УДК 539.1.073.7

## УСИЛЕНИЕ В ОБРАЗОВАНИИ НЕСТАБИЛЬНОГО ЯДРА <sup>8</sup>ВЕ С МНОЖЕСТВЕННОСТЬЮ <mark>А-</mark>ЧАСТИЦ ПРИ ФРАГМЕНТАЦИИ РЕЛЯТИВИСТСКИХ ЯДЕР

© 2020 г. А. А. Зайцев<sup>a, b, \*,</sup>, П. И. Зарубин<sup>a, b,</sup>, Н. Г. Пересадько<sup>b</sup>

<sup>a</sup> Объединенный институт ядерных исследований, Дубна, Россия <sup>b</sup> Физический институт им. П.Н. Лебедева РАН, Москва, Россия \*E-mail: zaicev@jinr.ru

Исследуется корреляция между образованием несстального ядра <sup>8</sup>Ве и сопровождающих α-частиц во фрагментации релятивистских ядер <sup>16</sup>О, <sup>22</sup>Ne, <sup>28</sup>Si и <sup>197</sup>Au в ядерной эмульсии. Распады <sup>8</sup>Ве идентифицируются в широком диапазоне по энергии по инвариантным массам, вычисляемым по углам разлета в 2α-парах. Принятые приближения проверены по данным по фрагментации ядер <sup>16</sup>О в водородной пузырьковой камере в магнитное поле. Обнаружено усиление вклада <sup>8</sup>Ве в диссоциацию с множественностью α-частии.

*Ключевые слова:* ядерная эмульсия, диссоциация, инвариантная масса, релятивистские фрагменты,

ядро <sup>8</sup>Ве, альфа частицы

**DOI:** 10.1134/S2079562920060627

#### **ВВЕДЕНИЕ**

Явление множественной фрагментации релятивистских ядер имеет скрытый потенциал для исследования нерелятивистских ансамблей ядер Н и Не (обзор в [1]). Актуальный интерес представляют распады нестабильных ядер  ${}^{8}\text{Be} \rightarrow 2\alpha$  и  $^9\mathrm{B} \to 2\alpha p$ , а также состояния Хойла HS  $\to 3\alpha$  (обзор в [2]). Каждое из этих нестабильных состояний имеет предельно малую энергию распада. Как следствие, на фоне других релятивистских фрагментов они должны проявляться как пары и тройки с наименьшими углами раскрытия. Согласно ширинам, обратно пропорциональным временам жизни, нестабильные состояния <sup>8</sup>Be (5.6 эВ), <sup>9</sup>B (540 эВ) и HS (9.3 эВ) могут являться полноценными участниками в релятивистской фрагментации. Продукты их распада образуются при пробегах от нескольких тысяч (8Be и HS) до нескольких десятков (<sup>9</sup>B) атомных размеров, т. е. за время на много порядков большее, чем время возникновения других фрагментов. Предсказываемые размеры этих состояний экзотически велики [3]. Все эти факты делают HS, <sup>9</sup>В и <sup>8</sup>Ве чрезвычайно интересными объектами для понимания микроскопической картины фрагментации, а также сигнатурами при поиске распадающихся через них более сложных состояний ядерно-молекулярной структуры.

Идентификация распадов требует реконструкции инвариантных масс  $2\alpha$ -пар  $Q_{2\alpha}$ ,  $2\alpha p$ -троек

