Литература

[1] Н. Б. Брандт, А. Е. Дубровская, Г. А. Кытин. ЖЭТФ, 37, 572, 1959.

[2] Н. Б. Брандт. ПТЭ, 2, 1960.

- [3] J. K. Galt, W. A. Yager, F. R. Merritt, B. B. Cetlin. Phys. Rev., 114, 1396, 1959.
- [4] G. E. Smith. Phys. Rev., 115, 1561, 1959.
- [5] D. H. Reneker. Phys. Rev., 115, 303, 1959.
- [6] V. Heine. Proc. Phys. Soc., A69, 513, 1956.
- [7] П. Г. Стрелков, И. Н. Калинкина. ЖЭТФ, 34, 616, 1958.
- [8] Н. Б. Брандт, В. А. Вентцель. ЖЭТФ, 35, 1083, 1958.

РОЖДЕНИЕ ∑⁻-ГИПЕРОНА ОТРИЦАТЕЛЬНЫМИ π⁻-МЕЗОНАМИ С ИМПУЛЬСОМ 8,3 BeV/с

Ван Ган-чан, Ван Цу-цзен, В. И. Векслер, Н. М. Вирясов, И. Врана, Дин Да-цао, Ким Хи Ин, Е. Н. Кладницкая, А. А. Кузнецов, А. Михул, Неуен Дин Ты, А. В. Никитин, М. И. Соловьев

На 40 000 фотографий, полученных в пучке отрицательных π-мезонов с импульсом 8,3 ± 0,6 BeV/c на пропановой пузырьковой камере [¹] с по-

стоянным магнитным полем 13 700 Ое был найден случай рождения и распада $\overline{\Sigma}$ -гиперона. Приводим фотографию этого события, а также его схему. π -мезон (след 1) в точке О образует звезду из четырех заряженных К статье Ван Ган-чан, Ван Цу-цзен, В. И. Векслер, Н. М. Вирясов, И. Врана, Дин Да-цао, Ким Хи Ин, Е. Н. Кладницкая, А. А. Кузнецов, А. Михул, Нгуен Дин Ты, А. В. Никитин, М. И. Соловьев «Рождение Σ-гиперона отрицательными π-мезонами с импульсом 8,3 BeV/с»

частиц с большой энергией (следы 2, 6, 7, 16), $2K^{\circ}$ -мезона (следы 4, 5, 14, 15) и одну частицу малой энергии (короткий след 17). След положительно заряженной частицы 2 в точке A имеет излом. На расстоянии 7,7 мм от точки излома находится 6-лучевая звезда. Центр звезды лежит в плоскости следов 2 и 3 с точностью, определяемой ошибкой измерения (47'). Распад частицы 2 в точке A на частицу 3 и нейтральную частицу N в направлении AB очень хорошо согласуется с кинематикой распада Σ (см. табл.). След 3 есть след π^+ -мезона.

Annematina B Totac A							
След	Знак заряда	Р _{изм} . MeV/c	Р _{расч} , MeV/c	Частица	Угсл		
2 3	+ mod	1104 ± 600 244 ±10	1798 <u>±</u> 100	$\overline{\Sigma}_{\pi^+}$	φ(3,2)=39°38′±20′		
AB	0	MARY DOMES	1628±100	n	$\varphi(AB.2) = 5^{\circ}29' \pm 20'$		

Из равенства' перпендикулярных составляющих импульсов частиц 3 и N в точке A определяется импульс частицы N.

Кинематика в точке В

Предполагая распад по схеме $\Sigma^+ \rightarrow \pi^+ + n$, получаем $M_2 = 1182 + 14 \,\text{MeV}$.

Таблица 2

Таблица 1

След	Знак заряда	Р _{изм} , MeV/c	Р _{расч} , MeV/c	Частица	Е _{кин} , MeV/c	E _{macc} , MeV	Суммарная Е, MeV	
AB 9 10 11 12 13	0 +++++	$ \begin{array}{r} 1044\pm55 \\ 445\pm9 \\ 183\pm25 \\ 228\pm4 \\ 270\pm5 \\ 257\pm5 \end{array} $	1628 <u>±</u> 100	π π+ p π- p p	$940\pm100920\pm56101\pm390\pm2027\pm238\pm227\pm2$	2.939 140 140	2818 <u>+</u> 100	
$\Delta P \qquad \qquad 703 \qquad \sum_{\substack{E = 1203 \pm 60 + 280 = 1483 \pm 60 \\ E_n = 3(48 \pm 3) = 144 \pm 5 \\ E_{CB} = 8 \cdot 8 = 64}$								
			Сум	Е _л о Суммарная энергия в то			1691 <u>+</u> 61 645 чке <i>В</i> 2336	

Баланс энергии и импульса в точке *B* дан в табл. 2. Звезда *B* имеет пять положительных частиц (следы 8, 9, 11, 12, 13) и одну отрицательную (след. 10). Отрицательная частица является π-мезоном. Следы 9, 11, 12, 13 оканчиваются в камере, и мы считаем, что они образованы протонами. Частица 8 имеет большой импульс и выходит из камеры. Из измерения ионизации¹⁾ и импульса следует, что след 8 принадлежит π⁺-мезону. Изме-

¹⁾ Отвиновским [²] и И. Врана была изучена воможность измерения ионизации в нашей камере. На 60 различных кадрах измерено около 40 м треков частиц, импульс и природа которых хорошо известны. Было установлено, что для следа длиной 20 см можно надежно (96%) разделить π-мезоны и протоны до импульса 1200 MeV/c. Измеренная величина ионизации следа 8 (длина 20 см) равна 1,02 ± 0,19, в то время как для протона по закону β⁻² (работы Блинова и др. [³]) она должна быть 1,86, а для π-мезонов 1,04.

