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The development of the gauge symmetry has resulted in a complete determination of the
Lagrangians for electromagnetic, weak, strong and gravitational interactions and has created
illusions about the construction of ®the theory of everything¯. However, in just the same way
as in classical physics, it became clear that the deductive obtaining of solutions (laws of Nature) is
based not only on the principles of the Lagrangian symmetry. To ˇnd unambiguously solutions some
additional conditions are needed without which the solutions of the Lagrange equations are ambigu-
ous. The additional conditions such as hypotheses about the integral symmetries of solutions, the
boundary and initial conditions, the constants entering Lagrangians, and so on are essential so that in
a number of cases it is possible to construct models (solutions, laws of Nature) without the recourse
to the Lagrange method. An example of using such an approach in one of the rapidly developing
domains of modern physics, namely relativistic nuclear physics, is given. An exact mathematical
language of the gauge symmetry is the differential geometry and that of the additional conditions
is the topology, the parameter space properties as a whole. In the present paper the fundamental
contribution of V.A.Fock to the development of the concept of space, the primary concept of physics,
is given.
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At the beginning of the '50s, at an all-union conference, Vladimir Alexan-
drovich Fock presented a large talk on the theory of gravitation. During the
discussion, a very competent physicist said that Fock in his talk gave the well-
known Einstein equations (by implying the absence of novelty). Then Fock
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replied: ®I have known your philosophy for a long time: if the equations are
the same, then the theory is also the same¯. As we presently know, at that time
V.A.Fock was working on a fundamental monograph ®The Theory of Space, Time
and Gravitation¯ [1]. In the preface to the ˇrst edition of the book he writes:
®The results of these investigations have led us to the conviction that, at least
for the most important class of physical problems, it is possible to obtain unam-
biguous solutions for the gravitation equations by imposing additional conditions
compatible with them. This idea has underlain a new point of view on the whole
of the theory of gravitation. Therefore, there arises the necessity of formulating
the whole of the theory of space, time and gravitation from this newly elaborated
point of view, which has just been done in this book¯.

Fock's point of view on the theory of relativity and the theory of gravitation
was after all generally recognized. Fock stressed that the theory of gravitation
and, generally speaking, any theory cannot be formulated by conˇning oneself to
the local consideration. It is necessary to consider the ®space as a whole¯, its
global structure, and its topology. Otherwise, it is impossible to formulate the
problem unambiguously. The equations of any ˇeld are the equations in partial
derivatives the solutions of which are unambiguous only in the presence of initial,
boundary and limiting conditions.

The laws of Nature are relations between invariants, as far as they should not
be dependent on symmetry transformations. The hypothesis about the symmetry
possessed by a system are axioms determining the state of the system and its
behaviour. Starting from symmetry principles it is possible to derive new laws
of Nature deductively, and not only by observing physical objects or solving
equations. Weyl wrote that as far as he could judge, all a priori ideas in physics
have a symmetry origin. The symmetry of the ®space as a whole¯ essentially
supplements the symmetry and invariance deˇning the Lagrangian density, and,
in many cases, enables us to construct models (solutions, laws of Nature) starting
from the ˇrst principles, not using the Lagrange method.

For a long time, mathematicians have paid attention to the integral invariants
in topology and to the connection between differential geometry and the theory
of surfaces. This trend was initiated by the famous Gauss-Bonnet theorem which
says that the integral of the Gaussian curvature over an entire surface is a topo-
logical invariant and is integer multiple of 2π. For a sphere, no matter how
distorted, the integral curvature is 4π, for a torus it is zero, while for the ®double-
holed torus¯ it is 4π, and so on. The Gaussian curvature is a local parameter.
It can be measured by measuring the angles and the sides of small triangles. For
example, to show the Earth to be round it is not necessary to circumnavigate
the globe and to take photographs from outer space. Eratosphenes did it by
comparing shadows in Alexandria and Syene.