 $Q_{2\alpha p}$  и  $3\alpha$ -троек  $Q_{3\alpha}$  соответственно. В общем виде инвариантная масса  $Q = M^* - M$  задается суммой  $M^{*2} = \sum (P_i P_k)$ , где  $P_{ik}$  4-импульсы фрагментов, а М их масса. В случае релятивистской фрагментации применение этой переменной практически осуществимо только в методе ядерной эмульсии (ЯЭ). Слои ЯЭ толщиной от 200 до 500 µм, продольно облученные исследуемыми ядрами, позволяют со всей полнотой и разрешением 0.5 µм определять углы между направлениями испускания релятивистских фрагментов в конусе  $\sin \theta_{\rm fr} =$  $p_{\rm fr}/P_0$ , где  $p_{\rm fr}=0.2~$  ГэВ/c- характерный Фермиимпульс нуклонов в ядре-снаряде с импульсом на нуклон  $P_0$ . Для вычисления  $Q_{2\alpha}$  и  $Q_{3\alpha}$  достаточно предположить сохранение фрагментами импульса на нуклон первичного ядра и использовать только измерения углов их испускания. Как показано далее в случае чрезвычайно узких распадов  ${}^{8}$ Ве и  ${}^{9}$ В измеренные вклады  ${}^{3}$ Не и  ${}^{2}$ Н оказываются малы. Поэтому предполагается соответствие  $He - {}^{4}He$  и  $H - {}^{1}H$ . Идентификация зарядов 1 и 2 делается в ЯЭ визуально. Значения энергии распада этих трех состояний заметно меньше ближайших возбуждений с тем же нуклонным составом, а отражение более сложных возбуждений невелико для этих ядер. Поэтому для их идентификации оказывается достаточным простое ограничение на инвариантную массу ансамбля. Условия отбора, апробированные в наиболее удобных случаях диссоциации изотопов  ${}^{9}$ Be,  ${}^{10}$ B,  ${}^{10}$ C,  ${}^{11}$ C и  ${}^{12}$ C,

**Таблица 1.** Статистика событий  $^{16}{\rm O} + p$  в ВПК-100, содержащих не менее одного кандидата в распад  $^{8}{\rm Be}$   $N_{n\alpha}(^{8}{\rm Be}), ^{9}{\rm B}$  или НS при условии  $Q_{2\alpha}(^{8}{\rm Be}) \le 0.2$  МэВ среди  $N_{n\alpha}$  событий фрагментации ядер  $^{16}{\rm O}$  на протонах с множественностью  $n_{\alpha}$ 

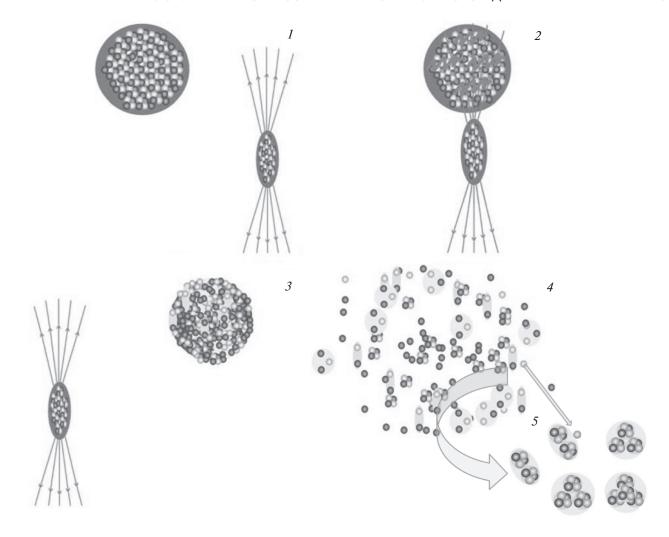
| $n_{\alpha}$ | $N_{n\alpha}(^{8}\mathrm{Be})/N_{n\alpha} (\% N_{n\alpha})$ | $N_{n\alpha}(^{9}\text{B}) (\% N_{n\alpha}(^{8}\text{Be}))$ | $N_{n\alpha}(\mathrm{HS})~(\%~N_{n\alpha}(^{8}\mathrm{Be}))$ |
|--------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|
| 2            | 111/981 (11 ± 1)                                            | 29 (26 ± 6)                                                 | _                                                            |
| 3            | $203/522 (39 \pm 3)$                                        | $31 (15 \pm 3)$                                             | $36 (18 \pm 3)$                                              |
| 4            | $27/56 (48 \pm 11)$                                         | _                                                           | $11 (41 \pm 15)$                                             |

составляют  $Q_{2\alpha}(^8\text{Be}) \le 0.2 \text{ M} \ni \text{B}, \ Q_{2\alpha\rho}(^9\text{B}) \le 0.5 \text{ M} \ni \text{B}$  и  $Q_{3\alpha}(\text{HS}) \le 0.7 \text{ M} \ni \text{B}$  [2].

