Directional Dark Matter Search With Ultra Fine Grain Nuclear Emulsion

Takashi Asada Flab, Nagoya University JSPS Research Fellow

Index

- Dark Matter
 - About dark matter
 - Dark matter search experiments
- Emulsion R&D
 - New production method
 - Sensitivity control
- Readout R&D
 - Optical microscope
 - X-ray microscope
- Activity

Index

- Dark Matter
 - About dark matter
 - Dark matter search experiments
- Emulsion R&D
 - New production method
 - Sensitivity control
- Readout R&D
 - Optical microscope
 - X-ray microscope
- Activity

Dark Matter Problem

Existence of Dark Matter around Solar System

Rotation Velocity Curve of Milky way Galaxy

High accuracy measurement by VERA (2012) rotation velocity of solar system : 240 +- 14 km/sec

Direct Dark Matter Search

Target : Xe, Ge, Si, NaI, Ar etc

Current Method of Dark Matter Identification

Status Cross Section Limit

DAMA/LIBRA [NaI, 8.9σ annual modulation

days since Dec 3 2009

Directional Dark Matter Search with Nuclear Emulsion

Expected Range of Signal Tracks

Ideal Cross Section Simulation [spin independent, 25kg· y, 90% C.L.]

Index

• Dark Matter

- About dark matter
- Dark matter search experiments

• Emulsion R&D

- New production method
- Sensitivity control
- Readout R&D
 - Optical microscope
 - X-ray microscope
- Activity

How we detect short tracks?

Micronization of crystals is the key to detect short tracks

Production of Emulsion in Nagoya (2010~)

Production term: **4h** Scale: **100g/batch** (dry condition)

We are planning new machine of the tripled volume (2013-14). →20kg/month ~100kg experiment is possible

• cooperation of Fuji Film OB for machine and production

For dark matter

SEM Image

New production method for micronization

Produced emulsions

Current Fine-grain detector

		NIT	U-NIT
• Reproducibility of them is good	crystal density	12 crystal/µm	29 crystal/µm
	Detectable range	> 200 nm @ C	>100 nm @ C
• Size is stable while 3.0-3.7 g/cm ³	Tracking E threshold	>80 keV @ C	> 35-40 keV @ C

Short Track sensitivity

Ion implantation machine Low energy ion is same to recoil signals

preliminary Tracking efficiency of NIT : 175keV (520nm expected): 80% 80keV (250nm expected) : 50% →each crystal sensitivity : 50%?

U-NIT sensitivity is quite low

Our next task is Sensitizing

implanted ions on emulsion surface

Scanning Electron Microscope

sensitivity control

- Main background : intrinsic radio isotope
 (e.g. C-14, Th · U families etc.) → γ · β backgrounds
- Target nuclei to DM : C, N, O \rightarrow Total dE/dx > ~100 keV/µm

To make high contrast threshold of dE/dx

- e.g.
- doping impurities to capture electron / hole
- adding pigments or chemicals on surface for sensitizing and anti-fog
- upgrade of developing method for sensitivity control and to develop fine grains (for resolution)

dE/dx difference will appear as the <u>number of exited electron</u> and the <u>size of latent image speck</u>

Index

• Dark Matter

- About dark matter
- Dark matter search experiments
- Emulsion R&D
 - New production method
 - Sensitivity control

Readout R&D

- Optical microscope
- X-ray microscope
- Activity

Readout Concept

Optical microscope

candidate selection

- fast & automatic 3D selection
- ellipse-fitting for candidates
- ⊿x ~ 250 nm

X-ray microscope

signal confirmation

- non-destructive & high resolution
- observing grains one by one
- $\Delta x < 70 nm$

Readout Concept

Optical microscope

candidate selection

- fast & automatic 3D selection
- ellipse-fitting for candidates
- ⊿x ~ 250 nm

X-ray microscope

signal confirmation

- non-destructive & high resolution
- observing grains one by one
- $\Delta x < 70$ nm

Automatic Candidate Selection

Readout Concept

Optical microscope

candidate selection

- fast & automatic 3D selection
- ellipse-fitting for candidates
- ⊿x ~ 250 nm

X-ray microscope

signal confirmation

- non-destructive & high resolution
- observing grains one by one
- $\Delta x < 70 nm$

Confirmation by X-ray microscope

-Thickness of film : 100μm
-Focal depth : 70μm
-Type of optics: phase contrast
-X-ray Energy : 8keV

Tracks Matching between Optical and X-ray Micro Scope

recoil tracks 14 MeV neutron (D-T nuclear fission)

Matching efficiency : 572 / 579 event = 99%
the shift from predicted position (Optical→Xray) : < 5µm
7800 event / day

Signal selection efficiency with optical microscope

range [mm]

Study for upgrade

- Read out speed up
 - now : 0.1g/day \rightarrow 10~100g scale
- Optics upgrade
 - objective lens and wavelength
- Plasmon analysis
 - Selection of dE/dx from scattering light
- Fluorescence analysis
 - Super resolution;~50 nm is expected !

Index

• Dark Matter

- About dark matter
- Dark matter search experiments

• Emulsion R&D

- New production method
- Sensitivity control
- Readout R&D
 - Optical microscope
 - X-ray microscope
- Activity

Near Future Plan

31

R&D underground facility in Gran Sasso

Gran Sasso (LNGS), Italy

<u>2nd Floor: Detector Production</u>

<u>1st Floor : Development Facility</u>

Collaborator and Technical Supporter

Nagoya University

- T. Naka (Organizer of Japan and all)
- T. Asada (R&D of fine-grained emulsion)
- T. Katsuragawa (Readout system)
- M. Yoshimoto (Optical Readout Stage)
- K. Hakamata (Development treatment)
- M. Ishikawa (Plasmon analysis study)
- K. Kuwabara (R&D of emulsion)
- A. Umemoto (Plasmon analysis)
- S. Furuya (detector R&D)
- S. Machii (optical microscpe)

Nagoya University [X-ray Astronomy]

Y. Tawara (X-ray microscope)

University of Napoli

- G. de Lellis (Organizer of Europe)
- A. Di Crescenzo (DM simulation)
- A. Sheshukov (Emulsion simulation)
- A. Aleksandrov (Optical stage study)
- V. Tioukov (tracking algorithm)

University of Padova

C. Sirignano (LNGS activity)

<u>LNGS</u>

N. D'Ambrossio(Optical microscope study in LNGS)N. Di Marco (simulation, background)F. Pupilli (background measurement)

Chiba University

K. Kuge (emulsion and development study)

Fuji Film researcher

- T. Tani (Emulsion and phenomenology)
- K. Ozeki (Emulsion and phenomenology)
- S. Takada (the emulsion sensitivity)

<u>SPring8</u>

Y. Suzuki, A. Takeuchi, K. Uesugi and Y. Terada

1st DM collaboration meeting @ LNGS

participants

Nagoya, Napoli, LNGS, Padova, Dubuna, Moscow

- -Sensitivity simulation
- Intrinsic backgrounds
- neutron study
- R&D of emulsion and development
- Readout technology

2nd meeting will be held on November 2013

If you become interesting in our study, Let's join the meeting .

Summary

- We try to survey WIMP wind direction with nuclear emulsion.
- We succeeded to make stable fine grain.

– current challenge : sensitivity control

- Fundamental readout method is demonstrated.
 current challenge : higher resolution readout method
- We plan to do gram scale test run soon and < 100 g physics run within several years.