Фрагментация релятивистских ядер ¹¹В в фотоэмульсии.

Аннотация

Представлены новые результаты по фрагментации ядер ¹¹В с импульсом 2,75 AGeV/с в фотоэмульсии.

1. Эксперимент

Стопка фотоэмульсионных слоев типа БР-2 размером 20 х 10 см² и толщиной 500 мкм была облучена пучком ядер ¹¹В с импульсом 2,75 AGeV/с на нуклотроне ВБЛВЭ ОИЯИ в Дубне. Пучек ядер ¹¹В направлен параллельно плоскости эмульсии вдоль длинной стороны. Интенсивность облучения составлялаядер/см². Эмульсия проявлялась в проявочном центре ВБЛВЭ.

2. Пробег.

Для поиска взаимодействий использовался метод просмотра по следу первичного ядра. На суммарной просмотренной длине 7141,3 см было найдено 542 взаимодействий ядер ¹¹В с ядрами эмульсионного детектора, таким образом, средний свободный пробег составил $\lambda = (13,2 \pm 0,6)$ см. Как видно из рис.1., полученный результат находится в согласии с расчетами, выполненными по геометрической модели [9,10 N Li⁷].

Mean range λ of a projectile with respect to inelastic interactions in the photoemulsion as a function of the projectile mass number. The curve represents a fit obtained within the geometric model. Puc.1.

3. Заряды фрагментов и конус фрагментации.

Определение заряда фрагментов проводилось стандартным методом счета разрывов и/или δ -электронов на треке фрагмента. Результаты определения зарядов Zfr = 3 - 5 методом счета числа δ -электронов приведены на рис.2, который иллюстрирует высокую надежность этого метода.

Рис.2. Распределение по числу δ - электронов на фрагментах с зарядами 3, 4 и 5.

Угловые распределения фрагментов ядра ¹¹В представлены на рис.3 отдельно для многозарядных $Z_F \ge 3$ (рис.3а), двухзарядных (рис.3б) и однозарядных (рис.3в) фрагментов. Углы эмиссии фрагментов с $Z_F \ge 3$ ограничены интервалом $\vartheta \le 3^\circ$. Углы эмиссии двухзарядных фрагментов ограничены интервалом $\vartheta \le 5^\circ$. Углы для однозарядных частиц были измерены в интервале $\vartheta \le 15^\circ$. Из рис.3в видно, что угловое распределение изменяет свой вид, примерно, при $\vartheta = 6^\circ$. Такая форма углового распределения может быть объяснена тем, что однозарядные частицы являются смесью частиц двух типов: однозарядные фрагменты и вновь рожденные частицы (в основном, это $\pi \pm$ мезоны) угловые распределения которых смещены относительно друг друга. Распределения для однозарядных фрагментов, как показывают импульсные измерения, занимают область $\vartheta \le 6-8^\circ$. На основе импульсных измерений, вида углового

 $\sin \vartheta_{\rm fr} = 0.2 \ / \ p_{\rm o} = 0,073 \rightarrow \vartheta_{\rm fr} = 4,16^{\circ},$ граничный угол для однозарядных фрагментов был выбран равным $\leq 6^{\circ}.$

Рис.3. Угловые распределения фрагментов с разными зарядами.

4. Кластеризации ядра В¹¹

Для изучения кластеризации ядра B^{11} использовались события, в которых суммарный заряд частиц, вылетающих в пределах фрагментационного конуса равен заряду налетающего ядра - $Q = \sum Z fr = Zo$.

Такие события были разделены на два класса:

Класс А, это распад ядра-снаряда не сопровождающийся рождением новых частиц -Ns=0. В свою очередь события класса А могут быть подразделены на две группы: взаимодействия без развала ядра-мишени - Nh=Nb+Ng=0 (условно называемые, «белые» звезды) и взаимодействия с развалом ядра-мишени - Nb≤7, Ng=0, в которых допускается наличие нескольких малоэнергичных фрагментов мишени. Эти группы, имеющие близкие характеристики, объединены в один класс с целью увеличения статистики. События класса А отличаются небольшой передачей энергии налетающему ядру, за счет чего в нем, в основном, нарушаются внутренние межкластерные связи, поэтому они наиболее интересны для изучения кластеризации ядер.

Класс Б, это периферические сильные взаимодействия ядер. В событиях этого класса допускается существование вновьрожденных частиц с углами вылета ≥15°, а так же любого количества фрагментов мишени - Nb≥0, Ng≥0.

Каналы фрагментации для событий класса А и Б приведены в таблице 1 Таб.1.