Наиболее эффективно нестабильные состояния образуются при когерентной диссоциации (или в "белых" звездах), не сопровождаемой фрагментами мишени, поскольку в событиях такого типа выбывание нуклонов из конуса фрагментации минимально. Анализ "белых" звезд  ${}^{12}{\rm C} \to 3\alpha$  и  ${}^{16}{\rm O} \to 4\alpha$ позволил установить, что доля событий, содержащих распады  $^{8}$ Be (HS) составляет  $45 \pm 4\%$  (11  $\pm 3\%$ ) для  $^{12}$ C и 62  $\pm$  3% (22  $\pm$  2%) для  $^{16}$ O [4, 5]. Можно усмотреть, что рост 2α- и 3α-комбинаций усиливает вклада <sup>8</sup>Ве и НЅ. Это наблюдения заслуживает проверки для более тяжелых ядер, когда α-комбинаторика стремительно нарастает с массовым числом. Методом инвариантной массы были оценены вклады распадов <sup>8</sup>Ве, <sup>9</sup>В и НЅ в релятивистской фрагментации ядер Ne, Si и Au [2]. В таком аспекте будут представлены особенности образования нестабильных состояний.

Возможно, что нестабильные состояния присутствуют в структуре ядер или как-то возникают на их периферии, что и проявляется во фрагментации. Альтернатива состоит в образовании <sup>8</sup>Ве при взаимодействии рожденных α-частиц и последующим подхватом сопровождающих α-частиц и нуклонов с испусканием необходимых у-квантов или частиц отдачи. Ее следствием стало бы возрастание выхода <sup>8</sup>Ве с множественностью α-частиц в событии, а возможно <sup>9</sup>В и HS, распадающихся через <sup>8</sup>Ве. Поэтому представляет особый интерес установление связи между образованием нестабильных состояний и множественностью сопровождающих α-частиц. Рис. 1 демонстрирует такой сценарий в системе отсчета фрагментирующего ядра: сближение ядер, передача возбуждения, переход в систему, содержащую легчайшие ядра и нуклоны, ее распад, слипание части фрагментов в нестабильные состояния.

#### Влияние идентификации фрагментов Н и Не

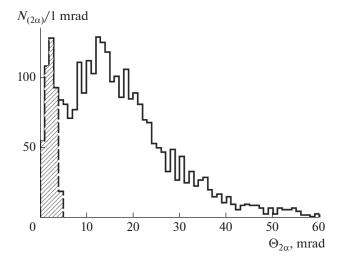

Проверить принятые приближения позволяют данные, полученные при облучении ядрами <sup>16</sup>О с энергией 2.4 ГэВ/нуклон 1-метровой водородной пузырьковой камеры ОИЯИ (ВПК-100), помещавшейся в магнитное поле [6]. В этом случае

также имеется пик в начальной части распределения по углу разлета  $2\alpha$ -пар  $\Theta_{2\alpha}$  (рис. 2), который соответствует распадам  $^8$ Be [6]. При вычислении  $Q_{2\alpha}$  с измеренными импульсами  $P_{\rm He}$  фрагментов Не, реконструированных с недостаточной точностью, сигнал  $^8$ Be практически исчезает. Остается возможность фиксации импульсов, как и в случае ЯЭ. Значения  $P_{\rm He}$  и  $P_{\rm H}$ , нормированные на начальный импульс  $P_0$  (на нуклон), идентифицируют изотопы Не и Н. Согласно рис. 3 условие  $Q_{2\alpha}(^8{\rm Be}) \leq 0.2$  МэВ удаляет вклад  $^3{\rm He}$ , а вклад протонов составляет 90% среди фрагментов Н.

