

Light nucleus clustering in fragmentation above 1 A GeV

N. P. Andreeva^a, D. A. Artemenkov^b, V. Bradnova^b, M. M. Chernyavsky^c, A. Sh. Gaitinov^a,
S. P. Kharlamov^c, A. D. Kovalenko^b, M. Haiduc^d, S. G. Gerasimov^c, L. A. Goncharova^c, N. Kachalova^b
V. G. Larionova^c, F. G. Lepekhin^e, A. I. Malakhov^b, A. A. Moiseenko^f, G. I. Orlova^c, N. G. Peresadko^c,
N. G. Polukhina^c, P. A. Rukoyatkin^b, V. V. Rusakova^b, V. R. Sarkisyan^f, T. V. Schedrina^b, B. B. Simonov^e,
E. Stan^e, R. Stanoeva^g, I. Tsakov^g, S. Vokal^h, **P. I. Zarubin^b**, I.G Zarubina^b

^aInsitutute of Physics and Technology, Almaty, Kazakhstan ^bJoint Institute for Nuclear Research, Dubna, Russia ^cP. N. Lebedev Physical Institute, RAS, Moscow, Russia ^dInstitute of Space Sciences, Bucharest-Magurele, Romania ^ePetersburg Institute of Nuclear Physics, RAS, Gatchina, Russia ^fErevan Physical Institute, Erevan, Armenia ^gInsttitute for Nuclear Research and Nuclear Energy, BAS, Sofia, Bulgaria ^hP. J. Safarik University, Kosice, Slovakia

2.9A GeV/c¹⁴N

димому, осколками ядра мишени.

4.5A GeV/c ²⁰Ne Peripheral Dissociation into charge state 2+2+2+2 with ⁸Be like fragments

4.5A GeV/c ²⁴Mg Peripheral Dissociation into charge state 2+2+2+2+2 with ⁸Be and ¹²C^{*} like fragments

Boltzmann constant, k /approx 10⁻⁴ eV K⁻¹ Typical Temperature Range, \mp /approx 5.10⁸⁻⁹ K per α $\mathbf{p}_{a} = \sqrt{(2\mathbf{m}_{a} \cdot \mathbf{T}_{a})}$ \mathbf{p}_{a} /approx 20-120 MeV Planck constant, h /approx 200 MeV fm $\lambda = \hbar/p$ de Broglie wave lengths /approx 1-10 fm λ^{coh}_{a} /approx R_{a} λ^{coh}_{He} /approx R_{He} $T_{a}/T_{H_{e}} = T_{a}/T_{H_{e}} = (R_{H_{e}}/R_{a})^{2}$ /approx 10¹⁰

Macroscopic quantum coherence phenomena in atomic physics /approx 1 K Macroscopic quantum coherence phenomena in atomic physics /approx 10¹⁰ K Physics of Atomic Nuclei, Vol. 68, No. 3, 2005, pp. 455–465. Translated from Yadernaya Fizika, Vol. 68, No. 3, 2005, pp. 484–494. Original Russian Text Copyright © 2005 by Andreeva, Bradnova, Vokal, Vokalova, Gaitinov, Gerasimov, Goncharova, Dronov, Zarubin, Zarubina, Kovalenko, Kravchakova, Larionova, Levitskaya, Lopekhin, Malakhov, Moiseenko, Orlova, Peresadko, Polukhina, Rukoyatkin, Russkova, Salmanova, Sarkisyan, Simonov, Stan, Stanoeva, Chernyavsky, Haidue, Kharlamov, Tsakov, Schedrina.

Topology of "White Stars" in the Relativistic Fragmentation of Light Nuclei

N. P. Andreeva¹, V. Bradnova², S. Vokal^{2),3}, A. Vokalova², A. Sh. Gaitinov¹, S. G. Gerasimov⁴, L. A. Goncharova⁴, V. A. Dronov⁴, P. I. Zarubin², I. G. Zarubina², A. D. Kovalenko², A. Kravchakova³, V. G. Larionova⁴, O. V. Levitskaya⁵, F. G. Lepekhin⁵, A. I. Malakhov², A. A. Moiseenko⁶, G. I. Orlova⁴, N. G. Peresadko⁴, N. G. Polukhina⁴, P. A. Rukoyatkin², V. V. Rusakova², N. A. Salmanova⁴, V. R. Sarkisyan⁶, B. B. Simonov⁵, E. Stan², 7), R. Stanoeva², 8, M. M. Chernyavsky⁴, M. Haiduc⁷, S. P. Kharlamov⁴, I. Tsakov⁸, and T. V. Schedrina²

Received May 24, 2004; in final form, August 27, 2004

Abstract—Experimental observations of the multifragmentation of relativistic light nuclei by means of emulsions are surveyed. Events that belong to the type of "white stars" and in which the dissociation of relativistic nuclei is not accompanied by the production of mesons and target-nucleus fragments are considered. An almost complete suppression of the binary splitting of nuclei to fragments of charge in excess of two, Z > 2, is a feature peculiar to charge topology in the dissociation of Ne, Mg, Si, and S nuclei. An increase in the degree of nuclear fragmentation manifests itself in the growth of the multiplicity of singly and doubly charged fragments (Z = 1, 2) as the charge of the unexcited fragmenting-nucleus part (which is the main part) decreases. Features of the production of systems formed by extremely light nuclei α , d, and t are studied in the dissociation of the stable isotopes of Li, Be, B, C, N, and O to charged fragments. Manifestations of ³He clustering can be observed in "white stars" in the dissociation of neutron-deficient isotopes of Be, B, C, and N. © 2005 Pleiades Publishing, Inc.

