ЯДРА

## ФРАГМЕНТАЦИЯ ЯДЕР <sup>7</sup>Ве С ЭНЕРГИЕЙ 1.2 *А* ГэВ В ЯДЕРНОЙ ФОТОГРАФИЧЕСКОЙ ЭМУЛЬСИИ

© 2013 г. Н. К. Корнегруца<sup>1)</sup>, Д. А. Артеменков<sup>1)</sup>, В. Браднова<sup>1)</sup>, П. И. Зарубин<sup>1)\*</sup>, И. Г. Зарубина<sup>1)</sup>, Р. Р. Каттабеков<sup>1,2)</sup>, К. З. Маматкулов<sup>1,3)</sup>, П. А. Рукояткин<sup>1)</sup>, В. В. Русакова<sup>1)</sup>

Объединенный институт ядерных исследований, Дубна, Россия
Физико-технический институт АН РУ, Ташкент, Узбекистан
Джизакский педагогический институт, Джизак, Узбекистан

Поступила в редакцию 28.08.2013 г.

Представлена зарядовая топология периферической фрагментации ядер <sup>7</sup>Ве с энергией 1.2 *А* ГэВ в ядерной эмульсии. Детально рассматривается диссоциация ядер <sup>7</sup>Ве по каналам <sup>7</sup>Ве  $\rightarrow$  <sup>4</sup>He + <sup>3</sup>He, <sup>7</sup>Be  $\rightarrow$   $\rightarrow$  2<sup>3</sup>He + n и <sup>7</sup>Be  $\rightarrow$  <sup>4</sup>He + 2<sup>1</sup>H. Установлено, что в канале <sup>7</sup>Be  $\rightarrow$  <sup>4</sup>He + 2<sup>1</sup>H события, относящиеся к каналу <sup>7</sup>Be  $\rightarrow$  <sup>6</sup>Be + n с каскадным распадом <sup>6</sup>Be  $\rightarrow$  <sup>4</sup>He + 2*p*, составляют около 27%.

Благодаря возможности полного наблюдения заряженной компоненты продуктов фрагментации слои ядерной эмульсии, продольно облученные в пучке легких релятивистских ядер, обеспечивают широкие возможности для изучения кластерной структуры легких нейтронодефицитных ядер [1–3]. Настоящая работа по изучению диссоциации ядер <sup>7</sup>Ве является продолжением цикла исследований, проводимых сотрудничеством БЕККЕРЕЛЬ [1], кластерной структуры легких ядер [1–9]. Ядро <sup>7</sup>Ве представляет интерес как источник сведений о конфигурациях <sup>3</sup>He + <sup>4</sup>He, <sup>3</sup>He + <sup>3</sup>He + n, <sup>6</sup>Li + p, <sup>6</sup>Be + n. Кроме того, сведения о фрагментации этого ядра важны для понимания кластерной структуры последующих ядер на границе протонной связи <sup>7</sup>Be, <sup>9</sup>C и <sup>12</sup>N, поскольку в них ядро <sup>7</sup>Be играет роль основы.

Ядерная фотоэмульсия была облучена в смешанном пучке ядер <sup>7</sup>Be, <sup>10</sup>C и <sup>12</sup>N, созданном путем сепарации продуктов перезарядки и фрагментации первичных ядер <sup>12</sup>C с энергией 1.2 *А* ГэВ на нуклотроне ОИЯИ [6]. Поиск событий проводился по первичным следам без выборки Идентификация заряда ядер пучка и релятивистских фрагментов осуществлялась по визуальным подсчетом плотности δ-электронов. В результате средний пробег до взаимодействия ядер <sup>7</sup>Be с ядрами фотоэмульсии в данной работе составил 14.2 ± 0.2 см. В работе [4] пробег ядер <sup>7</sup>Be для фотоэмульсии того же типа составил 14.0 ± 0.8 см.