На рис. 4 представлены распределения по инвариантным массам всех  $2\alpha$ -пар  $Q_{2\alpha}$ ,  $2\alpha p$ -троек  $Q_{2\alpha p}$  и  $3\alpha$ -троек  $Q_{3\alpha}$ , вычислявшиеся по углам, определявшимся в ВПК-100. Добавлены распределения с отбором <sup>4</sup>He  $(3.5 \le P_{\rm He}/P_0 \le 4.5)$ , протонов  $(0.5 \le P_{\rm H}/P_0 \le 1.5)$  и <sup>8</sup>Be  $(Q_{2\alpha}(^8{\rm Be}) \le 0.2~{\rm Mps})$ . Вариант с фиксированными импульсами, зависящий только от углов эмиссии фрагментов, демонстрирует пики <sup>8</sup>Be и <sup>9</sup>B. Присутствует небольшое число кандидатов HS.

В табл. 1 представлено изменение вкладов нестабильных состояний в события с множественностью  $\alpha$ -частиц  $n_{\alpha}$  (в данном случае идентифицированных ядер  $^{4}$ He). С ростом  $n_{\alpha}$  вероятность обнаружения  $^{8}$ Be возрастает. Рост  $n_{\alpha}$  ведет к относительному снижению  $N_{n\alpha}(^{9}\text{B})$ , что может объясняться снижением числа протонов, доступных для формирования  $^{9}\text{B}$ . Напротив,  $N_{n\alpha}(\text{HS})$  возрастает из-за увеличения числа  $\alpha$ -частиц, доступных для формирования HS. В когерентной диссоциации  $^{16}\text{O} \rightarrow 4\alpha$  доля распадов HS по отношению к  $^{8}\text{Be}$  составила  $35 \pm 1\%$ , что не противоречит значению для  $n_{\alpha} = 4$  в более жестком взаимодействии  $^{16}\text{O} + p$  (табл. 1). Эти факты указывают на универсальность возникновения  $^{8}\text{Be}$  и HS.

Анализ импульсов в магнитном поле позволяет сравнить соотношение вкладов во фрагментацию  $^{16}$ O + p стабильных и нестабильных изотопов Ве и В в идентичных условиях наблюдения. На рис. 5 представлены распределения этих фрагментов по отношению  $P_{\text{Be(B)}}/P_0$ 6 служащему оценкой массового числа в конусе фрагментации. Для удобства данные по распадам  $^8$ Be и  $^9$ B приведены с по-



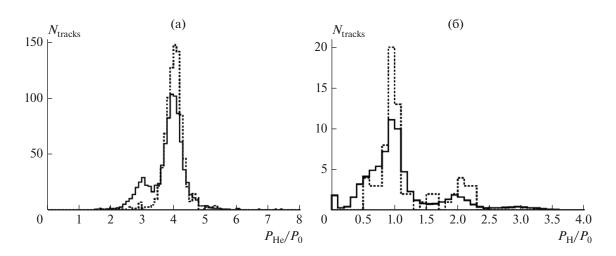

**Рис. 1.** Сценарий множественного образования фрагментов: сближение ядер (1), передача возбуждения исследуемому ядру (2), переход в систему, содержащую реальные легчайшие ядра и нуклоны (3), ее распад (4), слипание и подхват части фрагментов в нестабильные состояния (5).

