



# Automated analysis of nuclear emulsions using new tracking technique

presented by <u>Tsutomu Fukuda</u> ( Toho University )

Workshop on Nuclear Track Emulsion and its Future, 15 Oct 2013, Predeal Romania

### History of automated analysis of nuclear emulsion in Japan

- Modern applications of nuclear emulsions in the field of high energy physics has been progressed with development of automated track recognition technology.
- In 1970's, K. Niwa designed an automated tracking algorithm, then S. Aoki and T. Nakano developed practical and high speed systems (Track Selector : TS).
- These systems were applied for Fermi lab-E653, CHORUS, DONuT and OPERA in success.



# **Introduction for new tracking technique**

- Nowadays the technique of high speed emulsion scanning has made a major progress.
- On the other hand, new development which is qualitatively different from conventional strategy is also important to open up new possibility for the future.
- We have been developing the automatic track recognition technique of nuclear emulsion on basis of new concept, i.e. "Large angle tracking" and "High discriminated tracking".
- I will introduce pioneer works of developing such new tracking technique and its application for scientific analysis.



# Fine Track Selector (FTS) at Toho univ.

#### • system overview





# Large angle tracking



# **Conventional Tracking algorithm**



### Large angle track scanning



### **Physics motivation with large angle scan**

- Hadron interaction analysis is very important for verification of MC to estimate τ → hadron decay channel background in the OPERA experiment. We also want to reduce this background.
- Nuclear fragment from vertex is very strong proof of Hadron interaction.
- Nuclear fragments are produced in the nuclear evaporation process caused by an excitation of the nucleus and they are emitted almost isotropically.
- Therefore the scanning system with wide-angle acceptance is required for the systematic nuclear fragment search in hadron interaction analysis.



#### Systematic hadron int. analysis in OPERA type ECC

#### We have been studied hadron int. in the OPERA ECC.



# **Search for Black Track**



- Scanned area : 3.5 x 2.5 mm<sup>2</sup>, upstream and downstream films of the vertex
- Angular acceptance :  $|\tan \theta| \le 3.0$
- Impact parameter < 100(50) mm + 0.01 x depth
   (@ 2, 4 (10)
   GeV/c)</li>
- Estimated number of background tracks : 0.035
  tracks/event
- Eye check confirmation after selecting candidates.

#### PH distribution of Black Track on each angle



### Analysis result for Nuclear fragments in hadron int.

#### Nuclear fragments associated probability Associated probability of nuclear fragments Beam momentum [GeV/c] 4 10 50% 32 Events 31 66 Fragment associated events 10 18 42 $31.3^{+9.1}_{-6.9}$ $58.1^{+8.1}_{-9.1}$ $63.6^{+5.0}_{-5.7}$ Fragment associated probability [%] Data: MC : **Topological aspects** 10 2 Incident beam momentum (GeV/c) of Nuclear fragments 2GeV/c 4GeV/c 10GeV/c Black multiplicity Data and MC is good agreement. mber of nuclear f This result allowed to Slope distribution reduce 30% hadorn backward forward BG in OPERA. 東邦大学 Polar angle ( $\cos \theta$ ) Polar angle $(\cos \theta)$ Polar angle (cos $\theta$ )

### Large angle scan for minimum ionizing particles

- We found the tracking efficiency of large angle MIPs is kept sufficiently high in large angle Black Track analysis.
- PH distribution of large angle MIPs also make mountain as PH distribution of small angle MIPs.

PH sum on both side tracks





MIP at OPERA film G.D. ~ 34



#### Large angle tracking

#### Beam exposure at CERN to make sample for evaluation of large angle scan



#### Large angle tracking

### Analysis and results of automatic scanning for large angle MIP



# **Short summary**

- We developed an technique for automatic large angle tracking.
- This technique was applied for hadron analysis and also BG reduction for OPERA.
- The HIGH automatic recognized efficiency for large angle MIPs is found in our work.
- Currently, there is many other trial and update for large angle tracking. (see Ariga's talk and Valeri's poster)



# High discriminated tracking



### **Current emulsion analysis in OPERA film**



- After reconstructing tracks in normal scan, there is many chance coincidence of Noise track. so we must judge signal/noise by eye for OPERA film.
- We want to reduce eye check process because it's heavy work. This is the motivation for development of high discriminated (S/N) tracking.

# Past progress for high S/N tracking

- We developed a high discriminated method on basis of log-likelihood for CS analysis in OPERA. [Track Ranking method: T.Fukuda et al., 2010 *JINST* 5 P04009]
- Selection parameter is linearity and blackness of track data.



Selection parameter from normal scan is finish up. So tracking algorithm itself should be improved for furthermore S/N improvement.



# **Tracking in FTS**

#### High S/N tracking



### **Evaluation of noise reduction rate**

- Sample films were exposed beam.
- Films were scanned by normal scan at first.



#### The sample for evaluation



Sample ( $|\tan\theta| < 0.2$ ) were checked by eye (  $-5 \le R < 5$  ).

- Signal track  $\rightarrow$  95 base tracks
- Noise track  $\rightarrow$  441 base tracks



### Effect of 32 layer scan

#### All micro tracks were re-measured by FTS.



#### Re-recongized rate in FTS

• Scanning condition : The brightness filter for binarization and the expansion filter is changed.



• The selection parameter [99% re-recongized rate for True tracks] is chose.

 If we reject tracks which are not re-recognized on both side, 58% Noise track is reduced.



one track

#### <u>Track Ranking using new selection parameters</u>

• The status of new selection parameter for True tracks and Fake Tracks.



### Track Ranking using new selection parameters

• The status of new selection parameter for True tracks and Fake Tracks.





### **Current noise reduction rate by FTS**



|        | FTS:32layer scan    | FIS: new prm        | for OPERA film | doublet |
|--------|---------------------|---------------------|----------------|---------|
| Signal | $95 \rightarrow 94$ | $94 \rightarrow 94$ | 94/95 = 0.99   | 0.98    |
| Noise  | 441 → 186           | 186 → 94            | 94/441 = 0.21  | 0.05    |
| 24     |                     |                     |                | AF LINE |

# **Summary**

- We have been developing High discriminated tracking method.
- This will allow an automation of emulsion analysis.
- We also developed an technique for automatic large angle tracking.
- This technique was applied for hadron analysis and also BG reduction for OPERA.
- The HIGH automatic recognized efficiency for large angle MIPs is found in our work.
- In this talk, I introduced pioneer works which is qualitatively different from conventional development strategy [speed up].
   I hope many kind of improvement for scanning is done.

