Measurement of the fragmentation of Carbon ions with nuclear emulsions for medical applications

Adele LAURIA On the behalf of Naples emulsion group University of Naples "Federico II", Italy INFN, Naples

Outline

- Hadrontherapy motivation
- The ¹²C fragmentation measurement with the Emulsion Cloud Chamber (ECC) detector
- The FIRST detector
- Measurements at GSI in the FIRST set-up
- Preliminary results
- Conclusion

Outline

- Hadrontherapy motivation
- The ¹²C fragmentation measurement
- The Emulsion Cloud Chamber (ECC) detector
- The FIRST detector
- Measurements at GSI in the FIRST set-up
- Preliminary results
- Conclusion

Hadrontherapy motivation

For hadrons (compared to X and γ):

• Energy deposited at the end of ionization range

For ¹²C (compared to protons):

- Reduced lateral and longitudinal diffusion;
- Higher therapeutic effectiveness;
- Tissue thickness tunable by changing the nuclei energy;
- Less energy deposited to healthy neighboring tissues

Hadrontherapy

Facilities in Europe:

http://enlight.web.cern.ch/facilities

Patient Statistics (for facilities in operation at the end of 2012):

	WALEDE	DADTIOLE	CIDAT	DATIENT	DATE OF	r
	WHERE	PARTICLE	PIROI	TOTAL	DATE OF	
Casada	Vancouver (TRILIME)	~	1000	120	Decv12	ocular humans only
Crech Ren	Proc (PTCC2)	5	2012	1	Dec-12	ocular turnors only
China	Wanie (WETC)	5	2004	1078	Dec-12	
China	Lanzhou	Cion	2006	194	Dec-12	
Contract	Calledoridae	0.01	4000	2202	Dec-12	ocular turners only
England	Clateronoge	5	1909	4500	Dec-12	occurate turners only
France	NICE (CAL)	5	1001	4052	Dec. 12	4749 equips haven
Conce	Dedia (UNII)	2	1000	2040	Dec-12	4746 ocular turnors
Germany	Munich (PRTC)	2	2000	1377	Dec-12	ocular turnors only
Germany	Marich (PP 10)	C inc	2005	13/1	Dec-12	
Germany	HIT, Heldelberg	Cition	2010	980	Dec-12	
Germany	HII, Heldelberg	P	2010		Dec-12	
nary	Catania (INFINENS)	P	2002	233	NOV-12	ocular tumors only
nary	Pava (CNAO)	P	2011	42	Dec-12	
nary	Pavia (CINNO)	Cion	2012	3	Dec-12	
Japan	Chiba (HIMAC)	Cion	1994	7331	Jan-13	72 with scanning
Japan	Kashiwa (NCC)	P	1998	1226	Mar-13	
Japan	Hyogo (HIBMC)	P	2001	3198	Dec-11	
Japan	Hyogo (HIBMC)	Cion	2002	1271	Dec-11	
Japan	Tsukuba (PMRC, 2)	P	2001	2516	Dec-12	
Japan	Shizuoka	P	2003	1365	Dec-12	
Japan	Kortyama-City	P	2008	1812	Dec-12	
Japan	Gunma	Cion	2010	537	Dec-12	
Japan	Ibusuki (MMRI)	P	2011	490	Dec-12	
Korea	lisan, Secul	P	2007	1041	Dec-12	
Poland	Krakow	P	2011	15	Dec-12	ocular tumors only
Russia	Moscow (ITEP)	P	1969	4300	Dec-12	estimated
Russia	St. Petersburg	P	1975	1386	Dec-12	
Russia	Dubna (JINR, 2)	P	1999	922	Dec-12	
South Africa	Themba LABS	P	1993	521	Dec-11	
Sweden	Uppsala (2)	P	1989	1267	Dec-12	
Switzerland	Villgen PSI, Incl OPTIS2	P	1996	1409	Dec-12	498 ocular tumors
USA, CA	UCSF - CNL	P	1994	1515	Dec-12	ocular tumors only
USA, CA	Loma Linda (LLUMC)	p	1990	16884	Dec-12	-
USA, IN.	Bloomington (IU Health PTC)	P	2004	1688	Dec-12	
USA, MA	Boston (NPTC)	P	2001	6550	Oct-12	
USA, TX.	Houston (MD Anderson)	P	2006	3909	Dec-12	
USA, FL	Jacksonville (UFPTI)	P	2006	4272	Dec-12	
USA, OK.	Oklahoma City (ProCure PTC)	D	2009	1045	Dec-12	
USA PA	Philadelphia (UPenn)	D	2010	1100	Dec-12	
USA, NY,	New Jersey ProCure PTC)	D D	2012	137	Dec-12	
USA, IL.	CDH Warrenville	p	2010	840	Dec-12	
USA, VA	Hampton (HUPTI)	P	2010	489	Dec-12	
				88448	Total	
			thereof	10316	Cions	
				78132 protons		