Просмотр облученных эмульсий и последующая классификация следов позволили получить картину зарядовой топологии периферической фрагментации ядра <sup>7</sup>Ве. В табл. 1 приведено распределение по каналам фрагментации 289 событий  $N_{ws}$ , не сопровождавшихся фрагментами мишени ("белые" звезды) и преимущественно относящихся к взаимодействиям на ядрах эмульсии Ag и Br. Для сравнения приведено распределение 380 событий фрагментации <sup>7</sup>Be  $N_{tf}$  сопровождающихся следами фрагментов мишени. Примечательно, что значительная доля найденных событий (около 90%) приходится на каналы <sup>7</sup>Be  $\rightarrow$  2He и <sup>7</sup>Be  $\rightarrow$  He + 2H, соответствующие порогам 1.6 МэB и 9.3 МэB. Каналу <sup>7</sup>Be  $\rightarrow$  $\rightarrow$  4H с высоким энергетическим порогом образования (37.6 МэB) соответствует меньшая вероятность.

Идентификация релятивистских фрагментов Не и Не по многократному рассеянию стала одной из основных задач исследования. Для автоматизации процесса идентификации была разработана программа-классификатор на основе нейронной сети. В качестве обучающей выборки использовались результаты моделирования в Geant4 прохождения ядер <sup>7</sup>Ве с энергией 1.2 А ГэВ в эмульсии. В табл. 2 приведено распределение событий по каналам <sup>7</sup>Ве → 2Не на основании результатов классификации фрагментов Не. На статистике 174 событий, для которых были проведены все угловые измерения,

<sup>\*</sup>E-mail: zarubin@ilhe.jinr.ru

**Таблица 1.** Распределение по каналам диссоциации ядер <sup>7</sup>Ве для "белых" звезд  $N_{ws}$  и событий с фрагментами мишени или рожденными мезонами  $N_{tf}$ 

**Таблица 2.** Распределение идентифицированных событий  $N_{ws}$  и  $N_{ff}$  в каналах фрагментации <sup>7</sup>Be  $\rightarrow$  2He

| Канал                 | 2He        | He + 2H    | 4H | Li + H | Канал                 | $^{3}$ He + $^{4}$ He | $^{3}$ He + $^{3}$ He |
|-----------------------|------------|------------|----|--------|-----------------------|-----------------------|-----------------------|
| $N_{ws} \over N_{tf}$ | 115<br>154 | 157<br>226 | 14 | 3      | $N_{ws} \over N_{tf}$ | 32<br>24              | 14<br>9               |

только для 79 событий оказалось возможным провести идентификацию полностью. Поскольку идентификация проводилась без какой-либо выборки, то таблица 2 дает представление о соотношении кластерных конфигураций <sup>3</sup>He + <sup>4</sup>He и 2<sup>3</sup>He + *n* в структуре ядра <sup>7</sup>Be. Канал <sup>7</sup>Be  $\rightarrow$  <sup>3</sup>He + <sup>4</sup>He доминирует над каналом <sup>7</sup>Be  $\rightarrow$  2<sup>3</sup>He, что свидетельствует о большей вероятности двухкластерной конфигурации в структуре <sup>7</sup>Be, по сравнению с трехчастичной 2<sup>3</sup>He + n. Вместе с тем вероятность 2<sup>3</sup>He + *n* значительна и составляет около 30%, что согласуется с ранее полученными данными [4].

