

QCD, NUCLEAR PDF and CUMULATIVE PROCESSES

A.Efremov, JINR, Dubna, [PLB174(86)319 and hep-ph/9710477]

Content

- 1. Nucleon and Nuclear PDF's
- 2. The EMC Effect
- 3. Cumulative Particle Production
- 4. Sea Particles and Multiquarks
- 5. Conclusions

Some short history

1957-- Leksin G.A. at al. -- Intensive backward protons discovery

1957 -- Mescheryakov M.G. -- Intensive knock out of deuterons from nuclei

- 1957 -- Blokhintsev D.I. Hypothesis about "fluctons".
- 1971 Baldin, Stavinski at al. Proposal and discovery of cumulative pions $D(5 \text{ GeV/N}) + Cu \rightarrow \pi(7 \text{ GeV}) + X$

Mid of 70's -- Dubna, ITEP, Erevan -- Intensive experimental studies of cumulative particle production

- 1976 AE Nuclear quark-gluon stricture
- 1976 Frankfurt, Strikman Short range FNC "Could" and "Hot" models

1983 – EMC collaboration – brings important news -- EMC1-effect 1984 – Savin (BCDMS) – $F_2^A(x)$ beyond x>1, in favor of "Could" models 2006 – Egiyan et al. (CLAS e-A \rightarrow e-X) -- clear step behavior of the ratio

Xp

1. Nucleon and Nuclear PDF's

QCD evolution equations do not depend on kind of object.

$$\frac{\dot{V}_A(n,Q^2)}{V_A(n,Q^2)} = \frac{\dot{V}_N(n,Q^2)}{V_N(n,Q^2)} = \gamma_N(\alpha_S(Q^2)) \cdot \equiv \frac{d}{d\log Q^2}$$

$$\stackrel{n-\text{moment}}{\underset{number}{\text{number}}} \circ V_A(n,Q^2) = T_A^{NS}(n) V_N(n,Q^2) \quad (1)$$

$$\text{or } xF_{3A} \approx V_A(x,Q^2) = \int_x^A d\alpha T_A^{NS}(\alpha) V_N\left(\frac{x}{\alpha},Q^2\right) \quad (2)$$

with baryon number sum rule: (All nuclear function here are normalized to A.)

$$\int\limits_{0}^{A} d\alpha \, T_{A}^{NS}(\alpha) = 1$$

Singlet channel (Assume no "primordial" gluon distribution, i.e. all gluons results in QCD evolution.)

$$\Sigma_A(x,Q^2) = \int_x^A d\alpha \, T_A^S(\alpha) \Sigma_N\left(\frac{x}{\alpha},Q^2\right)$$
$$G_A(x,Q^2) = \int_x^A d\alpha \, T_A^S(\alpha) G_N\left(\frac{x}{\alpha},Q^2\right)$$

(4)

(3)

In general, $T^{s} \neq T^{NS}$ and T^{s} satisfies energy-momentum sum rule $\begin{array}{c}
A \\
\int d\alpha \, \alpha T_{A}^{S}(\alpha) = \frac{M_{A}}{AM_{N}} \approx 1 \\
0
\end{array}$ (5)
Immediate consequence of Eqs. (3,4) $\begin{array}{c}
< x_{G} >_{A} \\
< x_{G} >_{N}
\end{array}
= \frac{< x_{q} >_{A}}{< x_{q} >_{N}} = 1$

Clearly contradict rescaling hypothesis!

Notice: QCD evolution is leading twist approximation. Nuclear screening (formally, a high twist effect) is not included.

Levin,Ryskin(85), Brodsky,Hoyer(91,92) Indumathi(96)

2. The EMC Effect

 T_A is, approximately, an effective distribution of nucleons in nucleus. Concentrated at $\alpha = 1$ (zero internal momentum). Expanding (1) and (3) around $\alpha = 1$ one have:

Conclusions on EMC:

•Effective nucleons" number larger than A,

•Valence nucleons carry only a part of total nucleus momentum,

iii. Small (
$$\approx \Delta_A$$
) but hard "collective" sea
 $O_A(x, Q^2) \equiv \Sigma_A - V_A = \int_x^A d\alpha T_A^{NS}(\alpha) O_N\left(\frac{x}{\alpha}, Q^2\right) +$
Internucleon sea
 $+ \int_x^A d\alpha \left[T_A^S(\alpha) - T_A^{NS}(\alpha)\right] \Sigma_N\left(\frac{x}{\alpha}, Q^2\right) \quad (11)$
Collective nuclear sea O'_A
 $\overline{\alpha}_{O'} = \frac{\langle \alpha(T_A^S - T_A^{NS}) \rangle}{\langle T_A^S - T_A^{NS} \rangle} = \frac{\delta_A}{\Delta_A} \approx 1$ (=2/3)

