значение имеют сведения о вероятностях присутствия в них конфигураций а-частичных кластеров с различными угловыми моментами. Сотрудничеством БЕККЕ-РЕЛЬ [3] при исследовании диссоциации релятивистских ядер ⁹Ве в ядерной эмульсии [4–6] было найдено подтверждение двухтельной модели ядра ⁹Ве, в которой доминирует суперпозиция нейтрона и нестабильного ядра ⁸Ве в состояниях со спинами и четностями 0⁺ и 2⁺, которые представлены с близкими весами. Тем самым возникает основа для постановки вопросов о вкладах а-кластерных конфигураций в угловые моменты основных состояний более тяжелых ядер.

Традиционно ядро ¹²С является "лабораторией" развития концепций α-частичной кластеризации. Существует возможность присутствия в основном состоянии ¹²С_{g.s.} двух пар α-кластеров, имеющих значения орбитальных моментов равные 2 (*D*-волны). В этих случаях базисными конфигурациями являются ядра ⁸Ве в первом возбужденном состоянии 2⁺. В классической картине можно представить противоположно направленное вращение двух α-кластеров с угловыми моментами равными 2 вокруг общего центра, представленного третьим α-кластером. Тогда остающаяся комбинация двух α-кластеров должна соответствовать основному состоянию ядра ⁸Ве_{g.s.} со спином и четностью 0⁺ (S-волна). В результате суперпозиция парных состояний в ансамбле трех α-кластеров ведет к нулевому значению спина ¹²С_{g.s.}. Конечно, эта упрощенная модель требует квантово-механического рассмотрения. Тем не менее в реакциях выбивания α-частиц из ядер ¹²С на ее справедливость должно указывать интенсивное образование состояний ⁸Ве₂₊ и ⁸Ве_{g.s.} с преобладанием первого из них.

Такая концепция не противоречит механизму синтеза ядра 12 С, принятому в ядерной астрофизике. Слияние тройки α -частиц происходит через его второе возбужденное состояние 0^+_2 (состояние Хойла),

^{*}E-mail: zarubin@lhe.jinr.ru

находящееся на 270 кэВ выше порога развала ${}^{12}C \rightarrow 3\alpha$. По-существу, в нем каждая пара α -частиц соответствует ${}^{8}\text{Be}_{g.s.}$. При переходе $0^{+}_{2} \rightarrow 2^{+}_{1}$ с эмиссией фотона в первое возбужденное состояние ${}^{12}C$, являющимся связанным, для сохранения углового момента в ансамбле 3α должна возникать α -частичная пара в D-волновом состоянии. Последующий переход к ${}^{12}C_{g.s.}$, также сопровождаемый эмиссией фотона, ведет к образованию еще одной α -частичной пары в D-волновом состоянии. Эта пара должна иметь противоположный угловой момент по отношению к первой паре, чтобы обеспечить нулевое значения спина ${}^{12}C_{g.s.}$. Тем самым ядро ${}^{12}C_{g.s.}$ обретает поляризацию. Образно выражаясь, в нем консервируется "скрытое вращение".

Отношение выходов α -частичных пар через состояния ${}^8Be_{2+}$ и ${}^8Be_{g.s.}$ в расщеплениях ядер ${}^{12}C$, не сопровождаемыми передачей углового момента, представляется ключевым параметром, в котором должна отразиться спин-кластерная структура ${}^{12}C_{g.s.}$. Анализ взаимодействий в ядерной эмульсии, облученной нейтронами с энергией вблизи порога расщепления ${}^{12}C$, позволяет определить эту и другие характеристики реакции ${}^{12}C(n,n')$ 3 α .

