

P1-91-206

1991

С.А.Авраменко, Ю.А.Беликов\*, А.И.Голохвастов, В.П.Кондратьев\*, Л.В.Краснов\*, Ю.Лукстиньш, С.А.Седых, И.В.Степанов\*, С.А.Хорозов, И.Е.Шевченко\*

СЕЧЕНИЯ ПЕРЕЗАРЯДКИ  $^7$ Li  $\rightarrow$   $^7$ Be ПРИ 21 ГэВ/с на ядрах н, с, AI, Cu, Pb

1Å

\*Научно-исследовательский институт физики ЛГУ, Ленинград

## © Объединенный институт ядерных исследований Дубна, 1991

На пучке медленного вывода синхрофазотрона ЛВЭ ОИЯИ были проведены измерения сечений изменения заряда для ядер <sup>7</sup>L1 и сечений перезарядки <sup>7</sup>L1 → <sup>7</sup>Ве на ядерных мишенях. Импульс ядер лития – 21 ГэВ/с. В эксперименте использовались сцинтилляционные счетчики, электроника и система связи с ЭВМ установки ГИБС /1/.

Метод определения сечений изменения заряда, основанный на описан нами в измерении зарядового состава пучка за мишенью, Сцинтилляционные метода. работе /2/. Вкратце изложим суть счетчики, расположенные перед мишенью и после нее, назовем А и С дискриминатора дифференциального соответственно. Срабатывание счетчика А, настроенного на регистрацию ядер с зарядом З, является сигнала амплитуды измерения (стробом) для командой зарядово-цифрового преобразователя счетчика С. Если ядро лития прошло мишень без изменения заряда, то эта амплитуда будет соответствовать заряду З. В случае изменения заряда отсчет попадет результате в частности если другую часть спектра. В взаимодействия пучкового ядра в мишени в счетчик С не попала ни B то в спектре добавляется единица в одна заряженная частица, нулевой канал (пьедестал). Чтобы число отсчетов N<sub>A</sub> счетчика A соответствовало числу записанных сигналов счетчика С, вводилась блокировка стробов на время, большее времени измерения и записи амилитуды сигнала с С. Вопрос о выборе размеров счетчиков и расстояния между ними подробно рассмотрен нами в работе /2/. Если теперь обозначить долю частиц с зарядом 3 в измерении с мишенью <sup>N</sup>ЗМ<sup>/N</sup>АМ, а соответствующую величину в измерении без мишени N<sub>3</sub>/N<sub>A</sub>, то вероятность ядру лития пройти мишень без изменения

заряда равна отношению (N<sub>3M</sub>/N<sub>AM</sub>)/(N<sub>3</sub>/N<sub>A</sub>). В реальном эксперименте счетчик С - это группа из нескольких счетчиков, что позволяло (подробнее см. ниже) получить зарядовые спектры частиц за мишенью с гораздо лучшим разрешением.

При измерении сечений перезарядки <sup>7</sup>Li →<sup>7</sup>Be задача сводится к измерению доли частиц с зарядом 4 за мишенью. Если для этой цели воспользоваться спектрами со счетчика С (или группы С) со стробом А, то из-за малости сечения перезарядки надежно выделить в спектре пик, соответствующий заряду 4, очень трудно, так как пик, соответствующий заряду З, будет иметь на несколько порядков большую интенсивность. Кроме того, из-за сравнительно низкого быстродействия системы вывода И записи информации набор необходимой статистики потребовал бы неоправданно большого времени. Поэтому при измерениях сечений перезарядки строб-сигнал вырабатывался при одновременном срабатывании счетчика А и шести счетчиков группы С. Нижние пороги формирователей на этих шести счетчиках устанавливались так, чтобы каждый из них регистрировал ядро с зарядом З с вероятностью около 0,2. В этом случае вероятность появления строба при прохождении через счетчики ядра бериллия практически равна I, а при прохождении ядра лития она приблизительно равна 10<sup>-4</sup>. В группе С записывались амплитуды сигналов как со счетчиков, участвующих в выработке строба, так и с двух дополнительных. В такой постановке эксперимента ДЛЯ нахождения сечения перезарядки необходимо знать полное сечение неупругого взаимодействия ядер 7<sub>Be</sub>c ядрами мищени И С полистиролом, из которого были изготовлены сцинтилляторы. При обработке данных эти сечения принимались равными соответствующим сечениям неупругого взаимодействия ядер <sup>7</sup>Li. Они отличаются от

измеренных в этом же эксперименте сечений изменения заряда на сечение фрагментации <sup>7</sup>Li , <sup>6</sup>Li, которое невелико и учет которого не полученные результаты по сечениям может существенно изменить перезарядки. Отметим, что <sup>7</sup>Ве – единственный изотоп бериллия, который может наблюдаться в такой постановке эксперимента (вероятность подхвата нуклонов при рассматриваемых энергиях пренебрежимо мала, а  $^{6}$ Ве имеет время жизни около  $10^{-20}$  с). связанной С проблемой, методической сложной Наиболее необходимостью использовать пучок довольно большой интенсивности, является возможность пролета через счетчики группы С двух ядер лития, разделенных малым промежутком времени (меньше 100 нс, в течение которого открыты входы ЗЦП). Такие события имитируют прохождение через группу С частицы с зарядом 4. Для устранения этого эффекта были приняты специальные меры. Контрольные измерения, проведенные при разных временных плотностях пучка, показали, что вклад этого эффекта в полученные сечения перезарядки незначителен.

