

Новые данные о структуре фрагментации легких ядер

Артеменков Д.А.

сотрудничество БЕККЕРЕЛЬ, Дубна, ЛФВЭ

ОИЯИ, 10.06.2013

Продолжение проекта БЕККЕРЕЛЬ-D(ripline) на 2012-14 гг. посвящено обзорному исследованию фрагментации в ядерной эмульсии релятивистских ядер ⁹C, ¹⁰C и ¹²N, облучение которыми уже выполнено в предшествующей фазе проекта. Уже облученная эмульсия позволит исследовать ядерно-молекулярную структуру несвязанных ядер ⁶Be, ⁷B, ⁸C и ¹¹N, которые образуются в реакциях фрагментации ядер ⁷Be, ⁸B, ⁹C и ¹²N со срывом нейтронов Будут продолжены исследования кластерных степеней свободы в ядрах ⁷Be и ^{8,10,11}B на новом уровне статистики и детальности описания.

Eur. Phys. J. Special Topics **162**, 267–274 (2008) © EDP Sciences, Springer-Verlag 2008 DOI: 10.1140/epist/e2008-00802-0 THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS

Secondary nuclear fragment beams for investigations of relativistic fragmentation of light radioactive nuclei using nuclear photoemulsion at Nuclotron

P.A. Rukoyatkin^a, L.N. Komolov, R.I. Kukushkina, V.N. Ramzhin, and P.I. Zarubin

ISSN 1063-7788, Physics of Atomic Nuclei, 2008, Vol. 71, No. 9, pp. 1565-1571. © Pleisdes Publishing, Ltd., 2008.

ELEMENTARY PARTICLES AND FIELDS Experiment

Fragmentation of Relativistic Nuclei in Peripheral Interactions in Nuclear Track Emulsion*

D. A. Artemenkov^{1)**}, V. Bradnova¹⁾, M. M. Chernyavsky²⁾, L. A. Goncharova²⁾, M. Haiduc³⁾, N. A. Kachalova¹⁾, S. P. Kharlamov²⁾, A. D. Kovalenko¹⁾, A. I. Malakhov¹⁾, A. A. Moiseenko⁴⁾, G. I. Orlova²⁾, N. G. Peresadko²⁾, N. G. Polukhina²⁾, P. A. Rukoyatkin¹⁾, V. V. Rusakova¹⁾, V. R. Sarkisyan⁴⁾, R. Stanoeva⁵⁾, T. V. Shchedrina¹⁾, S. Vokál¹⁾, A. Vokálová¹⁾, P. I. Zarubin^{1)***}, and

Few Body Syst (2008) 44: 273–276 DOI 10.1007/s00601-008-0307-6 Printed in The Netherlands

ЯДЕРНАЯ ФИЗИКА, 2009, том 72, № 4, с. 731 742

— ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ —

ЭЛЕКТРОМАГНИТНАЯ ДИССОЦИАЦИЯ РЕЛЯТИВИСТСКИХ ЯДЕР ⁸В В ЯДЕРНОЙ ЭМУЛЬСИИ

 © 2009 г. Р. Станоева^(1),2), Д. А. Артеменков¹⁾, В. Браднова¹⁾, С. Вокал^(1),3), Л. А. Гончарова⁴⁾, П. И. Зарубин^{1)*}, И. Г. Зарубина¹⁾, Н. А. Качалова¹⁾, А. Д. Коваленко¹⁾, Д. О. Кривенков¹⁾, А. И. Малахов¹⁾, Г. И. Орлова⁴⁾, Н. Г. Пересадько⁴⁾, Н. Г. Полухина⁴⁾, П. А. Рукояткин¹⁾, В. В. Русакова¹⁾, М. Хайдук⁵⁾, С. П. Харламов⁴⁾, М. М. Чернявский⁴⁾, Т. В. Щедрина¹⁾

ЯДЕРНАЯ ФИЗИКА, 2010, том 73, № 12, с. 2159—2165

— ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ =

КОГЕРЕНТНАЯ ДИССОЦИАЦИЯ РЕЛЯТИВИСТСКИХ ЯДЕР ⁹С

© 2010 г. Д. О. Кривенков¹⁾, Д. А. Артеменков¹⁾, В. Браднова¹⁾,
С. Вокал²⁾, П. И. Зарубин^{1)*}, И. Г. Зарубина¹⁾, Н. В. Кондратьева¹⁾,
А. И. Малахов¹⁾, А. А. Моисеенко³⁾, Г. И. Орлова⁴⁾, Н. Г. Пересадько⁴⁾,
Н. Г. Полухина⁴⁾, П. А. Рукояткин¹⁾, В. В. Русакова¹⁾,
В. Р. Саркисян³⁾, Р. Станоева¹⁾, М. Хайдук⁵⁾, С. П. Харламов⁴⁾