нижающим (0.5) и повышающими (3) факторами. Параметризация гауссианами позволят выделить пики с полуширинами примерно равными 0.5. и оценить статистику изотопов. Наложение распределений для суммарных импульсов 2α-пар  $P_{2\alpha}/P_0$  при  $Q_{2\alpha}(^8{\rm Be}) \le 0.2$  МэВ и  $2\alpha p$ -троек  $P_{2\alpha p}/P_0$ при  $Q_{2\alpha\rho}(^{9}B) \le 0.5 \text{ M} \ni B$  демонстрирует их в диапазонах отвечающих  ${}^{8}$ Ве и  ${}^{9}$ В. Тогда статистика  ${}^{7}$ Ве, <sup>8</sup>Be, <sup>9</sup>Be и <sup>10</sup>Be составляет 196, 345, 92 и 46, а <sup>8</sup>B, <sup>9</sup>B,  $^{10}$ В,  $^{11}$ В и  $^{12}$ В — 33, 60, 226, 257 и 70, соответственно. Поскольку эти данные единообразно, эти числа могут быть использованы для сравнения между собой. Отношение для зеркальных ядер <sup>9</sup>В и <sup>9</sup>Ве составляет  $0.7 \pm 0.1$ . Не совпадая с 1, оно указывает различия в формировании этих фрагментов. Вместе с тем, равенство статистик по порядку величины служит независимым аргументом в польз правильности идентификации <sup>9</sup>В в принятом приближении.

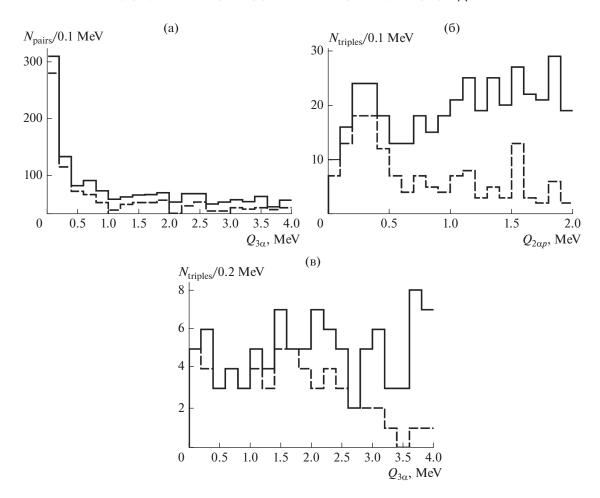
#### Корреляция с множественностью α-частиц

Прослеживание первичных следов в ЯЭ позволяет находить взаимодействия без выборки, в частности, с разным числом релятивистских фрагментов Не и Н. Хотя достижимая статистика множественных каналов оказывается многократно меньше, чем при поперечном сканировании, зато прослеживается ее эволюция с  $n_{\alpha}$  и возникает ориентир для включения в общую картину результатов ускоренного поиска. Далее используются измерения на основе прослеживания следов релятивистских ядер <sup>16</sup>O, <sup>22</sup>Ne, <sup>28</sup>Si и <sup>197</sup>Au в ЯЭ. Эти данные были получены эмульсионным сотрудничеством на синхрофазотроне ОИЯИ в 80-е гг и сотрудничества EMU на синхротронах AGS (BNL) и SPS (CERN) в 90-е гг [7–11]. Доступны фотографии и видеозаписи характерных взаимодействий [1, 12]. Облучение ЯЭ более тяжелыми ядрами позволяет расширить множественность




**Рис. 2.** Распределение по углу разлета  $\Theta_{2\alpha}$  комбинаций 2α-пар для всей статистики (сплошная линия) и с условием  $Q_{2\alpha}(^8\mathrm{Be}) \le 0.2~\mathrm{M} \ni \mathrm{B}$  (пунктир) во фрагментации ядер  $^{16}\mathrm{O}$  с импульсом 3.25 ГэВ/с/нуклон на протонах.

релятивистских  $\alpha$ -фрагментов  $n_{\alpha}$  в изучаемых событиях. Данные по отношению числа событий  $N_{n\alpha}(^8{\rm Be})$ , включающих хотя бы один кандидат в распад  $^8{\rm Be}$ , к статистике канала  $N_{n\alpha}$ , в зависимости  $n_{\alpha}$  объединены на рис. 5.


