ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ =

ПЕРИФЕРИЧЕСКАЯ ФРАГМЕНТАЦИЯ РЕЛЯТИВИСТСКИХ ЯДЕР ¹¹В В ЯДЕРНОЙ ЭМУЛЬСИИ

© 2009 г. М. Карабова¹⁾, Д. А. Артеменков²⁾, В. Браднова²⁾, С. Вокал^{1),2)}, А. Вокалова²⁾, Я. Врлакова¹⁾, П. И. Зарубин^{2)*}, И. Г. Зарубина²⁾, А. Д. Коваленко²⁾, А. И. Малахов²⁾, Г. И. Орлова³⁾, П. А. Рукояткин²⁾, В. В. Русакова²⁾, С. П. Харламов³⁾, Т. В. Щедрина²⁾

Поступила в редакцию 21.03.2008 г.

Представлены результаты, полученные в ядерной фотоэмульсии, облученной в пучке ядер ¹¹В с импульсом 2.75 *А* ГэВ/*с*. Для изучения кластеризации ядра ¹¹В анализируются периферические взаимодействия, в которых суммарный заряд частиц, вылетающих в пределах переднего конуса релятивистской фрагментации, равен заряду налетающего ядра. Получено, что 3-частичный развал с зарядовой конфигурацией 2 + 2 + 1 является лидирующим. Выявлена существенная роль тритонов в наиболее периферических взаимодействиях такого типа. Впервые наблюдались события, интерпретируемые как перезарядка ядра ¹¹В в возбужденные состояния ядра ¹¹С*, расположенные над порогом нуклонной связи. Обсуждаются перспективы исследования ядра ¹¹С.

PACS: 21.45.+v, 23.60.+e, 25.10.+s

ВВЕДЕНИЕ

Изучение периферических взаимодействий релятивистских ядер ⁷Li и ¹¹В в ядерной эмульсии может дать основания для включения тритонов в качестве кластеров при множественной фрагментации ядер, начиная с наиболее легких [1, 2]. Ранее было установлено, что в наиболее периферических событиях диссоциации ядер ⁷Li в ядерной эмульсии без образования фрагментов мишени и заряженных мезонов (так называемых белых звездах) доля канала ⁷Li $\rightarrow \alpha + t$ достигает 50% [3]. Таким образом, выявляется роль тритона как нуклонного кластера с наименьшим порогом отделения (2.47 МэВ). Настоящий эксперимент по фрагментации более тяжелого ядра ¹¹В является логическим продолжением исследования ядра ⁷Li. Он нацелен на то, чтобы выявить относительную роль каналов с низкими порогами отделения фрагментов, а именно ⁷Li + α (8.7 МэВ), $t + 2\alpha$ (11.2 МэВ) и ¹⁰Ве + *p* (11.2 МэВ).

ОБЛУЧЕНИЕ ЭМУЛЬСИИ В ПУЧКЕ ЯДЕР ¹¹В

Стопка, состоящая из слоев ядерной фотоэмульсии БР-2, была облучена на нуклотроне ОИЯИ в пучке ядер ¹¹В с импульсом 2.75 A ГэВ/c.

Рис. 1. Распределение релятивистских фрагментов с зарядами $Z_{\rm fr} = 3, 4$ и 5 во взаимодействиях ядер ¹¹ В по среднему числу δ -электронов на 100 мкм длины следа. Кривая — результат аппроксимации суммой трех функций Гаусса.

¹⁾Университет имени П. Й. Шафарика, Кошице, Словакия. ²⁾Объединенный институт ядерных исследований, Дубна,

Россия.

³⁾Физический институт имени П. Н. Лебедева РАН, Москва.

^{*}E-mail: zarubin@lhe.jinr.ru

Рис. 2. Распределения релятивистских фрагментов ядер ¹¹В по углам вылета для фрагментов с зарядами $Z_{\rm fr} = 1, 2, >2$, нормированные на число фрагментов с зарядом $Z_{\rm fr}$.

Слои эмульсии имели размер 10 × 20 см и толщину около 600 мкм. При облучении пучок был направлен параллельно плоскости эмульсии вдоль длинной стороны слоев.