Table 1. Charge-topology distribution of white stars in the dissociation of ²⁴Mg nuclei with an energy of 3.65 GeV per nucleon

Z_f	11	10	10	9	9	8	8	8	7	7	6	5	5	5	4	4	3	-	-	-
$N_{Z=1}$	1	2	-	3	1	4	2	-	3	1	2	5	3	1	6	4	5	6	4	2
$N_{Z=2}$	-	-	1	-	1	-	1	2	1	2	2	1	2	3	1	2	2	3	4	5
$N_{\rm ev}$	10	14	8	5	9	1	7	4	4	2	4	2	1	1	2	1	3	1	2	2

Table 2. Charge-topology distribution of white stars in the dissociation of ²²Ne nuclei with an energy of 3.3 GeV per nucleon

Z_f	9	8	8	7	6	6	5	5	5 + 3	4	4 + 3	-	_
$N_{Z=1}$	1	-	2	1	-	2	1	3	-	-	3	2	-
$N_{Z=2}$	-	1	_	1	2	1	2	1	1	3	-	4	5
$N_{\rm ev}$	22	51	6	7	5	2	1	1	1	2	1	1	3

Table 3. Charge-topology distribution of white stars in the dissociation of ²⁸Si nuclei with an energy of 3.65 GeV per nucleon

Z_f	13	12	12	11	11	10	10	10	9	9	9	8	8	8	7	7	7	6	6	6	6	5	5	4	-	-	-
$N_{Z=1}$	1	-	2	1	3	-	2	4	1	3	5	6	2	4	3	5	7	2	4	6	8	3	5	2	2	8	10
$N_{Z=2}$	-	1	-	1	-	2	1	-	2	1	-	-	2	1	2	1	-	3	2	1	-	3	2	4	6	3	2
$N_{\rm ev}$	9	3	15	11	6	2	7	2	2	8	3	2	5	6	1	3	3	3	5	8	1	1	3	1	1	2	3

Table 4. Charge-topology distribution of white stars in the dissociation of ³²S nuclei with an energy of 200 GeV per nucleon

Z_f	15	14	14	13	13	12	12	11	11	10	10	10	9	8	8	7 + 3	7	5 + 3
$N_{Z=1}$	1	-	2	1	3	2	4	3	5	2	4	6	3	-	6	4	3	4
$N_{Z=2}$	-	1	-	1	-	1	-	1	-	2	1	-	2	4	1	1	3	2
$N_{\rm ev}$	99	11	48	7	6	3	4	4	1	1	2	1	1	1	1	1	1	1

Table 5. Charge-topology distribution of white stars in the dissociation of ¹⁶O nuclei with an energy of 3.65 GeV per nucleon

Z_f	7	6	6	5	5	4	4	_	_
$N_{Z=1}$	1	2	_	3	1	_	2	-	2
$N_{Z=2}$	_	_	1	-	1	2	1	4	3
$N_{\rm ev}$	18	7	21	2	10	1	1	9	3

Table 8. Charge-topology distribution of white stars in the dissociation of ¹⁴N nuclei with an energy of 2.1 GeV per nucleon

Z_f	6	5	5	4	3	3	_	_
$N_{Z=1}$	1	_	2	1	4	2	3	1
$N_{Z=2}$	_	1	_	1	_	1	2	3
$N_{\rm ev}$	6	3	2	1	1	1	1	10

Table 6. Charge-topology distribution of white stars in the dissociation of ¹⁶O nuclei with an energy of 200 GeV per nucleon

Z_f	7	6	6	5	5	4	3	3	_	-	-
$N_{Z=1}$	1	-	2	1	3	2	1	3	_	2	4
$N_{Z=2}$	–	1	–	1	_	1	2	1	4	3	2
N_{ev}	49	6	10	5	1	3	2	2	2	4	2

Table 7. Charge-topology distribution of white stars in the dissociation of ¹⁰B nuclei with an energy of 1 GeV per nucleon

Z_f	4	3	_	_
$N_{Z=1}$	1	_	3	1
$N_{Z=2}$	_	1	1	2
$N_{ m ev}$	1	5	5	30

Table 9. Charge-topology distribution of white stars in the dissociation of ⁷Be nuclei of energy 1.23 GeV per nucleon

Z_f	3	_	_	_
$N_{Z=1}$	1	4	2	_
$N_{Z=2}$	_	_	1	2
$N_{\rm ev}$	7	2	38	28

Number of events of ⁶Li coherent dissociation

	Number o	of events
Dissociation channel	without the excitation of the target nucleus $(N_h = 0)$	with the excitation of the target nucleus $(N_h \neq 0)$
4 He + d	23	24
$^{3}\mathrm{He}+t$	4	1
t + d + p	4	3
d+d+d	0	2

The common topological feature for fragmentation of the Ne, Mg, and Si nuclei consists in a suppression of binary splitting to fragments with charges larger than 2.

