когерентная диссоциация релятивистских ядер ⁹С

© **2010** Д. О. Кривенков¹⁾, Д. А. Артеменков¹⁾, В. Браднова¹⁾, С. Вокал²⁾, П. И. Зарубин^{1)*}, И. Г. Зарубина¹⁾, Н. В. Кондратьева¹⁾, А. И. Малахов¹⁾, А. А. Моисеенко³⁾, Г. И. Орлова⁴⁾, Н. Г. Пересадько⁴⁾, Н. Г. Полухина⁴⁾, П. А. Рукояткин¹⁾, В. В. Русакова¹⁾, В. Р. Саркисян³⁾, Р. Станоева¹⁾, М. Хайдук⁵⁾, С. П. Харламов⁴⁾

Описываются результаты по когерентной диссоциации релятивистских ядер ${}^{9}C$ в ядерной эмульсии, включающие зарядовую топологию и кинематические особенности конечных состояний. Идентифицированы события когерентной диссоциации ${}^{9}C \rightarrow 3^{3}$ Не.

⁵⁾Институт космических исследований, Магурель (Бухарест), Румыния

*E-mail: <u>zarubin@lhe.jinr.ru</u>

¹⁾Объединенный институт ядерных исследований, Дубна, Россия.

²⁾Университет П. Й. Шафарика, Кошице, Словацкая Республика.

³⁾Ереванский физический институт, Армения.

⁴⁾Физический институт имени П. Н. Лебедева РАН, Москва, Россия.

ВВЕДЕНИЕ

Когерентная диссоциация релятивистских ядер на тяжелых ядрах мишени индуцируются В электромагнитных И ядерных дифракционных взаимодействиях, протекающих без образования фрагментов ядер мишени и мезонов. События такого типа, именуемые "белые звезды", наблюдаются в ядерной эмульсии с уникальной достоверностью [1–3]. Они составляют несколько процентов от числа неупругих взаимодействий. Использование ядерной фотографической эмульсии обеспечивает полноту наблюдения фрагментов релятивистских при превосходном угловом разрешении. Продуктивной гипотезой при кинематическом анализе является допущение о равенстве импульсов на нуклон (или скоростей) исследуемого релятивистского ядра и его фрагментов. Решающее значение имеет угловое разрешение, а, значит, лежащее в его основе пространственное, которое составляет в методе ядерной эмульсии рекордную величину 0.5 мкм.

При диссоциации легких ядер в статистических распределениях по различным конфигурациям релятивистских фрагментов отчетливо проявляются их кластерные особенности как следствие минимальности передаваемого возбуждения [4–9]. Исследование ядер с дефицитом нейтронов имеет особые преимущества из-за большей определенности в интерпретации. В ядерной эмульсии, облученной на пучках нуклотрона ОИЯИ, сотрудничеством БЕККЕРЕЛЬ [10] уже исследована кластерная структура диссоциации ядер ⁷Ве [8] и ⁸В [9], что позволяет продвинуться к следующему изотопу на границе стабильности – ⁹С. Можно ожидать, что в когерентной диссоциации ядра ⁹С должна воспроизводиться картина, уже полученная для ядер ⁷Ве и ⁸В с добавлением одного или двух протонов. Благодаря стабильности кора в виде ядра ⁷Ве ядро ⁹С может служить более удобным

пробником динамики когерентной диссоциации, чем изотопы, в которых основу составляет несвязанное ядро ⁸Ве [4,6,7].

В когерентной диссоциации ядра ⁹С посредством перегруппировки нейтрона из α -частичного кластера в формирующийся кластер ³Не становится возможным заселение кластерной системы 3³Не, имеющей относительно невысокий порог возникновения (около 16 МэВ). Эта система может быть важна для развития сценариев ядерной астрофизики как аналог 3 α -процесса. Предложение о поиске когерентной диссоциации ⁹С \rightarrow 3³Не стало основной проблемой настоящего исследования.

ЭКСПЕРИМЕНТ

Посредством фрагментации ядер ¹²С, ускоренных на нуклотроне ОИЯИ до энергии 1.2А ГэВ, был сформирован вторичный пучок, оптимизированный для селекции ядер ⁹С [11]. Интенсивность первичного пучка составила около 10⁹ ядер в цикл, толщина производящей мишени из полиэтилена – 5 г/см², аксептанс сепарирующего канала – около 3%, что обеспечило интенсивность вторичного пучка – несколько сот частиц в цикл. На рис. 1 представлен спектр зарядово-цифрового преобразователя (ЗЦП) со сцинтилляционного монитора пучка, установленного перед эмульсионной стопки. Этот спектр указывает на преобладающий вклад ядер С во вторичный пучок. Пучок содержит и малую примесь ядер ⁷Ве и ⁸В, обладающих несколько большей магнитной жесткостью, чем ⁹С. Основной фон представлен ядрами ³Не с тем же отношением заряда $Z_{\rm pr}$ к массовому числу $A_{\rm pr}$, что и у ⁹С. Эти особенности указывают на правильность настройки сепарирующего канала.