ЯДЕРНАЯ ФИЗИКА, 2010, том 73, № 12, с. 2166–2171

— ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ —

ОБЛУЧЕНИЕ ЯДЕРНОЙ ЭМУЛЬСИИ В СМЕШАННОМ ПУЧКЕ РЕЛЯТИВИСТСКИХ ЯДЕР ¹²N, ¹⁰С И ⁷Ве

© 2010 г. Р. Р. Каттабеков^{1),2)}, К. З. Маматкулов^{1),3)}, Д. А. Артеменков¹⁾,
В. Браднова¹⁾, С. Вокал⁴⁾, Д. М. Жомуродов^{1),3)}, П. И. Зарубин^{1)*}, И. Г. Зарубина¹⁾,
З. А. Игамкулов^{1),3)}, Н. В. Кондратьева¹⁾, Н. К. Корнегруца¹⁾, Д. О. Кривенков¹⁾,
А. И. Малахов¹⁾, Г. И. Орлова⁵⁾, Н. Г. Пересадько⁵⁾, Н. Г. Полухина⁵⁾,
П. А. Рукояткин¹⁾, В. В. Русакова¹⁾, Р. Станоева^{1),6)}, М. Хайдук⁷⁾, С. П. Харламов⁵⁾

Detailed study of relativistic $^9Be \to 2\alpha$ fragmentation in peripheral collisions in a nuclear track emulsion*

D. A. Artemenkov**, D. O. Krivenkov, T. V. Shchedrina, R. Stanoeva, P. I. Zarubin

Анализ облучения в смешанном пучке релятивистских ядер ¹²N, ¹⁰C и ⁷Be

Амплитудный спектр со сцинтилляционного счетчика, установленного на месте облучения эмульсионной стопки при настройке канала транспортировки пучка на сепарацию ядер ¹²N; указаны положения пиков для ядер с зарядами $Z_{pr} = 4, 6$ и 7

Генерация ядер ¹²N и ¹⁰C осуществлена по средствам реакций перезарядки и фрагментации ускоренных ядер ¹²C.

Для ядер ¹⁰С и ¹²N отношений зарядов к весам Z_{pr}/A_{pr} отличаются всего на 3%, а импульсный аксептанс сепарирующего канала нуклотрона 2 - 3 %. В этой связи сепарация этих ядер невозможна, и ядра ¹⁰С и ¹²N присутствуют в пучке, образуя так называемый пучковый коктейль. В составе пучка присутствуют и ядра ⁷Be, у которых отличие по Z_{pr}/A_{pr} от ¹²N только 2%. Для соседних ядер ⁸B, ⁹C и ¹¹C отличие по Z_{pr}/A_{pr} от ¹²N оказывается около 10%, что обуславливает их подавление при облучении эмульсии.

Идентификация ядер ¹²N и ⁷Be в облученной эмульсии возможна по зарядам пучковых ядер Z_{pr} , определяемых методом счета δ -электронов на пучковых следах. В случае ¹⁰C необходимо убедиться в малом вкладе соседних изотопов C на основе зарядовой топологии «белых» звезд $\sum Z_{fr}$.

Стопка - 602.	Всего	''Белые''	λ Общая
(12 пластинок)	звёзды	звёзды	длина (см)
\sum	7241	608	108810.74

Анализ облучения ядрами ¹²N

He + 5H	9	2
2He +3H	24	12
3He +H	2	2
⁷ Be + 3H	10	5
⁷ Be+He + H	9	8
⁸ B + 2H	11	9
⁸ B + He	3	3
C + H	4	4

Распределение числа «белых» звезд по каналам диссоциации с суммарным зарядом фрагментов средний столбец – отбор с условием $\theta_{\rm fr} < 11^{\circ}$ (72 события); правый столбец – отбор с условием θ fr $< 6^{\circ}$ (45 событий)

Распределение по углам разлета Θ (He + He) пар фрагментов He для «белых» звезд 2He + 3H и 3He + H; на вставке увеличенное распределение Θ (He + He) в области наименьших значений.

Анализ облучения ядрами ¹⁰С

Ядро ¹⁰С является обладает супербороминовскими свойствами, поскольку удаление из него одного из четырех кластеров в структуре 2α + 2р (порог 3.8 МэВ) ведет к несвязанному состоянию

$\sum \mathbf{Z_{fr}}$	2He + 2H	He+4H	6H
N _{ws}	159	16	8
N _{tf}	211	76	16

Распределение по каналам диссоциации числа «белых» звезд $N_{ws}\,$ и событий с фрагментами мишени или рожденными мезонами N_{tf} , для которых выполняется условие $\sum Z_{fr}=6$

Распады несвязанных ядер ⁸Ве и ⁹В

Распределение фрагментов Не по «парным» углам

Распределение фрагментов по полярному углу вылета образующихся в «белых звездах» в канале ¹⁰С → 2He + 2H. (пунктирная линия – H, сплошная линия – He, кривая - распределения Релея)