Облучение ядерной эмульсии нейтронами с энергией 14.1 МэВ было выполнено на одном из приборов ДВИН прикладного назначения [7]. Нейтронный генератор этого прибора обеспечивал поток 5 · 107 нейтронов/сек. в полный телесный угол. Эмульсионная стопка размещалась на верхней крышке прибора ДВИН примерно в 10 см над тритиевой мишенью. Стопка состояла из нескольких слоев эмульсии БР-2 размерами 9 на 12 см², толщиной 10⁷ мкм, политой на стеклянные пластины толщиной 2 мм. Нейтронный генератор порождал неустранимый фон рентгеновского излучения. Этот фон регистрировался эмульсионными слоями со снижающейся яркостью по мере нарастания поглощения в стеклах, что позволило выбрать слои с малым уровнем рентгеновской подсветки. По плотности водорода ядерная эмульсия сопоставима с жидководородной мишенью. Поэтому основной фон в эмульсии, облученной нейтронами, представлен протонами отдачи. Выбором длительности облучения, составившей 40 мин., наложения следов, которые бы имитировали 3 α -развалы, были сведены до пренебрежимо низкого уровня.

Сканирование слоев, выполненное на микроскопах МБИ-9 при 20-кратном увеличении, было ориентировано на 3 α -развалы. В 400 событиях 3 α -развала, отобранных среди 1200 найденных, на микроскопе KSM с 90-кратным увеличением были выполнены измерения для всех следов α -частиц углов в плоскости эмульсии и относительно ее поверхности, а также их длин. Единственным условием отбора событий была полнота измерения. Распределение по пробегам α -частиц L_{α} , представлено (рис. 1), имеет среднее значение $< L_{\alpha} > = (5.8 \pm 0.2)$ мкм при RMS (3.3 ± 0.1) мкм. Это распределение имеет асимметричную форму, описываемую распределением Ландау. Непосредственно связанное с ним распределение α -частиц по энергии E_{α} (рис. 2), определяемой по пробегам L_{α} в модели SRIM [8], имеет среднее значение $< E_{\alpha} > = (1.86 \pm 0.05)$ МэВ при RMS (0.85 ± 0.03) МэВ.

Определение углов и значений энергии по пробегам позволяет определить энергию $Q_{2\alpha}$ пар и $Q_{3\alpha}$ троек α -частиц. Распределение по $Q_{3\alpha}$ (рис. 3) сосредоточено в области возбуждений ядра ¹²С, расположенной ниже порога отделения нуклонов. Используемый метод не позволяет разрешить уровни ¹²С, а состояние Хойла, как и ожидалось, для реакции выбивания α -частиц не проявляется.

Рис. 1. Распределение α -частиц по пробегам L_{α} .

ЯДЕРНАЯ ФИЗИКА ТОМ 76 доп. номер 2013

Рис. 2. Распределение α -частиц по энергии E_{α} .

Рис. 3. Распределение троек α -частиц по энергии $Q_{3\alpha}$.

Рис. 5. Распределение в парах α -частиц по энергии $Q_{2\alpha}$

Рис. 4. Корреляция в парах α -частиц по энергии Q_{2a} и углу разлета Θ_{2a} .

Корреляция по энергии $Q_{2\alpha}$ и углам разлета $\Theta_{2\alpha}$ в парах α -частиц обнаруживает особенности ядра ⁸Be (рис. 4). Области больших углов разлета $\Theta_{2\alpha} > 90^{\circ}$ соответствует по $Q_{2\alpha}$ состоянию ⁸Be₂₊, а $\Theta_{2\alpha} < 30^{\circ} - {}^{8}\text{Be}_{\text{g.s.}}$. Распределение по $Q_{2\alpha}$, указывает на эти состояния (рис. 5). Его правая сторона отвечает форме ожидавшейся от распадов через ⁸Be₂₊. Условие $Q_{2\alpha} < 200$ кэВ позволят выделить 56 распадов ⁸Be_{g.s.} Для ⁸Be_{g.s.} распределение по суммарному импульсу оказывается достаточно узким и характеризуется средним значением (208 ± 4) МэВ/с при RMS (30 ± 3) МэВ/с. Оценка среднего суммарного импульса для 212 пар α -частиц из области наиболее соответствующей ⁸Be₂₊ составила (130 ± 3) МэВ/с при RMS (43 ± 2) МэВ/с. Таким образом, распределение по суммарному импульсу для ⁸Be₂₊ оказывается существенно более мягким и относительно более широким.