Облучаемая стопка содержала 19 слоев ядерной эмульсии БР-2, обладающей чувствительностью вплоть до однозарядных релятивистских частиц. Каждый слой имел размеры 10 × 20 см и толщину около 0.5 мм. При облучении пучок направлялся параллельно плоскости стопки вдоль длинной

стороны с возможно большей однородностью заполнения входного окна стопки

Представляемый анализ основывается на полном сканировании всех слоев по всем первичным следам с зарядами, визуально оцениваемыми как $Z_{\rm pr} > 2$. На общей длине следов 253.7 м было найдено 1746 взаимодействий (в основном ядер C). Ядра ³Не отбрасывались на начальной стадии визуального просмотра. Отношение интенсивностей ядер $Z_{\rm pr} > 2$ и $Z_{\rm pr} = 2$ составило примерно 0.1. Этот фактор определил длительность облучения, составившую около 100 циклов и, как следствие, статистику. Данное облучение носило опытный характер, и при его проведении было важно избежать переоблучения эмульсии ядрами ³Не. Кроме того, было обнаружено присутствие частиц с $Z_{\rm pr} = 1$ в примерно равном соотношении с ядрами с зарядами $Z_{\rm pr} > 2$. Средний пробег ядер C до взаимодействия составляет $\lambda_{\rm C} = 14.5 \pm 0.5$ см, что соответствует данным для соседних кластерных ядер.

Релятивистские фрагменты H и He могут быть идентифицированы по параметру $p\beta c$, который определяются на основе измерений многократного рассеяния, где p – полный импульс, а β – скорость. Предполагается, что фрагменты ядра-снаряда сохраняют импульс на нуклон, кратный его значению для первичного ядра, т. е., $p\beta c \approx A_{fr}p_0\beta_0 c$, где A_{fr} – массовое число фрагмента. Для достижения требуемой точности определения $p\beta c$ необходимо измерить смещения по координате следа в направлениях, перпендикулярных движению частицы в более чем 100 точках. Применение этого трудоемкого метода оправдывается получением уникальной информации об изотопном составе систем из нескольких легчайших ядер.

Присутствие в составе пучка ядер ³Не оказалось полезным для калибровки процедуры идентификации вторичных фрагментов. Распределение по измеренным значениям $p\beta c$ для 30 ядер ³Не из состава пучка представлено на рис. 2. Параметры распределений $p\beta c$ и их ошибки определялись по результатам аппроксимации функциями Гаусса. Среднее значение равно $\langle p\beta c \rangle$

= (5.1 ± 0.2) ГэВ при среднеквадратичном рассеянии $\sigma = 0.8$ ГэВ, что близко к ожидавшемуся для ядер ³Не значению 5.4 ГэВ (для ⁴He – 7.2 ГэВ). Значение σ можно признать удовлетворительным для разделения изотопов ³Не и ⁴Не и, в особенности, внутри коррелированных групп.

Заряды ядер $Z_{pr} > 2$ определялись по зарядовым конфигурациям вторичных фрагментов $\sum Z_{fr}$ в "белых звездах" и проверялись последующим измерением зарядов первичных следов Z_{pr} . Заряды ядер пучка Z_{pr} .и фрагментов $Z_{fr} > 2$ определялись методом счета б-электронов на следах. Результаты определения зарядов первичных ядер и фрагментов из событий когерентной диссоциации $\sum Z_{fr} = 5 + 1$ и 4 + 1 + 1 позволяют заключить, что все события образованы ядрами $Z_{pr} = 6$ (рис. 3). Для релятивистских фрагментов $Z_{pr} > 2$ наблюдается ожидаемое смещение распределения в сторону меньших зарядов по сравнению с распределением для ядер пучка.