Измерения сечений проводились с мишенями из углерода (6,88  $\Gamma/cm^2$  и 18,7  $\Gamma/cm^2$ ), алюминия (4,92  $\Gamma/cm^2$  и 12,3  $\Gamma/cm^2$ ), меди (21,3  $\Gamma/cm^2$  и 35,35  $\Gamma/cm^2$ ), свинца (16,95  $\Gamma/cm^2$  и 33,9  $\Gamma/cm^2$ ) и полистирола ( CH ) (3,15  $\Gamma/cm^2$  и 11,55  $\Gamma/cm^2$ ). Использование мишеней разной толщины давало дополнительную возможность контроля за возможными систематическими ощибками.

На рисунках Ia и Iв представлены соответственно спектр сигналов с одного из счетчиков группы С, не включенного в схему стробирования, и спектр сигналов со всех счетчиков группы С, полученный методом ранговых статистик /3/.





В таблице I представлены результаты измерений о<sub>сс</sub> - сечений изменения заряда и о<sub>се</sub> - сечений перезарядки <sup>7</sup>Li - <sup>7</sup>Be.

Таблица I

о<sub>се</sub> (мб)

| C   | 650 ± 20   | 0.29 ± .03 |
|-----|------------|------------|
| Al  | 900 ± 50   | 0.42 ± .04 |
| Cu  | 1500 ± 50  | 0.53 ± .05 |
| Pb  | 2700 ± 100 | 0.84 ± .08 |
| СН  | 820 ± 20   | 0.47 ± .04 |
| (H) | 170 ± 30   | 0.18 ± .05 |

σ<sub>сс</sub>(мб)

Приведенные в таблице сечения изменения заряда и перезарядки на водороде получены из данных по соответствующим сечениям на полистироле и углероде.

В работе /4/ приведены данные о сечениях изменения заряда

некоторых ядер на водородной, гелиевой и углеродной мишенях. Хотя в этой работе измерения с пучком лития не проводились, значения сечений изменения заряда в <sup>7</sup>L1 + С и <sup>7</sup>L1 + Н столкновениях можно оценить по аппроксимациям, приведенным в /3/. Соответствующие сечения оказываются равными 570 мб и 155 мб. Сечение на водороде хорошо согласуется с нашим измерением, а на углероде данные заметно расходятся.

Проанализируем зависимость сечений перезарядки от атомного веса ядра-мишени. Расчеты /5/, выполненные Ф.Гареевым и Ю.Ратисом, чисто перезарядки является реакция показывают, что хотя периферической, зависимость сечения перезарядки от атомного веса  $A_{t}^{2/3}$ . А<sub>t</sub> ядра-мишени должна включать член, пропорциональный К усиленной зависимости сечений перезарядки от А<sub>t</sub> в модели /5/ приводит учет коллективных эффектов возбуждения дельта-изобары в ядре-мишени. Указание на наличие таких эффектов получили авторы работы /6/, анализируя данные /7/ по (p,n)-реакции на ядрах.

Для анализа A<sub>t</sub>- зависимости полученных в эксперименте сечений перезарядки воспользуемся геометрической моделью взаимодействия ядер, приводящей к простой формуле /8/ для сечений неупругих... столкновений:

 $\sigma_{in} = \pi R_0^2 \left( A_p^{1/3} + A_t^{1/3} - b \right)^2.$  (1)

Смысл этой формулы вполне прозрачен – при прицельных параметрах столкновения, больших, чем  $R_0(A_p^{1/3} + A_t^{1/3} - b)$ , ядра не взаимодействуют, при меньших – взаимодействуют всегда. Рис.2а демонстрирует, что формула (1) с параметром b=1 неплохо воспроизводит зависимость сечений от атомных весов сталкивающихся ядер.

В рамках рассматриваемой геометрической модели естественно

считать, что зависимость сечений  $\sigma_{\mathbf{p}}$  периферических столкновений от атомных весов дается формулой:

 $^{\sigma}\mathbf{p}$ 

$$\propto (A_p^{1/3} + A_t^{1/3} - b) \Delta b,$$
 (2)

где b - та же самая константа, что и в формуле (I), а  $\Delta b$ определяет набор прицельных параметров, при которых во взаимодействии участвует только небольшая доля нуклонов сталкивающихся ядер. Рис.2b показывает, что формула (2) с b=1 и  $\Delta b$  = const неплохо описывает зависимость сечений периферических столкновений от атомных весов сталкивающихся ядер.



Рис. 2. а)  $A_t$  – зависимость сечений изменения заряда и сечений неупругого взаимодействия. Данные по <sup>7</sup>Li +  $A_t$  – из этой работы, по <sup>4</sup>He,<sup>12</sup>C +  $A_t$  из /9/, по <sup>56</sup>Fe +  $A_t$  из /10/, по <sup>19</sup>F +  $A_t$  из /11/. b)  $A_t$ - зависимость сечений фрагментации по данным /10/. c)  $A_t$ - зависимость сечений <sup>7</sup>Li +  $A_t \rightarrow {}^7Be$  + ...