Поиск событий проводился методом просмотра

Таблица 1. Распределение числа событий диссоциации ядер ¹¹В по зарядовым состояниям фрагментов $\sum Z_{ir} = 5 (N_Z - число фрагментов в событии с зарядом <math>Z_{ir}$; статистика "белых" звезд приведена в скобках)

N_5	N_4	N_3	N_2	N_1	\sum
1	-	-	-	-	2
_	1	_	_	1	11
_	_	1	1	_	3
_	_	1	_	2	5
_	_	_	1	3	17(1)
_	_	_	2	1	43(6)
_	—	—	—	5	0

по первичным следам. На суммарной длине просмотренных следов 7141.5 см было зарегистрировано 542 взаимодействия ядер ¹¹В, что дает значение среднего пробега $\lambda = 13.2 \pm 0.6$ см. Эта величина согласуется с вычислениями по геометрической модели.

Для определения зарядов релятивистских фрагментов, рожденных во взаимодействиях ядер ¹¹В, был использован метод подсчета плотности δ электронов. Результат его использования для определения зарядов релятивистских фрагментов $Z_{\rm fr} = 3, 4$ и 5 представлен на рис. 1.

На рис. 2 показаны распределения измеренных углов вылета фрагментов ядер ¹¹В с различными зарядами $Z_{\rm fr}$. Значения углов для фрагментов с $Z_{\rm fr} > 2$ ограничены пределом $\theta < 3^{\circ}$, для двух-зарядных фрагментов ($Z_{\rm fr} = 2$) — $<5^{\circ}$. Для однозарядных частиц ($Z_{\rm fr} = 1$) углы были измерены вплоть до значения $\theta = 15^{\circ}$. Условие отбора анализируемых релятивистских фрагментов с $Z_{\rm fr} = 1$ было выбрано $\theta \leq 6^{\circ}$, что соответствует традиционному определению конуса фрагментации: угловое распределение для $Z_{\rm fr} = 1$ изменяет свой вид примерно при $\theta = 6^{\circ}$. Его форма определяется вкладом изотопов ^{1,2,3}Н от фрагментации ядер ¹¹В, а также вкладом протонов — участников взаимодействия, и рожденных мезонов, угловые распределения для которых сильно различаются.

КЛАСТЕРИЗАЦИЯ ПРИ ДИССОЦИАЦИИ ¹¹В

Для изучения кластеризации ядра ¹¹В были отобраны периферические взаимодействия, в которых суммарный заряд частиц, вылетающих в пределах переднего конуса фрагментации, равен заряду налетающего ядра, т.е. $\sum Z_{\rm fr} = 5$. В этих событиях является допустимым рождение частиц с углами вылета $\theta \ge 15^{\circ}$ и фрагментов мишени. В табл. 1 представлена их статистика, включая "белые" звезды, в различных зарядовых каналах. Можно заключить, что 3-частичный развал с зарядовой конфигурацией 2 + 2 + 1 лидирует, несмотря на его более высокий порог по сравнению с каналом Li + He. Схожая картина уже была установлена для ядра ¹⁰В [4]. Важную роль в периферической фрагментации этих изотопов бора играет ачастичная кластеризация, как и в случае ядра ¹²С [5], а также ядер ⁶Li [6] и ⁷Li [3].

ИЗОТОПНЫЙ СОСТАВ ФРАГМЕНТОВ 11В

Для изучения основного канала фрагментации $\sum Z_{\rm fr} = 2 + 2 + 1$ были проведены измерения импульсов $p\beta c$ однозарядных фрагментов методом

многократного кулоновского рассеяния. Эти измерения позволяют разделять однозарядные фрагменты на протоны, дейтроны и тритоны, так как спектаторные фрагменты ядра-снаряда практически без изменения сохраняют первоначальное значение импульса на нуклон. Данный метод позволил разделить однозарядные фрагменты по их массе (рис. 3).

Измеренные значения импульсов для однозарядных фрагментов ¹¹В удовлетворительно аппроксимируются суммой трех гауссианов, максимумы которых расположены при 2.7, 5.2 и 7.5 ГэВ. Положения максимумов соответствуют значениям, ожидавшимся для спектаторных протонов, дейтронов и тритонов. Область значений р βc в районе до 1 ГэВ соответствует рожденным π -мезонам. Отношение между числами протонов, дейтронов и тритонов, образующихся в периферических взаимодействиях ядра 11 B, составляет 19:9:5, а для "белых" звезд — 1 : 1 : 1. Даже на малой статистике можно отметить рост доли дейтронов и тритонов в "белых" звездах по отношению к периферическим взаимодействиям. Большая доля тритонов в "белых" звездах ¹¹В говорит в пользу существования тритона в качестве кластера со слабой связью в ¹¹В, которая легко разрушается во взаимодействии. Эти наблюдения указывают на необходимость дальнейшего накопления статистики в канале $\sum Z_{\text{fr}} = 2 + 2 + 1$ путем ускоренного просмотра по площади эмульсионных слоев.

