Опытное облучение ядерной эмульсии и твердотельных трековых детекторов в прошедшем сеансе

Докладчик: Зайцев Андрей Александрович нс ЛФВЭ НЭОФТИ сектор №4

becquerel.jinr.ru

Содержание

- Метод ядерных эмульсий
- Метод пластиковых ТТД
- Исследование опытных образцов облученных:
 - На выведенном канале в точке F3
 - На экспериментальной установке BM@N
 - На станции облучения SOChI

1947 г

basic detector: AgBr crystal, size = 0.2 micron detection eff.= 0.16/crystal 10¹³ "detectors" per film

Метод твердотельных детекторов

Аллилдигликолькарбонат (АДК) «Columbia Resin» №39

 CH_2 H_2C

 $C_{12}H_{18}O_7$

Метод твердотельных детекторов

Протоны 1МэВ

	Материал	Условия травления	Самые легкие регистрируе- мые частицы	Крити- ческий угол	Эффектив- ность регистрации в режиме 2л	Фон трек см ⁻²	Обычное исполь- зование
Г Д В Ц () S	юлиаллил- цигликоль- сарбонат РАDС CR-39, SR-86, CZ)	6 N NaOH, 70°C, 1–4 ч; 6 N NaOH, 85°C, 180 мин	Н (<20 МэВ)	~10°	0.7	5-500	альфа- частицы, протоны

Метод твердотельных детекторов

Облучение ядерной эмульсии ядрами аргона (2014 г.)

треков	I область	II область	III область	Все
просмотренных квадратов	13	15	15	43
черных (Z=18)	63	65	96	224
черных (Z<18)	16	35	33	84
серых (Z=2)	10	8	11	29
релят. (Z=1)	64	93	92	249

Z=18 (38%)Z < 18 (14%)Z = 2 (5%)Z = 1 (43%)

Облучение ядерной эмульсии ядрами ксенона F3 (2022 г.)

Облучение ядерной эмульсии ядрами ксенона F3 (2022 г.)

Облучение ядерной эмульсии ядрами ксенона F3 (2022 г.)

Облучение ядерной эмульсии ядрами ксенона (2022

Облучение ядерной эмульсии ядрами ксенона (2022 г.)

Z=54 - 85% Z=1 - 15%

Облучение ядерной эмульсии BM@N (2023 г.)

Xe 3.86A GeV ~10⁷

Облучение ядерной эмульсии BM@N (2023 г.)

Сканирование ТТД

Figure 5: Olympus BX63 motorised microscope. 1) microscope camera, 2) lens revolver, 3) motorised stage, 4) microscope control units, 5) controller, 6) touch panel controller.

Сканирование ТТД

Count and Measure Results 👷 V 🌊 🖬 🖄 -

Sign Object Measurements 💹 Object Filter 📠 Class Measurements 🏥 Class Histogram 🙀 ROI Measurements 🙀 ROI Histogram 🙀 Relation Measurements														
	Object Class	Object ID	Area [µm²]	Center of Mass X [µm]	Center of Mass Y [µm]	Mean (Radius) [µm]	Aspect Ratio	Shape Factor	Perimeter [µm]	Mean (Gray Intensity Value)	Std Dev (Gray Intensity Value)	Mean (Color Intensity Value)	Convexity	
1471	<mark> </mark> 1	1471	3.9399	480.5583	143.8894	1.1178	1.0626	0.8803	6.6138	548.2963	50.5659	-	0.9818	
1472	1	1472	3.0643	576.1028	143.8408	0.9608	1.1429	0.8852	5.7571	559.8333	46.3650	-	0.9767	
1473	<mark> </mark> 1	1473	3.5021	598.2294	143.8344	1.0247	1.1429	0.9196	6.0735	544.2083	50.3078	-	1.0000	
1474	<mark> </mark> 1	1474	3.7210	714.7018	143.9138	1.0754	1.0833	0.8690	6.4555	551.8039	51.2457	-	0.9808	
1475	<mark> </mark> 1	1475	3.5751	844.7516	143.8454	1.0542	1.1250	0.8193	6.5211	543.4898	61.7312	-	0.9423	
1476	<mark> </mark> 1	1476	4.0128	903.8446	143.9424	1.1293	1.1250	0.8940	6.6793	545.0545	65.6712	-	0.9821	
1477	<mark> </mark> 1	1477	5.9098	609.7833	144.6614	1.3088	1.5000	0.8326	8.5893	538.2716	58.7182	-	0.9759	
1478	<mark> </mark> 1	1478	11.3088	213.6015	144.7545	1.7245	2.0000	0.4209	16.6655	535.1032	59.6994	-	0.8031	
1479	<mark> </mark> 1	1479	3.9399	254.6201	144.5096	1.1013	1.1615	0.8237	6.8375	545.8889	58.0401	-	0.9474	
1480	1	1480	3.5751	542.3260	144.5124	1.0465	1.0772	0.8786	6.2973	540.6327	48.0619	-	0.9800	
Count	-	-	5803	5803	5803	5803	5803	5803	5803	5803	5803	0	5803	
Count in filter ranges	-	-	5803	5803	5803	5803	5803	5803	5803	5803	5803	0	5803	
Mean	-	-	4.1059	573.9250	283.8555	1.0998	1.2537	0.7739	7.6998	561.3611	51.9048	-	0.9308	
Standard Deviation	-	-	1.7908	321.0697	165.1803	0.2066	0.4723	0.2221	4.4597	30.7914	17.3440	-	0.1131	
<														>
Ready											Q. 400 % (50.4)	x)	*	

cS

Q 400 % (50.4x)

Облучение ТТД СR39 в ВМ@N (2023 г.)

Условия травления:

6M NaOH, T=85°C, t=20 min

Figure 14: Spatial distribution of dip over the area of the CR-39 SSNTD. The bin width is 0.5 mm. On the right there are the centres of the analysed squares.

Table 3. Estimation of track density by the visual method.

No.	Square side	Total number	Number of	ratio of tracks to	Fluence	
Square	[mm]	of dips	tracks	dips	[mm ⁻²]	
1	0.25	1370	1601	1.16862	25616	
2	0.25	1288	1487	1.15450	23792	
3	0.25	1110	1250	1.12613	20000	
4	0.25	982	1077	1.09674	17232	
5	0.25	744	776	1.04301	12416	
6	0.25	502	528	1.05179	8448	
7	0.5	980	991	1.01122	3964	
8	1	772	772	1.00000	772	

Пучок имеет эллиптическую форму с

наклоном эллипса около 45°.

Эллипс пучка, внутри которого плотность «дырок» превышает 10³ мм⁻² имеет размеры большой и малой полуосей порядка 16 и 8 мм

соответственно.

Режимы облучения:

- CR39. Расфокусированный пучок с флюенсом 1,8*10^{3 частиц}/_{см2} за сброс. Набрано 3 сброса.
- CR39. Расфокусированный пучок с флюенсом 2,8*10^{4 частиц}/_{см2} за сброс. Набрано 4 сброса.
- ПЭТФ. Расфокусированный пучок с флюенсом 2,8*10^{4 частиц}/_{см2}
 за сброс. Набрано 36 сбросов.
- 4. СR39. Сфокусированный пучок с флюенсом ≈10⁶-10^{7 частиц}/_{см2}
 за сброс. Набран 1 сброс.

[mm]

Условия травления:

6M NaOH, T=85°C, t=80 min

Образец №2

Условия травления:

6M NaOH, T=85°C, t=10 min (можно меньше)

Спасибо за внимание