Patient Statistics (for facilities in operation end of 2012):

Total for all facilities (in operation and out of operation):

2054 He 1100 pions 10756 C-lons 433 other ions 93895 protons 108238 Grand Total

http://enlight.web.cern.ch

Fragmentation of ¹²C

- Nuclear fragments are generated during the interaction inside the tissue
- Fragments have higher range and different direction with respect to primary ions
- Precise knowledge of fragments is necessary to predict the detailed irradiation of the neighboring tissues and, thereby, optimization of the therapy with higher effectiveness

What we need to know

- Kind of fragments
- Which energy?
- Which angle?

Simulation: A. Mairani PhD Thesis, 2007, Nuovo Cimento C, 31, 2008

Outline

- Hadrontherapy motivation
- The ¹²C fragmentation measurement with the Emulsion Cloud Chamber (ECC) detector
- The FIRST detector
- Measurements at GSI in the FIRST set-up
- Preliminary results
- Conclusion

Carbon exposure at HIMAC* (NIRS**- Chiba(Japan))

*Heavy Ion Medical Accelerator **National Institute of Radiological Sciences

The structure of the Emulsion Cloud Chamber

• ECC structure:

- "OPERA" type: alternate passive and sensitive material
- ➢ High resolution tracking device: nuclear emulsion (300 µm thick)
- Passive material: lexan plates 1 mm thick
- 73 consecutive "cells": 219 alternate nuclear and lexan layers

• Lexan: $\rho = 1.15 \text{ g/cm}^3$ and electron density=3.6·10²³/cm³ (water: 3.3·10²³/cm³) Elementary cells 12 \leftrightarrow 300 µm 1000 um EMULSION LAYER

The cell structure of the Emulsion Cloud Chamber

Emulsion were differently treated after the exposure and before the chemical treatment according to their position in the elementary cell (0, 1, 2)

• R0:

- Not refreshed
- Developed soon after the exposure
- Sensitive to m.i.p.
- R1:
 - 3 day refreshing at 98% relative humidity at 30° C
 - Insensitive to m.i.p.
 - Sensitive to protons
- R2:
 - \circ 3 day refreshing at 98% relative humidity at 38° C
 - Sensitive to He

Nuclear emulsion

- Charged particle detector
- First kind of detector for ionizing radiation
- AgBr crystal (0.2 μm) is the elementary detection cell
- The particle tracking is registered from the AgBr grains along its path

Microscope image

OPERA emulsions

OPERA industrial emulsions from FujiFilm

• The AgBr density in the OPERA emulsions is higher in respect to the commercial films

•Special R&D for OPERA: the double pouring procedure

Before refreshing >30 tracks/mm²

After refreshing ~1 tracks/mm^2

150 microns

Emulsions are continuously sensitive detector ALL charged particle: cosmic rays, natural radioactivity etc recorded as a latent images. They can be partially erased by a "refreshing" procedure applied just before the detector assembling.

Emulsion scanning system

OPERA expertise in scanning

- 3d track reconstruction
- Scanning speed: 20 cm²/h
- Spatial resolution: ~0.3 μm
- Angular resolution: ~2 mrad
- Detection efficiency of the tracks: ~95%

Principle of scanning emulsion

16 images taken through 44-micron emulsion layer

Automatic scanning system

- Micro-track reconstruction in one emulsion layer by combining clusters belonging to images at different levels.
- Micro-tacks are connected across the plastic base to form a base-tracks.