Auxiliary spaces are useful in studying ordinary surfaces and their higher-
dimensional analogs. One example is the space consisting of the tangent planes to
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a surface. Such spaces are called ®ˇber bundles¯. The ®ˇbers¯ are the auxiliary
spaces Å the tangent planes. The ˇber bundles are an appropriate framework for
gauge theories, developed to deal in a uniˇed way with electromagnetic, weak
and strong interactions.

Noting V.A.Fock's contribution to contemporary physics it is necessary to
stress (this was also emphasized by Chen Ning Yang, one of the principal archi-
tects of the gauge theory) that the gauge theory is a generalization of ®the gauge
symmetry in electromagnetism known from the papers by Fock and Weyl¯.

In the 1930s and 1940s L.S.Pontrjagin and other mathematicians have found,
without undergoing the in�uence of physical models, interesting topological in-
variants playing an ever-growing role in modern physics. The integral geometry
makes it possible to study classical solutions for gauge ˇelds. The merging of
the newest areas of mathematics and theoretical physics enables us to hope that
along this way one will succeed in ˇnding methods for obtaining nonperturba-
tive solutions of the Lagrange equations for gauge ˇelds. The nonperturbative
methods in the Standard Model take one of the central places in modern
theoretical physics. Among them of special interest are multiboson processes
in electroweak physics. These phenomena are associated with the violation of the
sum of the baryon (B) and the lepton (L) numbers in the Standard Model [3].
Therefore such processes determine the evolution of (B + L) at high temperature
in the early universe, that is, the origin of the baryons Å baryosynthesis. Also
speciˇc calculations show [5] that the processes with (B + L) violation and pro-
duction of many electroweak bosons might be in principle observable in collisions
at energies higher than 18 TeV. The initial and the ˇnal states containing many
bosons (many→ many scattering) are described by quasi-classical methods with
the use of nontrivial classical solutions of the ˇeld theory periodic Å instantons.
The (B + L) violation is caused by tunnel transitions between the states with
different topological charges q for the electroweak gauge ˇelds and is described
by the formula:

∆(B + L) = 6q.

The peaks of these potential barriers Å sphalerons Å (the energy E is ordinarily
plotted against q) are, in the order of magnitude, equal to mw/αw ∼ 10 TeV,
where mw is the mass of an intermediate boson, and αw is the electroweak
interaction constant. The treatment of the auxiliary conditions describing the
initial states of multiple interactions with the use of the topological properties
of gauge ˇelds has resulted in fundamental conclusions for elementary particle
physics, cosmology [4] and even for designing a new generation of accelerators
at superhigh energies [6].

In 1931, when solving the one-dimensional Heisenberg model of a ferro-
magnet, Bethe [7] formulated a hypothesis about a wave function of the model.
In 1967 Ch.N.Yang has generalized [8] this hypothesis by imposing on matri-
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ces A(u) and B(v), which occurred in the development of the hypothesis, the
following conditions:

A(u) · B(u + v) · A(v) = B(v) · A(u + v) · B(u). (1)

Many one-dimensional quantum mechanical problems, in which the Bethe
hypothesis is valid, are known. In each case, the consistency condition is Eq. (1),
where the operators A(u) and B(v) and the one-dimensional coordinates u and
v take different forms in different problems. During the past ten or ˇfteen years,
a large number of developments in physics and mathematics have led to the con-
clusion that Eq. (1) is a fundamental mathematical structure. Equation (1) has the
generally accepted name Å the YangÄBaxter equation.

Ch.N.Yang shows [9] how Eq. (1) affected modern physics and mathematics:

®Physics:

• One-dimensional quantum mechanical problems

• Two-dimensional classical statistical mechanical problems

• Conformal ˇeld theory

Mathematics:

• Knot theory, braid theory

• Operator theory

• Kopf algebra

• ®Quantum groups¯

• Topology of 3-manyfold

• Monodromy of differential equations

There is an explosion of literature on these subjects. In order to ˇnd these, one
could consult the three recent review volumes and reprint collections
listed in the footnote∗.