Важность обсуждаемой структуры определяется не только интересом к описанию ${}^{12}C_{g.s.}$, но и тем, что она является отправной конфигурацией для обратного процесса генерации 3 α -частичных ансамблей в состоянии Хойла. Предполагается, что это состояние, вслед за ${}^{8}\text{Be}_{g.s.}$, представляет собой конденсат Бозе–Эйнштейна, состоящего из α -частиц с нулевым угловым моментом [9]. Его идентификация в развалах ${}^{12}\text{C}$ позволяет продвинуться к генерации конденсатных состояний большего числа α -частиц. Принципиальным представляется аспект, связанный с тем, что для воссоздания конденсата необходимо "эвакуировать" два скрытых вращения в ${}^{12}\text{C}_{g.s.}$. Отметим, что в этом отношении кулоновская диссоциация ядра на тяжелом ядре представляется наиболее подходящим процессом, поскольку в ней возможны множественные обмены фотонами.

В целом эти данные указывают на присутствие суперпозиции состояний 0⁺ и 2⁺ ядра ⁸Ве в основном состоянии ядра ¹²С, причем ⁸Ве₂₊ доминирует. Более глубокое рассмотрение проявления α -кластерной структуры ¹²С в расщеплениях, вызванных нейтронами, требует привлечения метода диаграмм Далитца и теории ядерных реакций. Представленные измерения реакции ¹²С(*n*,*n*')3 α и видеозаписи этих событий доступны на сайте проекта БЕККЕРЕЛЬ [10]. Авторы выражает благодарность С.П. Харламову (ФИАН) за обсуждение результатов. Эта работа выполнена при поддержке гранта Российского фонда фундаментальных исследований 12-02-00067, а также грантов полномочных представителей Болгарии, Румынии и Чешской Республики в ОИЯИ.

СПИСОК ЛИТЕРАТУРЫ

- 1. B. Antolkovič et al., Nucl. Phys. A 394, 87 (1983).
- 2. The TD Slavich, www.slavich.ru.
- 3. The BECQUEREL Project, HYPERLINK "http://becquerel.jinr.ru/" http://becquerel.jinr.ru/.
- 4. Д.А. Артеменков и др., ЯФ 70, 1261 (2007) [Phys. Atom. Nucl. 70, 1222(2007)]; nucl-ex/0605018.
- 5. D.A. Artemenkov et al., Few Body Syst 44, 273 (2008).
- 6. D.A. Artemenkov et al., Int. J. Mod. Phys. E 20, 993 (2011); arXiv: 1106.1749.
- 7. В.М. Быстрицкий и др., Письма в ЭЧАЯ 6, 831 (2009) [Phys. Part. Nucl. Lett. 6, 505(2009)].
- 8. J.F. Ziegler, J.P. Biersack and M.D. Ziegler, "SRIM The Stopping and Range of Ions in Matter", 2008 ISBN 0-9654207-1-X., SRIM Co; http://srim.org/.
- 9. T. Yamada, Y. Funaki, H. Horiuchi, G. Roepke, P. Schuck, A. Tohsaki, Clusters in Nuclei, Lect. Notes Phys. 848, 109 (2012), Springer.
- 10. The BECQUEREL Project, http://becquerel.jinr.ru/miscellanea/DVIN/dvin11.html.

CORRELATIONS OF α -PARTICLES IN SPLITTING OF ¹²C NUCLEI BY NEUTRONS OF ENERGY OF 14.1 MeV

R. R. Kattabekov, K. Z. Mamatkulov, D. A. Artemenkov, V. Bradnova, P. I. Zarubin, I. G. Zarubina, L. Majling, V. V. Rusakova, A. B. Sadovsky

Correlations of α -particles are studied on statistics of 400 events of splitting ${}^{12}C \rightarrow 3\alpha$ in nuclear track emulsion exposed to 14.1 MeV neutrons. Measurements of ranges and emission angles of the α -particles are performed. Distributions over energy of α -particle pairs and triples are obtained.