На рис. 1 представлено распределение по полярному углу вылета  $\theta$  фрагментов Не всей группы измеренных событий, а также <sup>3</sup>He и <sup>4</sup>He для полностью идентифицированных событий – пунктирная и штрихованная гистограммы соответственно. Параметры распределений Релея описывающих спектр углов  $\theta$  для <sup>3</sup>He и <sup>4</sup>He равны  $\sigma_{\theta}({}^{3}\text{He}) = (17 \pm 2) \times 10^{-3}$  рад и  $\sigma_{\theta}({}^{4}\text{He}) = (16 \pm 2) \times \times 10^{-3}$  рад. Оценки по статистической модели [10, 11] данных параметров составили  $\sigma_{\theta}({}^{3}\text{He}) = 20 \times 10^{-3}$  рад и  $\sigma_{\theta}({}^{4}\text{He}) = 15 \times 10^{-3}$  рад. Параметры распределений Релея описывающих спектр поперечных импульсов  $P_T$  в приближении сохранения импульса на нуклон родительского ядра [2–3] для фрагментов <sup>3</sup>He, <sup>4</sup>He (рис. 2) равны  $\sigma_{PT}({}^{3}\text{He}) = (97 \pm 7)$  МэВ/с и  $\sigma_{PT}({}^{4}\text{He}) = (125 \pm 17)$  МэВ/с, соответственно. Значение для <sup>4</sup>He хорошо согласуется со значением статистической модели  $\sigma_{PT}({}^{4}\text{He}) = 121$  МэВ/с.

Распределение событий каналов <sup>7</sup>Be  $\rightarrow 2^{3}$ He и <sup>7</sup>Be  $\rightarrow {}^{3}$ He + <sup>4</sup>He по энергии возбуждения Q ( $Q = M^{*} - M$ ) системы фрагментов, определяемой как разность между инвариантной массой фрагментирующей системы  $M^{*}$  и суммарной массой фрагментов M, приведено на рис. 3. Инвариантная масса системы фрагментов  $M^{*}$  определяется согласно выражению  $M^{*2} = (\sum P_{j})^{2} = \sum (P_{i} P_{k})$ , где  $P_{i,k} - 4$ -импульсы фрагментов в приближении сохранения импульса на нуклон родительского ядра. Полученные значения  $Q_{2\text{He}}$  для событий канала <sup>7</sup>Be  $\rightarrow {}^{3}$ He + <sup>4</sup>He располагаются в области уровней возбуждения ядра <sup>7</sup>Be.

Одна из задач данного эксперимента заключалась в обнаружении событий <sup>7</sup>Ве  $\rightarrow 2^{3}$ Не, характеризующихся значениями  $Q_{2He}^{3}$ , лежащими в области 100–200 кэВ, подобно наблюдаемым в работе [7]. Полученный спектр содержит группу из 4 событий, для которых значения  $Q_{2He}^{3}$  расположены в интервале от 200 до 400 кэВ (рис. 3, пунктирная гистограмма на вставке). Эти данные не исключают возможное существование резонансного состояния  $2^{3}$ Не, обсуждавшееся в [7].



**Рис. 1.** Распределение фрагментов Не канала  ${}^{7}\text{Be} \rightarrow {}^{2}\text{He}$  по полярному углу вылета  $\theta$  для всей группы измеренных событий – сплошная линия, для полностью идентифицированных  ${}^{3}\text{He}$  – пунктирная,  ${}^{4}\text{He}$  – штрихованная гистограммы

ЯДЕРНАЯ ФИЗИКА ТОМ 76 доп. номер 2013



**Рис. 2.** Распределение идентифицированных <sup>3,4</sup>Не фрагментов канала <sup>7</sup>Ве  $\rightarrow$  2Не по величине поперечного импульса  $P_T$  (<sup>3</sup>Не – сплошная, <sup>4</sup>Не – пунктирная гистограммы)

**Рис. 3.** Распределение событий каналов  $^{7}\text{Be} \rightarrow {}^{3}\text{He} + {}^{4}\text{He}$ и 2<sup>3</sup>Не по энергии возбуждения *Q* (сплошная и пунктирная линии гистограмм, соответственно). На вставке приведены гистограммы для значений Q < 1 МэВ