Why does the YangÄBaxter equation enter into so many different areas of
mathematics and physics? I believe the answer is that the equation is a kind of
generalization of the structure of the permutation group¯.

∗120 Braid Group, Knot Theory and Statistical mechanics, eds. C.N.Yang and M.L.Ge (World
Scientiˇc, Singapore, 1989); YangÄBaxter Equation in Integrable Systems, ed. M.Jimbo (World
Scientiˇc, Singapore, 1990); YangÄBaxter Equations, Conformal Invariance and Integrability in Sta-
tistical Mechanics and Field Theory, eds. B.Barber and P.Pearce (World Scientiˇc, Singapore, 1990).
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A particular role of the one-dimensional problem is due to the possibility of
establishing a deˇnite order in the particle disposition in a one-dimensional space.

As a hypothesis about the properties of the solutions of statistical physics
N.N. Bogolubov has formulated the correlation depletion principle [10]. The
principle is based on the intuitive idea that the correlation between spatially
separated groups of particles of a macroscopic system practically vanishes. The
correlation depletion principle was successfully applied to the development of the
theory of ferromagnetism, super�uidity and superconductivity. Also it is possible
to formulate the notion of quasi-averages and the properties of the solutions that
afterwards were given the name of spontaneous symmetry breaking.

It is interesting that the well-known attempt of Dirac to formulate a relativistic
theory of dynamical systems [11] led him to the realization that it was possible to
state only the necessary but not the sufˇcient conditions for this theory to exist. At
the end of his remarkable article, Dirac writes, ®Some further condition is needed
to ensure that the interaction between two physical objects becomes small when
the objects become far apart. It is not clear how this condition can be formulated
mathematically¯. The correlation depletion principle of Bogolubov is formulated
as an asymptotic form of the Green functions as universal (independent of the
speciˇc features of the system) linear forms from averages of the product of
ˇeld functions. This principle gives mathematical formulation for the additional
condition of the relativistic theory (Poisson's brackets) developed by Dirac.

In Refs. 12, 13 the correlation depletion principle is formulated both in relative
4-velocity space and the Lobachevsky space. The application of this principle to
quantum chromodynamics of large distances (or, more precisely, of small relative
velocities), to the description of multiple production processes, and, particularly,
to relativistic nuclear physics was found to be especially productive. In these
areas, the perturbative approach does not work, thus hypotheses of a fundamental
character, i.e., auxiliary conditions, are needed. A collision of relativistic nuclei
results in the production of many particles, and the interaction picture is very
complicated. Both nucleon and quark-gluon degrees of freedom participate in the
same collision. The number of the parameters of the problem is extremely large,
and it is particularly important to discover the invariants [13]. Relativistic nuclear
physics that was born at the beginning of the '70s in Dubna became one of the
most intensively developed areas of high energy physics in many laboratories of
the world.

The discovery of the laws of relativistic nuclear physics is a part of the
general search for the laws describing relativistic multiparticle systems, including
macroscopic systems. These problems were studied by outstanding scientists
of the 20th century. The ˇrst studies were devoted to the transport equations
which allowed the formulation of the thermodynamical properties of dilute relati-
vistic multiple systems. The great success of quantum ˇeld theory in describing
multiparticle systems on the basis of the Hamiltonian method has not resulted
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however in great progress in the development of the problems of relativistic
nuclear physics. In Refs. 12, 13, it is shown that the approach to relativistic
nuclear physics based on the geometry of velocity space and hypotheses about
the asymptotic nature of the laws in this space allows us to put in order an
enormous amount of experimental data and make quantitative predictions. Some
of these predictions make many experiments on huge accelerators unnecessary and
even condemned to failure. The methods of symmetry of the solutions utilized in
these papers are analogous to the methods of the mechanics of continuous media
and consist of the following:

1. The parameters describing the problem Å the space deˇning parameters Å
are selected.

2. The symmetry of this space is seen or guessed, and the corresponding
invariants are determined.

3. The laws of Nature are treated as relations between invariants. The math-
ematical language of symmetry Å group theory Å is especially effective
here.