Results

Combining the information on consecutive films to get rid of the saturation effect R0 vs R1 and R1 vs R2 scatter plot

Journal of Instrumentation 2 (2007) P06004

Charge identification

Charge separation

Journal of Instrumentation 2 (2007) P06004

Scattering angle of emitted particles

Cross-section measurement

- A volume of about 24 cm³ analyzed
- Average energy of the Carbon beam: 315 MeV/n
- Counting the events with Lithium ($\Delta z = 3$), Beryllium ($\Delta z = 2$) and Boron ($\Delta z = 1$) as the heaviest particle in the final state

4000

$$\sigma(\Delta z = 1) = (2510 \pm 140_{stat} \pm 250_{sys}) \text{mbarn}$$

$$\sigma(\Delta z = 2) = (1170 \pm 90_{stat} \pm 120_{sys}) \text{mbarn}$$

$$\sigma(\Delta z = 3) = (1460 \pm 105_{stat} \pm 150_{sys}) \text{mbarn}$$

$$\sigma(\Delta z = 3) = (1460 \pm 105_{stat} \pm 150_{sys}) \text{mbarn}$$

$$\sigma(\Delta z = 3) = (1460 \pm 105_{stat} \pm 150_{sys}) \text{mbarn}$$

$$\sigma(\Delta z = 3) = (1460 \pm 105_{stat} \pm 150_{sys}) \text{mbarn}$$

Black points: Phys.Rev.C75 (2007) 054606

⁸Be production Cross Section

- $^{8}\text{Be} \rightarrow \text{He} + \text{He} (10^{-16} \text{ s})$
- Q value 90 keV → small opening angle
- Opening angle between pairs of reconstructed Helium tracks

 $\sigma(C \rightarrow 8Be) = (190 \pm 40)$ mbarn

Outline

- Hadrontherapy motivation
- The ¹²C fragmentation measurement with the Emulsion Cloud Chamber (ECC) detector
- The FIRST detector
- Measurements at GSI in the FIRST set-up
- Preliminary results
- Conclusion

FIRST experiment

- FIRST: Fragmentation of Ions Relevants for Space and Therapy
- Aim:
 - ✓ Production yelds of Z=0, 1, 2, 3, 4, 5 fragments
 - Measurement of cross section wrt angle and energy, with large angular acceptance
- A collaboration among:
 - INFN: Cagliari, LNF, LNS, Milano, Napoli, Roma3, Torino;DSM/IRFU/SPhN CEA Saclay, IN2P3 Caen, Strasbourg, Lyon;GSI:
 - ✓ Therapeutical beam of 12 C @ 200-400 MeV/n available
 - Existing setup designed for higher E and Z fragments: Dipole magnet, Large Volume TPC, TOF Wall, low angle Neutron detector.

ESA, CERN

What do we expect from MC (FLUKA)?

- The Z>2 produced fragments approximately have the same velocity of the ¹²C beam projectiles and are collimated in the forward direction
- The protons are the most abundant fragments with a wide angular distribution and a kinetic energy spectrum up to 1 Gev/n
- The Z=2 fragment are emitted within 20° of angular aperture

FIRST set up

The measurements were performed at the GSI facilities, where a therapeutical beam of ¹²C @ 200-400 MeV/n is available

Outline

- Hadrontherapy motivation
- The ¹²C fragmentation measurement with the Emulsion Cloud Chamber (ECC) detector
- The FIRST detector
- Measurements at GSI in the FIRST set-up
- Preliminary results
- Conclusion

The FIRST set-up

"FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy" Journal of Physics: Conference Series **420** (2013) 012061 doi:10.1088/1742-6596/420/1/012061

Beam exposure of ECC

- ¹²C beam with 400 MeV/n
- Carbon target (8 mm thick)
- Two ECC were collocated inside the detector FIRST
- Dedicated study on large angle track detection

ECC strucutre

ECC structure:

- Not homogeneous structure
- 6 consecutive emulsion films
- 56 nuclear emulsion layers (300 $\mu m)$ interleaved with 56 lead plates (1 mm)

Outline

- Hadrontherapy motivation
- The ¹²C fragmentation measurement
- The Emulsion Cloud Chamber (ECC) detector
- The FIRST detector
- Measurements at GSI in the FIRST set-up
- Preliminary results
- Conclusion

ECC 2: Tracks angular distribution

Signal and cosmic rays

- 20 emulsions were scanned (6 consecutive emulsions and 14 emulsions interleaved with lead)
- Data were scanned and processed up to tg $\theta \le 2$

Signal cut:

 $-0.9 \le \text{tg }\Theta_x \le -0.1$ $-0.3 \le \text{tg }\Theta_y \le 0.28)$

Signal is effectively measured at: $3^{\circ} \le \theta \le 40^{\circ}$ (for ECC2) $40^{\circ} \le \theta \le 60^{\circ}$ (for ECC1) as it was expected from the exposition geometry