Can be seen in excess of hard "sea" particles (*K*, \overline{P} , J/ψ)

Models: Different ways of repumping: Llewellin-Smith(83), Ericson, Thomas(83)

- a. Repumping to a heavy components (ρ , ω , $\overline{N}N$ -pairs, off-shell π),
- b. Repumping inside each nucleon, Frakfurt, Strikman(82), Barone at.al., Szwed(83
- c. Repumping inside multiquarks. $\Delta_{A} = \rho_A \Delta_{6q} + \dots < \Delta_{6q}$

Lot of authors

3. Cumulative Particle Production Common property quark-parton models for inclusive production:

 $\frac{\epsilon}{A}\frac{d\sigma}{d^3p} = \rho_{A\to h}(x, y, p_T) = \int_x^A \frac{d\alpha}{\alpha} F_A(\alpha) f_h\left(\frac{x}{\alpha}, y, p_T\right) \tag{12}$

 $(x=u/s, y=-t/s) f_h$ is model dependent but does not depend on *A*.

Models:

• Limiting fragmentation. Coaliscent: $r_A \sim F_A$, $f(x/\alpha) \sim \delta(x/\alpha - 1)$ • Hard scattering: $f(\frac{x}{\alpha}) = \int_{\frac{y}{1-x/\alpha}}^{1} d\beta F_B(\beta) D_h(\frac{x}{\alpha} + \frac{y}{\beta}) \frac{d\sigma}{dt}(p_T, \frac{x}{\alpha}, \frac{y}{\beta})$ • Dual string: $f(\frac{x}{\alpha}) = D_h(\frac{x}{\alpha} + \frac{y}{\beta})$ Combining (12) with (1,3) one has:

Α

$$\rho_{A\to h}(x, y, p_T) = \int_x^A d\alpha \, N_A(\alpha) \rho_{N\to h}\left(\frac{x}{\alpha}, y, p_T\right) + \int_x^A d\alpha \, \widetilde{N}_A(\alpha) \rho_{\widetilde{N}\to h}\left(\frac{x}{\alpha}, y, p_T\right)$$
(13)

$$N_A = \frac{1}{2} \left(T_A^S + T_A^{NS} \right)$$
 and $\tilde{N}_A = \frac{1}{2} \left(T_A^S - T_A^{NS} \right)$

 N_A can be found from stripped **cumulative proton** spectrum with $p_T = 0$. (AE,Kajdalov, et.al. YaF(88,99))

Cumulative π and K^+ than determines by (13) with experimental $\rho_{N->\pi}$ with no new parameters! (\tilde{N}_A term is small).

4. Sea Particles and Multiquarks

The most intriguing. Descriminates "6q" and FNC.

$$\underline{r_A = \frac{K^+}{K^-}} \approx \frac{\frac{A}{f} d\alpha N_A(\alpha) \rho_{N \to K^+}(\frac{x}{\alpha})}{\frac{A}{f} d\alpha \widetilde{N}_A(\alpha) \rho_{N \to K^+}(\frac{x}{\alpha})} \approx \frac{2}{\Delta_{60}}$$

(approximation $\rho_{\widetilde{N}\to K^-} \approx \rho_{N\to K^+}$ was used.)

Experiment: $r_A \operatorname{const}(x)$ for 1 < x < 2.5and surprisingly small compared with expected from EMC-effect (Ba

Nuclei	Be	Al	Ta	Pb
Δ_A from EMC	0.023	0.036	0.056	0.058
$r_A = (2 - \Delta_A) / \Delta_A$	86	55	36	35

Low experimental r_A indicates to "6q"mechanism of cumulative and EMC-effects

(Baldin at al. (82), E_{lab} =8,9 GeV, θ_{lab} =168°)

(Boyarinov at al. (89), $E_{lab}=10 \text{ GeV}$, $\theta_{lab}=119^{\circ}$) 15 I

(Boyarinov at al., YaF (91,93), E_{lab} =10 GeV, θ_{lab} =119° and θ_{lab} =97°)

Again in favor of multiquarks!

5. Conclusions

- EMC-effect is repumping of valence quarks to sea quarks momentum,
- Small but hard "collective" sea,
- Evidence for multiquark from cumulative K^2 and \tilde{P}
- Good data for cumulative K^- and \tilde{P} for deuterium are necessary of the "collective" sea.
- What are the situation with spin PDFs?

-Thanks for attention!

Some recent work at 6 GeV large x....

L.B. Weinstein, et al, Phys.Rev.Lett. 106 (2011) 052301