Распределение событий фрагментации по величине энергии Q_{2α} пары α-частиц

$$M_{2\alpha} = \left[2 \left(m_{\alpha}^{2} + E_{\alpha 1} E_{\alpha 2} - p_{\alpha 1} p_{\alpha 2} \cos(\Theta_{12}) \right) \right]^{\frac{1}{2}}$$
$$Q_{2\alpha} = M_{2\alpha} - 2 \cdot m_{\alpha}$$

⁹Be→2*α*+*n*

Распределение событий фрагментации по величине энергии Q_{2α} пары α-частиц

$$M_{2\alpha} = \left[2 \left(m_{\alpha}^{2} + E_{\alpha 1} E_{\alpha 2} - p_{\alpha 1} p_{\alpha 2} \cos(\Theta_{12}) \right) \right]^{\frac{1}{2}}$$
$$Q_{2\alpha} = M_{2\alpha} - 2 \cdot m_{\alpha}$$

⁹Be→2*α*+*n*

Распределение событий фрагментации по величине энергии Q_{2α+p} α-частиц и протонов

Анализ облучения ядрами ⁷Ве

Попутно в этом облучении для ядра ⁷Ве набрана большая статистика по каналам диссоциации числа «белых» звезд N_{ws} и событий с фрагментами мишени или рожденными мезонами N_{tf} , для которых выполняется условие $\sum Z_{fr} = 4$.

Канал	2He	He + 2H	4 H	Li + H
N_{ws}	115	157	14	3
N_{tf}	154	226	-	-

Распределение по каналам диссоциации ядер ⁷Ве для «белых» звезд N_{ws} и событий с фрагментами мишени или рожденными мезонами N_{tf}

⁷Be→2He

канал	2He		число
	белые	небелые	
⁴ He+ ³ He	32	24	56
³ He+ ³ He	14	9	23

Fragmentation channel	2He		Total event	
r raginentation enamer	$n_b = 0$	$n_b > 0$	number	
⁴ He + ³ He	30	11	41	
³ He + ³ He	11	7	18	

 ${}^{12}C \rightarrow {}^{7}Be ({}^{12}N + {}^{10}C + {}^{7}Be \text{ at } 1.2 \text{ A GeV } 2006)$

 $^{7}\text{Li}\rightarrow^{7}\text{Be} (1.2 \text{ A GeV}, 2004)$

$$^{7}\text{Li}\rightarrow^{7}\text{Be}$$

(1.2 A GeV)
2004

Fig. 2. Distribution of the ${}^{4}\text{He} + {}^{3}\text{He}$ events in *E*. The numbers near the arrows are the excitation energies in the ${}^{7}\text{Be}$ nucleus in MeV.

$$Q_{{}_{He+}{}^{3}He} = M_{{}_{He+}{}^{3}He} - m_{{}_{He}} - m_{{}_{He}} + 1,59 MeV$$

 $^{7}Be \rightarrow {}^{6}Be \rightarrow {}^{4}He + 2 p$

$$Q_{4_{He+2p}} = M_{4_{He+2p}} - m_{4_{He}} - 2m_{p}$$

Пробеги ядер

Моделирования взаимодействия релятивистских ядер с ядрами эмульсии в Geant4

 $^{10}C + Em \rightarrow 2\alpha + 2p$

$$Q_{2\alpha} = M_{2\alpha} - 2 \cdot m_{\alpha}$$

Data modeling of ⁷Be EM dissociation at 1.2 A GeV

G4EMDissociation G4EMDissociationCrossSection Started: 3000 of ⁷Be nuclei at 1.2 A GeV Produced: 7 events of $^{7}Be \rightarrow ^{6}Be+n$;

⁶Be

Atomic Mass: 6.0197258 + 0.0000059 amu Excess Mass: 18374.465 + 5.468 keV Binding Energy: 26924.058 ± 5.468 keV Spin: 0+ Half life: 92 keV (5.0·10⁻⁶ fs) Mode of decay: 2 Proton to He-4 Decay energy: 1.372 MeV

Geant4 is a toolkit for the simulation of the passage of particles through matter. Its areas of application include high energy, nuclear and accelerator physics, as well as studies in medical and space science. The two main reference papers for Geant4 are published in Nuclear Instruments and Methods in Physics Research A 506 (2003) 250-303, and IEEE Transactions on Nuclear Science 53 No. 1 (2006) 270-278.

Applications

User Support

Results & Publications Collaboration

News

- 15 August 2012 -Geant4-MT prototype 9.5.p01 is available from the download area. • 29 June 2012 -
- Release 9.6 BETA is available from the Beta download area.
- 20 April 2012 -Patch-04 to release 9.4 is available from the archive download area.

23