НАБЛЮДЕНИЕ СОБЫТИЙ ПЕРЕЗАРЯДКИ ${}^{11}\mathrm{B} \rightarrow {}^{11}\mathrm{C}^*$

В данном эксперименте наблюдались события, в которых заряд первичного трека был определен как $Z_{\rm pr} = 5$, а суммарный заряд в конусе фрагментации оказался равным $\sum Z_{\rm fr} = 6$. Их появление может интерпретироваться как неупругая перезарядка ядра ¹¹В в возбужденные состояния ядра ¹¹С*, расположенные над порогом нуклонной связи. Статистика этих событий представлена в табл. 2.

Было обнаружено 10 событий перезарядки ${}^{11}\text{B} \rightarrow {}^{11}\text{C}^*$ с развалом на два фрагмента с зарядами $Z_{\rm fr} = 4$ и 2. Эти события указывают на перезарядку основы в виде кластера ⁷Li в ⁷Be. Во избежание ошибки заряды на следах в этих событиях определялись несколько раз. Доля таких событий перезарядки составляет $\approx 1.5\%$ от всех найденных при первичном просмотре взаимодействий.

Таблица 2 демонстрирует предпочтительность канала перезарядки ${}^{11}\text{B} \rightarrow {}^{11}\text{C}^*$ наиболее периферического типа — это восемь "белых" звезд ${}^{11}\text{B} \rightarrow$ \rightarrow Be + He. Они идентифицируются как ⁷Be + ⁴He

Рис. 3. Распределение релятивистских однозарядных фрагментов ядра ¹¹В по измеренным значениям $p\beta c$. Сплошная кривая соответствует аппроксимации гауссианами по методу наименьших квадратов.

и имеют значение среднего пробега $\lambda_{\rm CE}=8.9\pm$ ± 3.2 м. Микрофотография одного из таких событий представлена на рис. 4. Среди "белых" звезд событий перезарядки ядра ¹¹В с диссоциацией ядра по другим каналам не наблюдалось. Даже на такой ограниченной статистике можно отметить очевидное отличие развала ядра ¹¹С от развала ядер ¹⁰В и ¹¹В: для ядер ¹⁰В и ¹¹В отмечается лидирующее значение 3-частичного канала распада, в то время как для ядра ¹¹С* доминируют 2-частичные развалы, а 3-частичные не наблюдались на нашей статистике. В основе различия может лежать несколько более высокое значение кулоновского барьера для ядра ¹¹С. Это обстоятельство может указывать на замечательную чувствительность релятивистского механизма диссоциации к структурным особенностям ядер.

На рис. 5 представлено распределение по энергии возбуждения Q для пар релятивистских фрагментов ⁴Не и ⁷Ве, образованных в "белых" звездах ¹¹В \rightarrow ⁷Ве + ⁴Не, относительно основного состо-

Таблица 2. Распределение числа событий перезарядки ядер ¹¹В по зарядовым состояниям фрагментов $\sum Z_{\rm ir} = 6$ (обозначения, как в табл. 1)

N_5	N_4	N_3	N_2	N_1	\sum
1	-	-	-	1	1
_	1	_	1	-	10(8)
_	1	_	_	2	7
_	_	1	_	3	2
_	_	—	2	2	3

Рис. 4. Микрофотография фрагментации с перезарядкой ¹¹В → ⁴He + ⁷Be. На верхней фотографии видна вершина взаимодействия и образование двух релятивистских фрагментов в узком угловом конусе. При смещении по направлению вылета фрагментов (нижняя фотография) можно различить фрагмент Не (верхний след) и фрагмент Ве.

Рис. 5. Распределение по энергии возбуждения Q для пар релятивистских фрагментов ⁷Ве и ⁴He, образованных в "белых" звездах ¹¹В \rightarrow ⁷Ве + ⁴He, относительно основного состояния ядра ¹¹С.

яния ядра ¹¹С. Величина Q определяется через инвариантную массу системы M^* и массу ядра ¹¹С:

$$Q = M^* - M, \quad M^2 = \left(\sum P_j\right)^2 = \sum (P_i, P_k),$$

где $P_j - 4$ -импульсы фрагментов, определенные в предположении сохранения импульса на нуклон первичного ядра. Величины Q находятся в области низколежащих возбужденных состояний ядра ¹¹С. Средние значения поперечных импульсов фрагментов ⁷Ве и ⁴Не в л. с. равны $\langle P_T(^7\text{Be}) \rangle = 185 \pm 27 \text{ МэВ}/c$ и $\langle P_T(^4\text{He}) \rangle = 190 \pm 33 \text{ МэВ}/c$, а в их с. ц. м. $\langle P_T^*(^7\text{Be}) \rangle = \langle P_T^*(^4\text{He}) \rangle = 145 \pm 21 \text{ МэВ}/c$. Среднее значение суммарного поперечного импульса пар ⁷Ве + ⁴Не равно $\langle P_T(^{11}\text{C}^*) \rangle = 250 \pm 32 \text{ МэВ}/c$. Такие кинематические характеристики являются ожидаемыми значениями для процессов дифракционной диссоциации.