4. Additional principles Å the correlation depletion principles, the interme-
diate asymptotics, the hypothesis of the analyticity of physical laws are
used.

In the case of relativistic nuclear physics, the deˇning parameters are the cross
sections, quantities derived from them, and the invariant dimensionless intervals
in relative 4-velocity space ui = pi/mi; u0

i = Ei/mi:

bik = −(ui − uk)2 = 2[(ui · uk) − 1] = 2
[
Ei · Ek − pi · pk

mi · mk
− 1

]
.

As far as the energies Ei and the momenta pi are linked by the known relation
E2

i − p 2
i = m2

i , then (ui)2 = (u0)2 − (ui)2 = 1. Instead of 4-dimensional space
it is possible to introduce 3-dimensional one, with the 4th coordinate expressed
in terms of the other three:

u0
i = ±

√
1 + u2

x + u2
y + u2

z. (2)

This equation is a two-sheeted hyperboloid. The geometry on the surface of the
hyperboloid is the geometry of 3-dimensional Lobachevsky space, analogous to
the geometry on the surface of a sphere. The interval between points on the
surface of a sphere is given by the cosine of the angle of the great circle, and the
interval on the surface of the hyperboloid is given by the hyperbolic cosine of
the rapidity

ρ =
1
2

ln
E + |p |
E − |p | .
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The relation between the intervals bik and ρik is of the form:

bik = 2[(ui · uk) − 1] = 2[chρik − 1].

The number of the parameters of bik is n(n−1)/2. The most complete description
of the ˇnal states of nuclear collisions is connected with the use of triangulation
and the construction of polyhedra in velocity space.

The introduction of the variable NI and NII characterizing the effective
numbers of nucleons participating in the collisions of nuclei I and II has proved
very productive. In a wide interval of relative velocities the additional variables
NI and NII turned out to be continuous and smooth. The invariant that is
employed to express a large number of the laws of relativistic nuclear physics
has the meaning of the minimal mass

min[m2
0(uINI + uIINII)2]1/2 = 2m0Π

under the condition of conservation of the 4-momentum:

m0uINI + m0uIINII =
∑

i

pi.

Here UI and UII are the 4-velocities of the nucleus as a whole, m0 is the mass of
one nucleon. The introduction of the single self-similarity parameter (invariant)

Π =
1
2

√
(uINI + uIINII)2

allowed a quantitative description of the cumulative effect, deep-subthreshold,
near-threshold phenomena, and antimatter production in nucleus-nucleus
collisions [14].

The equation

E
d3σ

dp
= C1A

α(NI)
I · Aα(NII )

II · f(Π), (3)

where AI and AII are the atomic weights of colliding nuclei, C1 is the constant,
describes a variety of nuclear reactions as the cross section changes by eight
orders of magnitude. However, to ˇnd the limits of the parameter space, where
the description of physical processes on the basis of this model becomes invalid,
some auxiliary work is needed. Of special interest is the prediction [15] on
this basis of the results of projected experiments on presently designed nuclear
colliders. For collider energies the interval between the points I and II is:

(uI · uII) = chρI II >> 1.
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The relation between the sides of the Lobachevsky triangle is of the form:

(uI · uk) = u0
I · u0

k − �uI · �uk = chρI k =
= chρI II · chρII k − shρI II · shρII k · ρII k · cos θI k ≈

≈ chρI II(chρII k − shρII k · cos θI k) = chρI II · xk.

Here xk is a known light cone variable. At large relative velocities Eq. (2) turns
into the light cone equation which is used in constructing models of high energy
physics in velocity space.