Имеются измерения взаимодействий ядер  $^{16}$ О при 3.65, 14.6, 60 и 200 ГэВ/нуклон. Для всех значений начальной энергии наблюдается пик  $Q_{2\alpha}(^8\text{Be}) \le 0.2 \text{ МэВ}$  [13]. В охваченном диапазоне начальной энергии распределения  $N_{n\alpha}$  и  $N_{n\alpha}(^8\text{Be})$  проявляют сходство, что позволяет суммировать статистику. Итоговое отношение  $N_{n\alpha}(^8\text{Be})/N_{n\alpha}$  (%) растет  $n_{\alpha}=2$  (8  $\pm$  1) к 3 (23  $\pm$  3) и 4 (46  $\pm$  14). Наблюдается его подъем в случаях "белых" звезд  $^{12}\text{C} \to 3\alpha$  и  $^{16}\text{O} \to 4\alpha$  (рис. 5). Измерения, выпол-

ненные в слоях ЯЭ, облученных ядрами <sup>22</sup>Ne при 3.22 ГэВ/нуклон и <sup>28</sup>Si при 14.6 ГэВ/нуклон расширяют диапазон  $n_{\alpha}$  (рис. 5). В обоих случаях не требуется изменения условия  $Q_{2\alpha}(^8\text{Be}) \le 0.2 \text{ M}$ эВ. В этих случаях продолжается рост отношения  $N_{n\alpha}(^8\text{Be})/N_{n\alpha}$  (%) с множественностью для <sup>22</sup>Ne  $n_{\alpha}$  =  $= 2 (6 \pm 1)$ ,  $3 (19 \pm 3)$ ,  $4 (31 \pm 6)$  и <sup>28</sup>Si  $2 (3 \pm 2)$ ,  $3 (13 \pm 5)$ ,  $4 (32 \pm 6)$ ,  $5 (38 \pm 11)$ .

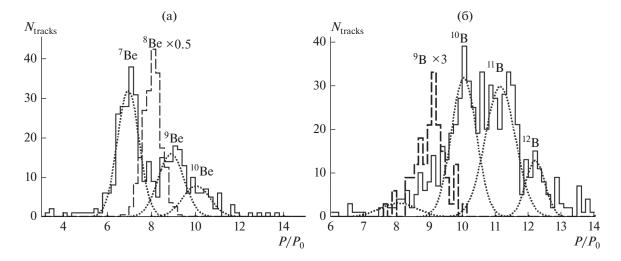
Схожие измерения взаимодействий ядер <sup>197</sup> Au при 10.7 ГэВ/нуклон также указывают на то, что отношение числа событий  $N_{n\alpha}(^8{\rm Be})$ , включающих хотя бы один кандидат в распад  $^8{\rm Be}$ , к статистике канала  $N_{n\alpha}$ , быстро нарастает к  $n_{\alpha}=10$  до примерно 0.5 (рис. 6). Из-за ухудшившегося разрешения область  $^8{\rm Be}$  расширяется, что для сохране-



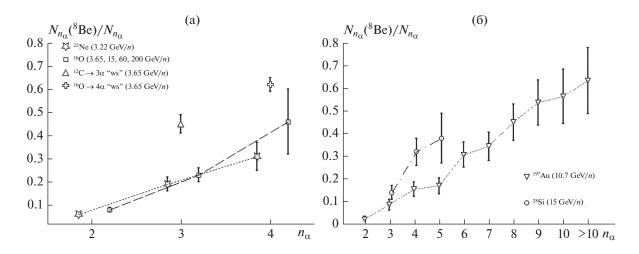
**Рис. 3.** Распределение релятивистских фрагментов H (a) и He (b) по отнощениям их измеренных импульсов  $P_{\rm H}$  и  $P_{\rm He}$  к начальному импульсу на нуклон  $P_0$  (сплошная линия) во фрагментации ядер  $^{16}{\rm O}$  с импульсом 3.25 ГэВ/с/нуклон на протонах; указаны выборки с условиями  $Q_{2\alpha}(^8{\rm Be}) \le 0.2$  МэВ и  $Q_{2\alpha\rho}(^9{\rm B}) \le 0.5$  МэВ (пунктир).



**Рис. 4.** Распределение событий фрагментации ядер  $^{16}$ O с импульсом 3.25 ГэВ/с/нуклон на протонах по  $Q_{2\alpha}$  (а),  $Q_{2\alpha p}$  (b) и  $Q_{3\alpha}$  (c); добавлены распределения с условиями на  $^4$ He, протоны и  $^8$ Be.