Ядро ¹¹С является зеркальным для ¹¹В и имеет весьма схожую структуру возбуждений. Настоящая работа создает основу для изучения релятивистской диссоциации ядра ¹¹С в каналах с низкими порогами отделения нуклонных кластеров — ⁷Be + α (7.6 MэB), ¹⁰B + p (8.7 MэB) и ³He + 2α (9.2 МэВ). В этом случае ядро ³He может являться кластером, аналогичным тритону в ядре ¹¹B. В событиях наиболее периферической диссоциации можно будет сравнить влияние кулоновского барьера на картину диссоциации ядра ¹¹С с ядром ¹¹B. Ранее лидирующая роль ядра ³He уже была установлена в релятивистской диссоциации ядра ⁷Be [7], являющегося зеркальным для ⁷Li. В этой связи переход к исследованию ядра ¹¹С методом ядерных эмульсий представляется столь же последовательным шагом, как и переход от ядра ⁷Li к ¹¹B.

Интерес представляет поиск проявления эффектов нарушения изотопической инвариантности в образовании "белых" звезд релятивистскими ядрами ¹¹В и ¹¹С. Такой анализ может быть осуществлен путем сравнения распределений по заселенности схожих каналов, по их кинематическим характеристикам. Ядерные дифракционные процессы должны приводить к сходству распределений, а электромагнитные взаимодействия могут привести к их различию в важных деталях.

Представленные наблюдения заслуживают более детального изучения на существенно большей статистике событий диссоциации ядер ¹¹В и ¹¹С. В последнем случае возникает необходимость специального облучения эмульсии во вторичном пучке, наилучшим вариантом формирования которого является отбор продуктов перезарядки ¹¹В → ¹¹С.

Эта работа была поддержана грантами Научного агентства Министерства образования Словацкой республики и Словацкой академии наук VEGA № 1/2007/05 и 1/0080/08, грантом Российского фонда фундаментальных исследований № 04-02-16593, а также грантами Полномочных представителей в ОИЯИ Болгарии, Словацкой республики, Чешской республики и Румынии в 2002–2005 гг.

СПИСОК ЛИТЕРАТУРЫ

- 1. *The BECQUEREL Project*, http://becquerel.jinr.ru/, http://becquerel.lhe.jinr.ru/
- 2. М. И. Адамович и др., ЯФ **68**, 484(2005); nuclex/0605015.
- 3. M. I. Adamovich et al., J. Phys. G 30, 1479 (2004).
- 4. М. И. Адамович и др., ЯФ **67**, 533 (2004).
- 5. В. В. Белага и др., ЯФ **58**, 2014 (1995).
- 6. М. И. Адамович и др., ЯФ **62**, 1461 (1999).
- 7. Н. Г. Пересадько и др., ЯФ **70**, 1266 (2007); nuclex/0605014.

PERIPHERAL FRAGMENTATION OF RELATIVISTIC ¹¹B NUCLEI IN NUCLEAR TRACK EMULSION

M. Karabová, D. A. Artemenkov, V. Bradnova, S. Vokál, A. Vokálová, J. Vrláková, P. I. Zarubin, I. G. Zarubina, A. D. Kovalenko, A. I. Malakhov, G. I. Orlova, P. A. Rukoyatkin, V. V. Rusakova, S. P. Kharlamov, T. V. Shchedrina

Results are presented obtained in nuclear track emulsion, exposed in the beam of ¹¹B nuclei with the momentum of $2.75 \ A \ GeV/c$. For the study of clustering features of the ¹¹B nucleus peripheral interactions are analyzed in which the total charge of particles emitted within the limits of forward cone of relativistic fragmentation, is equal to the charge of a projectile nucleus. The substantial role of tritons shows up in the most peripheral interactions of such type. For the first time there were observed events interpreted as a charge-exchange of the ¹¹B nucleus in the excited states of the ¹¹C nucleus, located above the threshold of nucleon binding. The prospects of research of the ¹¹C nucleus are discussed.