The growth of the fragmentation degree is revealed in an increase of the multiplicity of singly and doubly charged fragments up to complete dissociation with increasing of excitation.

This circumstance shows in an obvious way on a domination of the multiple cluster states having high density over the binary states having lower energy thresholds.

Secondary beams of light radioactive nuclei will be produced mostly via charge exchange reactions. ⁸B and ⁹Be beams has been formed via fragmentation of ¹⁰B. Clustering building blocks: more than one nucleon bound, stable & no exited states below particle decay thresholds – deuteron, triton, ⁴He, and ³He nuclei

4.5A GeV/c ⁶Li Coherent Dissociation (PAVICOM image)

Number of events of ⁶Li coherent dissociation

	Number of events								
Dissociation channel	without the excitation of the target nucleus $(N_h = 0)$	with the excitation of the target nucleus $(N_h \neq 0)$							
4 He + d	23	24							
$^{3}\mathrm{He}+t$	4	1							
t + d + p	4	3							
d + d + d	0	2							

Triton Clustering

⁷Li 8800

⁷Li. About 7% of all inelastic interactions of ⁷Li nuclei are "white" stars (80 events).

Decay of ⁷Li nucleus to α -particle and triton - 40 events.

Toward stability frontier

Splitting to HeHe with two target fragments, HeHe, HeHH, ⁶Lip, and 4H.

Relativistic ⁷**Be fragmentation:** 2+2

The ⁷Be^{*}→α³He decay is occured in 22 "white stars" with 2+2 topology. In the latter, 5 "white" stars are identified as the ⁷Be^{*}→(n) ³He³He decay. Thus, a ³He clustering is clearly demonstrated in dissociation of the ⁷Be nucleus.

"Ternary H&He Process"

The ¹⁰B nuclei with a momentum of 2A GeV/c and an intensity of about 10⁸ nuclei per cycle were accelerated at the JINR nuclotron. A beam of secondary nuclei of a magnetic rigidity corresponding to Z/A = 5/8 (¹⁰B \rightarrow ⁸B fragmentation) was provided for emulsions. We plan to determine the probabilities $^{8}B \rightarrow ^{7}Bep (9), ^{3,4}He^{3}Hep (8), ^{6}Lipp (1),$ HeHHp (7), and HHHpp (1).

1.3A GeV ⁹Be dissociation in 2+2. ${}^{10}B \rightarrow {}^{9}Be$, Nuclotron, 2004.

"white" star

with recoil proton

with heavy fragment of target nucleus

"Ternary ³He Process"

2 A GeV/c carbon beam of a magnetic rigidity Z/A = 6/9 (${}^{12}C \rightarrow {}^{9}C$) was provided for emulsions to determine the probabilities ${}^{9}C \rightarrow {}^{8}Bp$ (1), ${}^{7}Bepp$ (2), HeHepp (7), ${}^{6}Lipp$ (0), HeHHpp (5), HeHeHe

¹⁰B is disintegrated to 2 doubly charged and 1singly

charged particles in 70% of "white" stars. A singly charged particle is the deuteron in 40% like in case of ⁶Li. ⁸Be contribution is 20%. ${}^{10}B \rightarrow {}^{9}Bep - 3\%$

"3He Process: mixed isotope fusion"

Walking along proton stability line ²⁰Mg 95 ms ²⁰Na 448 ms ¹⁸Ne 1.67 s ¹⁹Ne 17.2 s ¹⁶Ne 0.122 MeV ¹⁷Ne 109 s ¹⁵F 1 MeV ²⁰Ne 90.48% ¹²O 0.4 MeV ¹⁷F 64.5 s ¹³O 8.58 ms ¹⁴O 70.6 s ⁹F 100% ¹⁶F 0.04 MeV ¹⁸F 110 min ¹¹N 1.58 MeV ¹⁵O 122 s ¹⁶O 99.8%

¹⁴N 99.6%

¹³N 10 min

¹²N 11 ms

Multifragmentation in H&He

Fragmentation of relativistic nuclei provides an excellent quantum "laboratory" to explore the transition of nuclei from the ground state to a gas-like phase composed of nucleons and few-nucleon clusters having no excited states, i. e. d, t, ³He, and α .

The research challenge is to find indications for the formation of quasi-stable systems significantly exceeding the sizes of the fragments.

Search for such states is of interest since they can play a role of intermediate states for a stellar nuclear fusion due to dramatically reduced Coulomb repulsion.

The fragmentation features might assist one to disclose the scenarios of few-body fusions as processes inverse to fragmentation.