After discovering non-Euclidean geometry Lobachevsky posed the problem
of using it to describe real physical phenomena. The hypothesis that at large
distances the relations between the sides and angles of triangles might satisfy a
new geometry was not conˇrmed by his analysis of astronomical data.

V.A.Fock demonstrated the validity of the Lobachevsky geometry in relative
velocity space by considering the phenomenon of astronomical aberration [1].
The phenomenon is that in two moving relatively each other frames of reference
the directions to the same star do not coincide, but differ by the magnitude of
aberration. To ˇnd this value it is necessary to construct a Lobachevsky triangle
with vertices in the points v1, v2 and v3 = aC, where v1 and v2 are the velocities
of the bodies to which both the frames are related. Here a is a unit vector in
the direction of the light wave going from the star. In astronomical observations
visible positions of a star are compared for different directions of motion of the
globe along the orbit (annual aberration).

By analyzing the concept of physical space, Fock stresses that this primary
concept is obtained by means of appropriate abstractions of space-time relations
between material processes. The relations are established on the basis of the
hypothesis about applicability of the Euclidean geometry to a real physical space
as well as on the suppositions about the existence of solid bodies and rectilinear
propagation of light.

Thus, the properties of the light and those of solid bodies (distance measure-
ments) play the fundamental part in establishing the geometry of a real physical
space. Another feasible way of determining the location of objects in space,
which in principle differs from triangulation, is radiolocation or radiogeodesy.
However, in any case, the deˇnition of the concept of physical space depends on
precision of measuring procedures. The correspondence of it to the mathematical
concept of space requires some reservations. Fock also notes that the terms ®the
space as a whole¯, ®conditions at inˇnity¯, and so on, are employed by him in the
mathematical sense admitted in ˇeld theory. The space as a whole implies an area
which is large enough for the ˇeld induced by a body system to be negligible on
its boundaries. Depending on the character of the problem the dimensions of the
area are very different. A micron compared with the atom may be thought of as
an inˇnitely large quantity, the light year for the Sun system and billions of light
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years for galaxy accumulation are inˇnitely large quantities. When formulating
a theory, new generalizations are introduced, as a result of which the law may
become approximate, but this does not diminish its fundamental importance.

Complicated real physical situations require simpliˇed descriptions by means
of symbolic, and even verbal, models based on experimentally testable hypothe-
ses. However the correspondence of the physical space to the mathematical one
appears not only as a result of generalization of experience and measuring pro-
cedures. The correspondence of the velocity space to the Lobachevsky space is
a result of a deduction. More striking example is the introduction by Einstein
of the Riemann space in the theory of gravitation which is of a particularly de-
ductive nature. As Fock notices, this requires that the properties of the ®space
as a whole¯ should be considered. Otherwise, it is impossible to formulate the
problem in an unambiguous manner. V.A.Fock analyses various suppositions
and gives much attention to the theory of a space homogeneous at inˇnity. He
attaches great importance to the possibility of introducing in this case a privileged
frame of reference determined with an accuracy up to the Lorentz transformation
(harmonic coordinates). All concrete problems of the theory of gravitation are
solved in Ref. 1 in harmonic coordinates.

Special attention should be paid to Fock's formulation of the Hilbert space
in quantum theory of radiations. In Ref. 16 Fock notices that the mathemati-
cal apparatus of quantum theory of emission and absorption of photons created
by Dirac does not correspond to the physics of this phenomenon and suggests
a mathematical basis of the theory. In his book ®The Principles of Quantum
Mechanics¯ Dirac called it ®Fock's representation¯. Finally ®Fock's space¯ sug-
gested for mathematical description of the systems with an interaction Lagrangian
changing the particle number became the generally recognized concept of quan-
tum ˇeld theory. It is of far reaching importance in present-day applications of
quantum chromodynamics, in particular, in quark-parton model.
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