ния эффективности требует смягчение отбора  $Q_{2\alpha}(^8\mathrm{Be}) \le 0.4$  МэВ. Каналы  $n_\alpha \ge 11$  просуммированы для уменьшения ошибок. При ужесточении условия до  $Q_{2\alpha}(^8\mathrm{Be}) \le 0.2$  МэВ, сопровождаемого снижением эффективности, сохраняется тенденция к росту  $N_{n\alpha}(^8\mathrm{Be})/N_{n\alpha}$  [13].

Статистика <sup>197</sup>Au содержат тройки  $2\alpha p$  и  $3\alpha$  удовлетворяющие условиям  $Q_{2\alpha p}(^9\mathrm{B}) \leq 0.5$  МэВ и  $Q_{3\alpha}(\mathrm{HS}) \leq 0.7$  МэВ. Отношение числа событий  $N_{n\alpha}(^9\mathrm{B})$  и  $N_{n\alpha}(\mathrm{HS})$  к  $N_{n\alpha}(^8\mathrm{Be})$  не проявляет заметного изменения с множественностью  $n_\alpha$ . Таким же образом ведет себя статистика идентифицированных распадов пар ядер  $^8\mathrm{Be}$   $N_{n\alpha}(2^8\mathrm{Be})$ . Фактически эти три отношения указывают на рост  $N_{n\alpha}(^9\mathrm{B})$ ,  $N_{n\alpha}(\mathrm{HS})$  и  $N_{n\alpha}(2^8\mathrm{Be})$  относительно  $N_{n\alpha}$ . В этих трех случаях значительные статистические ошибки позволяют характеризовать только общие тенденции. Суммирование статистики  $N_{n\alpha}(^9\mathrm{B})$ ,  $N_{n\alpha}(\mathrm{HS})$  и  $N_{n\alpha}(2^8\mathrm{Be})$  по множественности  $n_\alpha$  и нормировка на сумму  $N_{n\alpha}(^8\mathrm{Be})$  ведет к


относительным вкладам равным  $25 \pm 4\%$ ,  $6 \pm 2\%$ ,  $10 \pm 2\%$ , соответственно.

#### ЗАКЛЮЧЕНИЕ

Представленный анализ релятивистских ядер  $^{16}$ O,  $^{22}$ Ne,  $^{28}$ Si и  $^{197}$ Au в ядерной эмульсии указывает на усиление вклада нестабильного ядра <sup>8</sup>Ве с ростом числа релятивистских α-частиц. Вклады распадов нестабильного ядра <sup>9</sup>В и состояния Хойла пропорциональны <sup>8</sup>Ве и фактически также растут. Представленные наблюдения требуют учета взаимодействий рожденных α-частиц релятивистской фрагментации ядер. Они указывают на интригующую возможность протекания реакций синтеза нестабильных состояний между α-частицами внутри релятивистских струй фрагментации ядер. В случае ядра <sup>197</sup>Au тенденция роста прослежена до релятивистских 10 α-частиц в событии. В этой связи предстоит нарастить статистику событий с еще более высокой множествен-



**Рис. 5.** Распределение релятивистских фрагментов Be (a) и B (b) по отношениям их измеренных импульсов  $P_{\rm H}$  и  $P_{\rm He}$  к начальному импульсу на нуклон  $P_0$  (сплошная линия) во фрагментации ядер  $^{16}{\rm O}$  с импульсом 3.25 ГэВ/c/нуклон на протонах; точками указаны аппроксимации суммами гауссианов; данные по распадам  $^8{\rm Be}$  и  $^9{\rm B}$  наложены пунктиром.