5	4	3	2	1	Α	%	B	%
1					1	4,6	1	1,7
	1			1	2	9,4	9	
								15
		1	1		0	0	3	5
		1		2	0	0	5	8,3
			1	3	5	24	12	20
			2	1	13	62	30	50
				5	0	0	0	0
Сумма	•			•	21		60	

Можно отметить основные различия данных, приведенных таблице 1, для событий классов А и В.

- 1. В обеих группах основной канал фрагментации это распад (2·Zfr=2 + Zfr=1): 62% и 50%, соответственно. Для сравнения, этот канал фрагментации для В¹⁰ составляет 65%.
- 2. В событиях развала ядра-снаряда только 14% имеют фрагменты с зарядами Zfr≥3, в то время как в периферических взаимодействиях таких событий 30%.
- 3. В событиях развала ядра-снаряда не наблюдалось фрагментов с зарядом Zfr=3 (Li), в то время как в периферических взаимодействиях таких событий 13%. Этот результат может объясняться увеличением вероятности разрушения межкластерных связей при переходе от событий с развалом ядра к сильным взаимодействиям, в результате чего чаще появляются фрагменты, которые не существовали в виде кластеров в первичном ядре.

5. Протоны, дейтроны, тритоны.

Для детального изучения основного канала фрагментации B¹¹ - (2·Zfr=2 + Zfr=1) были проведены измерения импульсов однозарядных фрагментов методом многократного кулоновского рассеяния. Импульсные измерения позволили разделить однозарядные фрагменты на протоны, дейтроны и тритоны, используя тот факт, что спектаторные фрагменты сохраняют импульс на нуклон равный первичному: $A_{\rm fr} = p\beta c_{\rm H3M}/p_0$. Результаты импульсных измерений приведены на рис.4, как видно из рисунка данный метод позволяет надежно разделять однозарядные фрагменты по их массе.

Рис.4. – Импульсные распределение для однозарядных фрагментов.

В результате для этого канала было определено соотношение между протонами, дейтронами и тритонами: Np:Nd:Nt = 4:4:4 для событий развала ядра B^{11} и Np:Nd:Nt = 17:5:1 для периферических взаимодействий ядра B^{11} (Taб.2).

Канал (2·Zfr=2 + Zfr=1) – массы однозарядных фрагментов												
		р	d	t	π	не измерено	Σ					
	N	4	4	4	0	1	13					
КЛАСС А	%	31	31	31	0	7						
	N	17	5	1	7	0	30					
КЛАСС В	%	57	17	3	23	0						

То есть, можно отметить существенное уменьшение доли дейтронов и практическое исчезновение тритонов при переходе от распадов к взаимодействиям. Большая доля фрагментов-тритонов ($\approx 1/3$) в распадах B¹¹ говорит в пользу его существования в качестве кластера со слабыми внутренними связями в B¹¹, которые легко разрушаются, особенно в процессе сильного взаимодействия. Кроме того, в семи периферических взаимодействиях (23%) однозарядные фрагменты имели импульс меньше 1 ГэВ/с, т.е. это могут быть либо вновьрожденные частицы, либо рассеявшиеся протоны.

Перечисленные в пунктах 1и 2 результаты говорят в пользу того, что B^{11} состоит либо из ($Be^8 + t$), либо из ($2He^4 + t$). Для выбора между этими двумя возможностями необходимо изучение угловых корреляций α -частиц. Подтверждается так же утверждение о большей эффективности распадов ядер для изучения их кластерной структуры по сравнению с взаимодействиями ядер.

6. Перезарядка В¹¹ в С¹¹

Еще одной интересной особенность, которая наблюдалась в данном эксперименте, было обнаружение 6 событий неупругой перезарядки B¹¹ в C¹¹. Для избежания ошибки заряды в этих событиях измерялись несколько раз. Во всех этих событиях первичное ядро B¹¹ распадается на два фрагмента с зарядами 4 и 2. Все 6 событий относятся к классу A и в 5 из них нет никаких частиц кроме двух указанных фрагментов. Во взаимодействиях B¹¹ (класс B) таких событий не наблюдалось. Доля таких событий составляет ~1% от всех найденных при первичном просмотре взаимодействий. Распад ядра C¹¹ на две частицы с зарядами 4 и 2 может проходить только по каналу ₆C¹¹ \rightarrow 4Be⁷ + 2He⁴. Отсутствие среди наблюдаемых событий перезарядки B¹¹ в C¹¹ других каналов распада указывает на то, что данная конфигурация отражает структуру ядра C¹¹.

Таб.2.