8

 $N_{ev}$ 

3

2

1

0 L 0

6

4

2

400

10

200

600

12

800 1000

*Q*<sub>2*He*</sub>, кэВ

14

 $Q_{2He},$  МэВ



Рис. 4. Распределение событий канала  ${}^7\text{Be} \rightarrow {}^4\text{He} + 2p$  по величине энергии возбуждения Q4<sub>He+2p</sub>

Для ядер <sup>9</sup>Ве и <sup>10,12</sup>С был установлен значительный вклад каскадной фрагментации с образованием нестабильного ядра <sup>8</sup>Ве [2, 3, 8, 9]. В случае изотопа <sup>7</sup>Ве возникает возможность каскадной фрагментации <sup>7</sup>Ве с образованием нестабильного <sup>6</sup>Ве с порогом 1.37 МэВ над <sup>4</sup>Не + 2p. На рис. 4 приведено распределение 130 измеренных событий канала фрагментации <sup>7</sup>Be  $\rightarrow$  <sup>4</sup>He + 2p по величинам разности инвариантной массы образующихся фрагментов альфа-частицы, двух протонов и суммы их масс  $Q_{^{4}He+2p}$ . Область  $Q_{^{4}He+2p} < 6$  МэВ (рис. 4, гистограмма на вставке) указывает на наличие значительной доли (~27%) событий <sup>7</sup>Ве → <sup>6</sup>Ве → <sup>4</sup>Не + 2*p*. Особенностью данной группы событий является более «узкое» распределение по величине суммарного поперечного импульса  $P_{T_{sum}}(^{4}\text{He} + 2p)$ (рис. 5) по сравнению с распределением для всей выборки. Параметр распределения Релея составляет  $\sigma_{PT} = 124 \pm 20$  МэВ/с, что больше расчетного по статистической модели  $\sigma_{PT} = 86$  МэВ/с для <sup>6</sup>Ве. Это отличие может быть связано с тем, что в статистической модели не учитывается в полной мере механизм реакции.

Вопрос о вкладе распада  $\alpha + p$  резонанса <sup>5</sup>Li с энергией 1.69 МэВ и шириной 1.5 МэВ имеет самостоятельное значение, поскольку порог образования системы  ${}^{5}\text{Li} + p$  на 0.35 МэВ выше основного



**Рис. 5.** Распределение событий канала  $^7\text{Be} \rightarrow {}^4\text{He} + 2p$  по величине суммарного поперечного импульса фрагментов *P*<sub>*Tsum</sub>(<sup>4</sup>He + 2p) пунктирная гистограмма соответствует*</sub> каналу  $^{7}\text{Be} \rightarrow {}^{6}\text{Be} \rightarrow {}^{4}\text{He} + 2p$ 



Рис. 6. Распределение событий канала  $^{7}\text{Be} \rightarrow {}^{4}\text{He} + p$  по величине энергии возбуждения  $Q_{4_{He+p}}$  (события, отнесенные к фрагментации <sup>6</sup>Ве, из гистограммы исключены)

Nev

12

10

8

6

4

2

0

состояния <sup>6</sup>Ве. Несмотря на отсутствие четкого сигнала из-за комбинаторного усложнения, спектр  $Q\alpha p$  (рис. 6) не противоречит возможному вкладу распадов  $\alpha + p$  резонанса <sup>5</sup>Li.

В заключение перечислим основные результаты данного исследования. Впервые проведено детальное исследование фрагментации ядер <sup>7</sup>Ве на ядрах фотоэмульсии. Получены угловые и импульсные спектры образующихся фрагментов. Наиболее вероятными модами в периферической фрагментации являются события, сопровождающиеся образованием 2He и He + 2H. Для событий с образованием 2He характерно распределение между каналами <sup>3</sup>He + <sup>4</sup>He и 2<sup>3</sup>He в соотношении  $\approx$ 70% и  $\approx$ 30%. Требует дальнейшего наращивания статистики проблема наблюдения резонансного состояния 2<sup>3</sup>He в диссоциации <sup>7</sup>Be, указание на наличие получено в случае ядра <sup>9</sup>С [7]. Анализ распределения по величине энергии возбуждения величине  $Q_{4He+2p}$  указывает на наличие вклада около 27% событий канала <sup>7</sup>Be  $\rightarrow$  <sup>4</sup>He + 2*p* сопровождающейся цепочкой превращений <sup>7</sup>Be  $\rightarrow$  <sup>6</sup>Be  $\rightarrow$  <sup>4</sup>He + 2*p*.