**Рис. 6.** Зависимость относительного вклада распадов  $N_{n\alpha}(^8{\rm Be})$  в статистику  $N_{n\alpha}$  событий с множественностью α-частиц  $n_{\alpha}$  в релятивистской фрагментации ядер C, O, Ne (a), Si и Au (b); отмечены "белые" звезды  $^{12}{\rm C} \to 3\alpha$  и  $^{16}{\rm O} \to 4\alpha$  (*WS*); для удобства точки несколько смещены от значений  $n_{\alpha}$  и соединены пунктиром.

ностью α-частиц при наилучшей точности измерений углов эмиссии фрагментов.

Результаты анализа фрагментации <sup>16</sup>О в водородной пузырьковой камере с применением магнитного анализа подтверждают сделанные приближения в применении метода инвариантной массы. Позволяя единообразное сравнение вклада стабильных и нестабильных ядер, они могут служить для более полных проверок моделей фрагментации.

### СПИСОК ЛИТЕРАТУРЫ/REFERENCES

1. Zarubin P.I., Lect. Notes in Phys., **875**, Clusters in Nuclei, V. 3. Springer Int. Publ., 51 (2013);

https://doi.org/10.1007/978-3-319-01077-9\_3; arXiv: 1309.4881.

- Artemenkov D.A. et al., Eur. Phys. J. A 56, 250 (2020); https://doi.org/10.1140/epja/s10050-020-00252-3; arXiv: 2004.10277.
- 3. *Tohsaki A., Horiuchi H., Schuck P. and Röpke G.*, Rev. Mod. Phys. **89**, 011002 (2017); https://doi.org/10.1103/RevModPhys.89.011002
- Artemenkov D.A. et al., Rad. Meas. 119, 199 (2018); https://doi.org/10.1016/j.radmeas.2018.11.005; arXiv: 1812.09096.
- Artemenkov D.A. et al., Springer Proc. Phys. 238, 137 (2020); https://doi.org/10.1007/978-3-030-32357-8\_24; arX-iv: 1904.00621.

- Glagolev V.V. et al., Eur. Phys. J. A 11, 285 (2001); https://doi.org/10.1007/s100500170067
- Andreeva N.P. et al. Sov. J. Nucl. Phys. 47 102 (1988);
   Yad. Fiz. 47 157 (1988) and Dubna JINR 86–828.
- 8. Naghy A. El- et al. J. Phys. G, 14 1125 (1988).
- 9. Adamovich M.I. et al., Phys. Rev. C 40, 66 (1989).
- Adamovich M.I. et al., Z. Phys. A 351, 311 (1995); https://doi.org/10.1007/BF01290914
- Adamovich M.I. et al., Eur. Phys. J. A 5, 429 (1999); https://doi.org/10.1007/s100500050306
- 12. *The BECQUEREL Project* http://becquer-el.jinr.ru/movies/movies.html.
- 13. Zaitsev A.A. et al, arXiv: 2102.09541.

# Enhancement in Formation of Unstable <sup>8</sup>Be Nucleus with A-Particle Multiplicity in Fragmentation of Relativistic Nuclei

A. A. Zaitsev<sup>1, 2, \*</sup>, P. I. Zarubin<sup>1, 2</sup>, and N. G. Peresadko<sup>2</sup>

<sup>1</sup>Joint Institute for Nuclear Research, Dubna, 141980 Russia

<sup>2</sup>Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 119991 Russia

\*e-mail: zaicev@jinr.ru

The correlation between the formation of the unstable be nucleus and accompanying  $\alpha$ -particles in the fragmentation of relativistic  $^{16}O$ ,  $^{22}Ne$ ,  $^{28}Si$ , and  $^{197}Au$  nuclei in a nuclear track emulsion is investigated. The  $^{8}Be$  decays are identified in a wide energy range by invariant masses calculated from  $2\alpha$ -pair opening angles. The adopted approximations were verified by data on fragmentation of  $^{16}O$  nuclei in a hydrogen bubble chamber in a magnetic field. An increase in the  $^{8}Be$  contribution to the dissociation with an  $\alpha$  particle multiplicity is found.

Keywords: nuclear emulsion, dissociation, invariant mass, relativistic fragments, <sup>8</sup>Be nucleus, alpha particles