

Monopole and Exotics Detection At the LHC

Vlad Popa **Institute for Space Science**

Work partially supported by *Us fiscdi* under Contract 32/2011

Outlook:

- Introduction: basic information on MoEDAL
- Detection techniques
- Expected sensitivity (results)
- MoEDAL timeline
- A virtual tour inside MoEDAL

- Introduction: basic information on MoEDAL
- Detection techniques
- Expected sensitivity (results)
- MoEDAL timeline
- A virtual tour inside MoEDAL

MoEDAL's main physics goal is to look for Magnetic Monopoles produced in *pp* interactions at LHC energies, but not only...

MoEDAL is the 7th LHC experiment, approved in May 2010.

MoEDAL shares intersection point 8 on the LHC ring with LHCb

DETECTOR SYSTEMS

1)The main NTD array (Z/ β > ~5)

2)The Very High Charge Catcher NTD array (Z/b > ~50)

3)The Monopole Trapping detector

4) The TimePix radiation background monitor

MoEDAL is unlike any other LHC experiment:

- The largest deployment of passive Nuclear Track Detectors (NTDs) at an accelerator (250 m²)
- The 1st time that trapping detectors will be deployed at LHC

← New ideas (Dec 2011)

~ 50 physicists from 20 institutes in 12 countries (Sweden recently joined)

- Introduction: basic information on MoEDAL
- Detection techniques
- Expected sensitivity (results)
- MoEDAL timeline
- A virtual tour inside MoEDAL

1. The main NTD array, $Z/\beta \ge 5$

NTD's calibration, etching and scanning

Calibrations (BNL, Fe, 1AGeV)

Chemical etching (INFN Bologna)

Fast scanning with stereo microscopes

<u>2. The Very High Charge Catcher (flexible) NTD array</u>, $Z/\beta \ge 50...$

<u>3. The monopole trapping detectors</u> will be deployed in the LHCb cavern. They will consists in closely packed Al bars. The binding energy of monopoles in nuclei with finite magnetic dipole moments ~ few 100 keV.

After exposure some of them will be transferred to the SQUID magnetometer at ETH Zurich, able to detect magnetic fields corresponding to $g_D \ge 0.1$.

Other trapping detectors will be moved to SNOLAB (2km underground) in order to measure possible Massive Supersymetric Particle decays.

The TimePix radiation background monitor

- Timepix (MediPix) chips are used to measure online the radiation field + measure the spallation product bkg.)
- The TimePix chip is essentially an electronic bubble chamber

- Introduction: basic information on MoEDAL
- Detection techniques
- Expected sensitivity (results)
- MoEDAL timeline
- A virtual tour inside MoEDAL

Accele- Rator	Reaction	Beam Energy Gev	vs GeV	Mass limit GeV	Cross Section cm ²	MM Charge	TECN	Year	Ref.
LBL	pA	6.2	3.76	<1	1.e-40	1	EMUL	1959	14
CERN	pA	28.0	7.6	<3	1.e-35	<4	CNTR	1961	15a
AGS	pA	30.0	7.86	<3	2.e-40	<2	CNTR	1963	15
CERN	pA	28.0	7.6	3	1.e-40	2	EMUL	1963	15b
IHEP	pA	70.0	11.9	<5	1.e-41		EMUL	1972	16
FNAL	pA	400	28.3	<13	5.e-42	<24	CNTR	1974	17a
ISR	pp	60	60	<30	1.e-36	<3	PLAS	1975	25
FNAL	pA	400	28.3	<12	5.e-43	<10	INDU	1975	17
FNAL	pA	300	24.5		2.e-30		OSPK	1975	17b
THEP	pA	70	11.9	<5	1.e-40	2	CNTR	1976	17c
CERN	pp	56	56	<30	1.e-37	<3	PLAS	1978	26
CERN	pp	63	63	<20	1.e-37	<24	CNTR	1978	17d
SLAC	e+e-	29	29	<30	4.e-38	<3	PLAS	1982	27
CERN	pp	52	52	<20	8.e-36		CNTR	1982	24
CERN	ete.	34	34	10	4.e-38	<6	PLAS	1983	29
CERN	PP	540	540		1.e-31	1,3	PLAS	1983	18
SLAC	ete.	29	29		3.e-38	<3	PLAS	1984	28
FNAL	pap	1800	1800	<\$00	3.e-38	>=1	PLAS	1987	18a
CLEO	ete.	10.6	10.6	<4	9.e-37	<0.15	CLEO	1987	18b
CERN	e+e-	50-52	50-52	<24	8.e-37	1	PLAS	1988	18c
DESY	e+e.	35	35	<17	1.e-38	<1	CNTR	1988	30
KEK	e+e-	50-61	50-61	<29	1.e-37	1	PLAS	1989	31
FNAL	pp	1800	1800	<\$50	2.e-34	>=0.5	PLAS	1990	23
CERN	e+e-	\$8-94	88-94	<45	3.e-37	1	PLAS	1992	32
CERN	e+e-	88-94	88-94				PLAS	1993	33
CERN	PbA	160A	17.9	<8.1	1.9e-33	>=2	PLAS	1997	18d
AGS	AuAu	11A	4.87	<33	0.65e-33	>=2	PLAS	1997	18d
FNAL	pap	1800	1800	260-420	7.8e-36	2-6	INDU	2000	19
FNAL	pap	1800	1800	265-410	0.2e-36	1-6	INDU	2004	20
HERA	e+p	300	300		0.5e-37	1-6	INDU	2005	22
FNAL	pap	1800	1800	369	0.2e-36	>=]	CNTR	2006	34

Monopole searches have been performed at many particle accelerators....

14 experiments used plastic NTDs

3 experiments used emulsions

3 experiments used induction

11 experiments used counters

Some recent results from recent (past 5 years) experiments

MoEDAL sensitivity for monopoles and highly ionizing exotic massive particles (4 years of exposure, ~ 20 fb⁻¹ integrated *L* at 14 TeV)

MoEDAL is background free (in the Standard Model), so a single event could significate a discovery. This is not the case of the other LHC experiments.

- Introduction: basic information on MoEDAL
- Detection techniques
- Expected sensitivity (results)
- MoEDAL timeline
- A virtual tour inside MoEDAL

First detectors (10 sqm of plastic) deployed in Nov. 2009)

We deployed a larger area of plastic (~80 m²) in Jan. 2011

Test deployment of TimePix detectors in Feb. 2012

Test Deployment of MMT sub-detector in Sept. 2012

Full deployment is planned for the year long shutdown starting in 2013/2014.

In 2015 expect to have our first "official" run to be continued until we reach a ΣL of \geq ~10fb⁻¹ at 14 TeV.

- Introduction: basic information on MoEDAL
- Detection techniques
- Expected sensitivity (results)
- MoEDAL timeline
- A virtual tour inside MoEDAL