Наконец, на рис. 2с представлена зависимость сечений перезарядки <sup>7</sup>Li · <sup>7</sup>Be от атомного веса ядра – мишени. Хотя эта реакция должна быть периферической, рис. 2с показывает, что формула (2) на этот раз хуже воспроизводит поведение сечений. Фитирование A<sub>t</sub>-зависимости экспериментальных данных формулой

 $\sigma_{ce} = c_1 (A_p^{1/3} + A_t^{1/3} - 1) + c_2 A_t^{2/3}$ 

дает для C<sub>2</sub>/C<sub>1</sub> значение 0.088 ± .040, что согласуется с расчетами /5/.

Измерения энергетического спектра тритонов, образующихся в реакции перезарядки <sup>3</sup>Не + А , <sup>3</sup>Н + ..., были выполнены в Дубне и Сакле (см., например, /13 - 15/). Анализ этих данных показал, что процесс перезарядки гелия на ядрах трудно объяснить перезарядкой на квазисвободном нуклоне ядра-мишени. Полученный нами результат можно рассматривать как новое независимое указание на существенную роль коллективных эффектов в процессах перезарядки ядер на ядрах. Следует, конечно, помнить, что этот вывод основан на предположении о справедливости геометрической модели. Для более однозначного измерения меньшими расчеты И С заключения нужны точные статистическими ошибками.

Авторы благодарны Ф.А.Гарееву, С.М.Елисееву, В.И.Иноземцеву, Ю.Л.Ратису, и Е.А.Строковскому за обсуждения результатов эксперимента и полезные замечания.

## Литература

1. Базылев С.Н. и др. ОИЯИ РІО-90-533, Дубна, 1990.

2. Аникина М.Х. и др. ЯФ, 1983, 38,149.

З. Мерзон Г.И., Б.Ситар и Ю.А.Будагов. ЗЧАЯ, 1983, 14, 648.

4. W.R.Webber, J.C.Kish and D.A.Sehner. Phys.Rev., 1990, C41,520. 5. Гареев Ф.А, Ратис Ю.Л. ОИЯИ, Р2-89-805. Дубна, 1989. 6. Ableev V.G. et al. Proc. Int. Symp. "Modern Developments in Nuclear Physics", 1987, Novosibirsk, p.690. Edited by O.P.Sushkov. World Science Publ.Comp., Singapore, 1988. 7. Батурин В.Н. и др. *Я*Ф, 1980, 31, 396. 8. H.L.Bradt and B.Peters, Phys.Rev., 1950, 77, 54. 9. Aksinenko V.D. et al. Nucl. Phys., 1980, A348, 518. 10. Westfall G.D. et al. Phys. Rev., 1979, C19, 1309. 11. Головин В.М. и др. ОИЯИ, РІ-88-175. Дубна, 1988. 12. Olson D.L. et al. Phys.Rev., 1983, C28,1602. 13. Аблеев В.Г. и др. Письма в ЖЭТФ, 1984, 40, 35. 14. Аблеев В.Г. и др. ЯФ, 1988, 48,27. 15. D.Contardo et al. Phys.Lett., 1986, B168, 331. Рукопись поступила в издательский отдел 8 мая 1991 года. 8

Авраменко С.А. и др.

1

P1-91-206

Сечения перезарядки  $^7$  Li  $\rightarrow$   $^7$  Be при 21 ГэВ/с. на ядрах H, C, Al, Cu, Pb

В пучке ядер <sup>7</sup> Li с импульсом 21 ГэВ/с проведены измерения сечений изменения заряда и сечений перезарядки <sup>7</sup> Li → <sup>7</sup>Ве на мишенях C, Al, Cu, Pb и CH. Описана методика измерения сечений. Полученные данные по сечениям перезарядки указывают на более сильную, чем для периферических столкновений, зависимость от атомного веса ядра-мишени.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1991

## Перевод Л.Н.Барабаш

-----

Avramenko S.A. et al. Charge Exchange <sup>7</sup> Li  $\rightarrow$  <sup>7</sup> Be Cross Sections at 21 GeV/c on H, C, Al, Cu, Pb Nuclei P1-91-206

The charge change and charge exchange  ${}^{7}Li \rightarrow {}^{7}Be$  cross sections were measured on C, Al, Cu, Pb and CH targets at a  ${}^{7}Li$  momentum of 21 GeV/c. The measurement method is described. The charge exchange cross section data give evidence for a stronger A-dependence of target nuclei than that for peripheral collisions.

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research, Dubna 1991

21 кол.

## Редактор Е.К.Аксенова. Макет Н.А.Киселевой.

Подписано в печать 15.05.91. Формат 60х90/16. Офсетная печать. Уч.-изд.листов 0,71. Тираж 470. Заказ 44327. Издательский отдел Объединенного института ядерных исследований. ι.

Дубна Московской области.