Авторы выражает благодарность С.П. Харламову за обсуждение результатов. Эта работа выполнена при поддержке гранта Российского фонда фундаментальных исследований 12-02-00067, а также грантов полномочных представителей Болгарии и Румынии в ОИЯИ.

## СПИСОК ЛИТЕРАТУРЫ

- 1. The BECQUEREL Project, HYPERLINK "http://becquerel.jinr.ru/" http://becquerel.jinr.ru/.
- 2. В.В. Белага и др., ЯФ **95**, 1254 (1996).
- 3. Д.А. Артеменков и др., ЯФ 70, 1261 (2007) [Phys. Atom. Nucl. 70, 1222(2007)]; nucl-ex/0605018.
- 4. Н.Г. Пересадько и др., ЯФ 70, 1226 (2007) [Phys. Atom. Nucl. 70, 1266 (2007)]; nucl-ex/0605014.
- 5. Р. Станоева и др., ЯФ **72**, 731 (2009) [Phys. Atom. Nucl. 72, 690 (2009)]; HYPERLINK "http://arxiv.org/abs/ 0906.4220v1" arXiv: 0906.4220.
- 6. Р.Р. Каттабеков, К.З. Маматкулов и др., ЯФ 73, 2166 (2010) [Phys. Atom. Nucl. 73, 2110 (2010)]; arXiv:1104.5320.
- 7. Д.О. Кривенков и др., ЯФ, 73, 2159 (2010) [Phys. Atom. Nucl. 73, 2103 (2010)]; arXiv:1104.2439.
- 8. D.A. Artemenkov et al., Few Body Syst. 50, 259 (2011); arXiv:1105.2374.
- 9. D. A. Artemenkov et al., Int. J. Mod. Phys. E 20, 993 (2011); arXiv: 1106.1749.
- 10. H. Feshbach and K. Huang, Phys. Lett. 47B, 300 (1973).
- 11. A.S. Goldhaber, Phys. Lett. 53B, 306 (1974).

## FRAGMENTATION OF <sup>7</sup>BE NUCLEI OF ENERGY OF 1.2 A GEV IN NUCLEAR TRACK EMULSION

N. K. Kornegrutsa, D. A. Artemenkov, V. Bradnova, P. I. Zarubin, I. G. Zarubina, R. R. Kattabekov, K. Z. Mamatkulov, K. Olimov, P. A. Rukoyatkin, V. V. Rusakova

Charge topology of fragmentation of 1.2 *A* GeV 7Be nuclei in nuclear track emulsion is overviewed. The details of <sup>7</sup>Be dissociation via <sup>7</sup>Be  $\rightarrow$  <sup>4</sup>He + <sup>3</sup>He, <sup>7</sup>Be  $\rightarrow$  <sup>2</sup><sup>3</sup>He + n, <sup>7</sup>Be  $\rightarrow$  <sup>4</sup>He + <sup>2</sup><sup>1</sup>H are discussed. It is established that among events of the <sup>7</sup>Be  $\rightarrow$  <sup>4</sup>He + <sup>2</sup><sup>1</sup>H channel about 25 % of events correspond to cascade process of <sup>7</sup>Be via <sup>7</sup>Be  $\rightarrow$  <sup>6</sup>Be + *n* with subsequent decay of unbound nucleus <sup>6</sup>Be to (<sup>4</sup>He + 2*p*).