рение баланса энергии в точке *В* показывает, что уже энергия заряженных частиц звезды много больше, чем кинетическая энергия нейтрона с импульсом 1628 ± 100 MeV/c. Следовательно, звезда В может быть вызвана только аннигиляцией антинейтрона на ядре углерода. Наиболее вероятная реакция будет:

 $n + C \rightarrow He_2^4 + 4p + 3n + \pi^+ + \pi^- + n\pi^\circ$.

К энергии заряженных частиц нужно добавить энергию, унесенную нейтронами, считая, что в среднем они уносят ту же энергию, что и протоны, $E_n = 144 \pm 5$ MeV, а также энергию связи нуклонов в ядре $E_{\rm cB} = 64$ MeV. Предполагая, что кроме заряженных π -мезонов есть еще и нейтральные π -мезоны, которые уносят в среднем половину энергии заряженных π -мезонов $E_{\pi^0} \approx \frac{1}{2} E_{\pi^\pm} = 645$ MeV, то полная энергия в звезде будет $E_{\rm полн} = 2336$ MeV.

Полученная таким образом энергия близка к полной энергии аннигиляции антинейтрона. Следовательно, в точке *A* происходит распад $\overline{\Sigma}^{-} \rightarrow \pi^{+} + \bar{n}$.

Вероятность случайного совпадения на одном кадре разных событий, которые могли бы имитировать рассматриваемое явление, по нашим оценкам равна ~ 10⁻⁹.

След	Знак за- ряда	Р _{изм} , MeV/c	Р _{расч,} MeV/c	Частица	Видимая Е _{кин} , MeV	Е _{масс} , MeV	Суммар- ная Е, MeV
1 2 V ₁ 6 7 V ₂ 16	+ 0 + 0 0	-1104 ± 600 1456 ± 70 790 ± 45 300 ± 50	8300±600 1798±100 654±29 1475±71	π ⁻ <u>Σ</u> - K ⁰ или K ⁰ K ⁻ π ⁺ K ⁰ или K ⁰ π ⁻ N	$\begin{array}{c} 8200 \pm 600 \\ 964 \pm 80 \\ 323 \pm 27 \\ 1043 \pm 60 \\ 663 \pm 45 \\ 1060 \pm 60 \\ 190 \pm 50 \end{array}$	140 = 83 1196 494 494 140 494 140 939 $+3897 = 82$	40±600

Кинематика в точке О

Кинематика в точках О' и О"

Таблица 4

Таблица З

След	Знак заряда	Р _{изм} , MeV/c	Р _{расч} , MeV/c	Частица	Угол	Угол неком- планарности
V ⁰ ₁ 4 5 V ⁰ ₂ 14 15	+ o + o	324 ± 25 453 ± 22 207 ± 8 1299 ± 70	654 <u>±</u> 29 1475 <u>±</u> 71	К ⁰ или \overline{K}^0 π ⁻ π ⁺ \overline{K}^0 или K ⁰ π ⁺ π ⁻	$\varphi (V_1^0, 4) = 41^{\circ}18' \pm 15'$ $\varphi (V_1^0, 5) = 24^{\circ}43' \pm 15'$ $\varphi (V_2^0, 14) = 26^{\circ}50' \pm 15'$ $\varphi (V_2^0, 15) = 5^{\circ}3' \pm 15'$	$\eta = 33'$ $\eta = 8'$

Мы считаем, что наиболее вероятной реакцией в первичной звезде (табл. 3 и 4) будет

 $\pi^- + C \rightarrow \overline{\Sigma}^- + K^0 + \overline{K}^0 + K^- + p + \pi^+ + \pi^- + ядро отдачи.$

Для времени жизни Σ^{-} получено значение (1,18 ± 0,07) · 10⁻¹⁰ сек.

1358

Таким образом, приведенные данные свидетельствуют о том, что нами наблюден новый тип частицы — заряженный антигиперон $\overline{\Sigma}^-$.

Объединенный институт ядерных исследований

Поступило в редакцию 24 марта 1960 г.

Литература

[1] Ван-Ган-чан, М. И. Соловьев, Ю. Н. Шкобин. ПТЭ, 1, 41, 1959.

[2] С. З. Отвиновский, Отчет ЛВЭ ОИЯИ, 1960.

[3] Г. А. Блинов, Ю. С. Крестников, М. Ф. Ломанов. ЖЭТФ, 31, 762, 1956.

[4] W. J. Willis, E. C. Fowler, D. C. Rahm. Phys. Rev., 108, 1046, 1957.