Signal and cosmic ray range distribution

preliminary results

Tracks selected:

• $-0.9 \le \text{tg }\Theta_x \le -0.1$

•
$$-0.3 \le \text{tg }\Theta_y \le 0.28$$

• number of segments ≥ 2

Reconstruction efficiency

Efficiency vs tracks slope

Angular distribution of only signal corrected by efficiency

CR/(S+CR)=24.4%

preliminary results

Kinematical measurements

1. Momentum measurement by multiple coulomb scattering (MCS)

From the slope measurements along the particle track of the same particle obtained from the ECC it is possible to calculate the particle impulse in the range: 200 MeV/c \div 2 GeV/c

The algorithm was used for OPERA experiment and is based on:

 $p (MeV/c) = \frac{13.6}{\beta \,\delta\theta \,(mrad)} \sqrt{\frac{X}{X_0}}$

"Momentum measurement by the angular method in the Emulsion Cloud Chamber", Nuclear Instruments and Methods in Physics Research A 512 (2003) 539–545

Kinematical measurements 1.Momentum measurement by MCS

- Tracks behind the first 6 emulsions
- Tracks with at least 3 segments passing through

11 % of the total tracks of the sample

preliminary results

Kinematical measurements 2. Momentum measurement by range

- Tracks for which it is not possible the measurement by the MCS method
- Tracks stopped in the first 6
 emulsions
- Tracks not stopped inside the considered volume (20 layers)

82 % of the total tracks of the sample

preliminary results

Outline

- Hadrontherapy motivation
- The ¹²C fragmentation measurement with the Emulsion Cloud Chamber (ECC) detector
- The FIRST detector
- Measurements at GSI in the FIRST set-up
- Preliminary results
- Conclusion

Conclusions

- Emulsion Cloud Chamber technique used to study the fragmentation of Carbon ions
 - 1. Homogeneous ECC used as target and detector
 - 2. Not Homogeneous ECC used as detector

From these studies:

- Discrimination of produced fragments in Z
- Charge-changing cross-section measured
- Moment measurement with MCS algorithm and range method

Backup slides

Interaction length of secondary ions

$$\lambda_{H} = 14.0 \pm 1.2mm$$
 $\lambda_{He} = 19.3 \pm 2.3mm$

Fig. 9. Opening angle between pairs of reconstructed Helium tracks (left). A peak is visible below 20 mrad. No peak is visible in the distribution of the opening angles between Helium and Hydrogen (right). Note the different horizontal scales of the histograms.

The histogram on the left of Fig. 9 shows the opening angle of two Helium nuclei: an excess of events is visible below 20 mrad. On the contrary, no peak is visible when the opening angle of H–He is plotted (histogram on the right). Note the different scale of the two histograms. The background comes essentially from accidental He–He combinations. Their distribution appears

to be compatible with that shown by H–He opening angle. We thus subtract from the He–He distribution a background having the shape of the H–He opening angle distribution. We obtain an excess of 25 ± 5 events corresponding to the ⁸Be signal. From the observed excess of events, we get the cross-section of the ⁸Be production:

$$\sigma(^{8}\text{Be}) = 190 \pm 40 \text{ mbarn}$$
(6)

The histogram on the left of Fig. 9 shows the opening angle of two Helium nuclei: an excess of events is visible below 20 mrad. On the contrary, no peak is visible when the opening angle of H–He is plotted (histogram on the right). Note the different scale of the two histograms. The background comes essentially from accidental He–He combinations. Their distribution appears

to be compatible with that shown by H–He opening angle. We thus subtract from the He–He distribution a background having the shape of the H–He opening angle distribution. We obtain an excess of 25 ± 5 events corresponding to the ⁸Be signal. From the observed excess of events, we get the cross-section of the ⁸Be production:

$$\sigma(^{8}\text{Be}) = 190 \pm 40 \text{ mbarn}$$
(6)

Reconstruction efficiency

Tracks selected:

- angle selection
- number of segments ≥ 2
- Number of plates ≥ 6

 $0.1 \le \text{tg }\Theta_x \le 0.9$ - $0.3 \le \text{tg }\Theta_y \le 0.28)$

 $-0.9 \le \text{tg }\Theta_x \le -0.1$ $-0.3 \le \text{tg }\Theta_y \le 0.28$

Data (images) processing and motion control flow in the ESS

Functional blocks

Cosmic-ray angular distribution