КОНФИГУРАЦИИ РЕЛЯТИВИСТСКИХ ФРАГМЕНТОВ

Распределение 113 "белых звезд" $N_{\rm ws}$, составляющих 70% событий когерентной диссоциации ядер с зарядами $Z_{\rm pr} > 3$, по зарядовым конфигурациям $\sum Z_{\rm fr} = 6$ представлено в верхней строке табл. 1. Благодаря отсутствию стабильных изотопов ⁹В и ⁸Ве, события с фрагментами с зарядами $Z_{\rm fr} = 5$ и 4 и идентифицированными зарядами $Z_{\rm pr} = 6$, интерпретируется как ⁹С \rightarrow ⁸В + *p* и ⁷Ве + 2*p*. Эти два канала имеют наиболее низкие пороги 1.3 и 1.43 МэВ и составляют около 30% статистики событий когерентной диссоциации с $\sum Z_{\rm fr} = 6$. Результат идентификации фрагментов $Z_{\rm fr} = 1$ из этой группы событий представлен на рис. 2 (штриховая гистограмма). Распределение имеет $\langle \rho\beta c \rangle =$ (1.5 ± 0.1) ГэВ и $\sigma = 0.4$ ГэВ, что соответствует протонам. По существу, идентификация в данных случаях не является необходимой, и эти протоны могут служить для калибровки.

На рис. 4 представлены распределения по полярному углу θ релятивистских фрагментов B, Be и *p* с зарядами $Z_{\rm fr} > 2$ в этой группе событий.

Для фрагментов с $Z_{\rm fr} = 5$ среднее значение равно $\langle \theta_{\rm B} \rangle = (15 \pm 4) \times 10^{-3}$ рад (RMS = 9.6 × 10⁻³ рад; RMS – среднеквадратичное отклонение), для с $Z_{\rm fr} = 4 - \langle \theta_{\rm Be} \rangle = (18 \pm 4)^{\circ} 10^{-3}$ рад (RMS = 10.5×10⁻³ рад).

Среднее значение $\langle \theta \rangle$ фрагментов $Z_{\rm fr} = 1$ в событиях $\sum Z_{\rm fr} = 5 + 1$ равно $\langle \theta_{\rm p} \rangle = (39 \pm 7) \times 10^{-3}$ рад (RMS = 26 $\cdot 10^{-3}$ рад), для $\sum Z_{\rm fr} = 4 + 1 + 1$. $\langle \theta_{\rm p} \rangle = (34 \pm 4) \times 10^{-3}$ рад (RMS = 18 $\times 10^{-3}$ рад). Отличие в значениях $\langle \theta \rangle$ для тяжелых и легких фрагментов отражает разницу их масс.

Угловые измерения позволяют оценить с точностью несколько процентов поперечные импульсы фрагментов *P_t* согласно формуле

$$P_t = A_{\rm fr} P_0 \sin \theta.$$

Распределение суммы поперечных импульсов фрагментов P_T отражает механизм когерентной диссоциации. На рис. 5 представлены распределения $P_T(^8\text{B} + p)$ и $P_T(^7\text{Be} + 2p)$, имеющие средние значения $\langle P_T(^8\text{B} + p) \rangle = 246 \pm 44$ МэВ/с, при RMS 164 МэВ/с и $\langle P_T(^7\text{Be} + 2p) \rangle = 219 \pm 38$ МэВ/с при RMS 136 МэВ/с. Можно заключить, согласно [12], что оба распределения находятся в области, которая характерна для ядерной дифракционной диссоциации.

Распределение "белых звезд", образованных ядрами ⁷Be, ⁸B и C по зарядовым конфигурациям $\sum Z_{fr}$, в состав которых входят только ядра H и He, представлено в табл. 2, причем из $\sum Z_{fr}$ исключено одно ядро H для ядра ⁸B, и 2H – для ядра C. Эта группа событий требует полной идентификации изотопов He и H и кинематического анализа, которые планируется выполнить в будущем. Наблюдаются одинаковые доли каналов 2He и He + 2H, что не противоречит диссоциации ⁷Be как основы ядра ⁹C. Идентификация событий 3He как продукта диссоциации ⁹C будет представлена далее. Как было установлено [9], соотношение "белых звезд" ⁸B с тяжелыми фрагментами (⁸B \rightarrow ⁷Be + p) и звезд, содержащих только фрагменты He и H от диссоциации кора ⁷Be, оказалось примерно равным. Предполагая, что вклад ⁷Be в настоящем исследовании будет столь же большим, можно считать, что статистика табл. 1 соответствует диссоциации изотопа ⁹C. Кроме того, можно отметить образование шести "белых звезд" С \rightarrow 6H (табл. 1). В случаях изотопов ^{10,11,12}С события такого типа требуют одновременных развалов двух или трех кластеров ⁴He. Связанные с преодолением очень высоких порогов, они практически не могли бы протекать без образования фрагментов мишени. Напротив, схожие процессы, связанные с развалом только пары кластеров He, наблюдались для "белых звезд" ⁷Be \rightarrow 4H [8] и ⁸B \rightarrow 5H [9].

В табл. 1 отмечено образование четырех событий $\sum Z_{fr} = 4 + 2$, которые могли возникнуть в диссоциации ¹¹C \rightarrow ⁷Be + ⁴He, имеющей для изотопа ¹¹C наиболее низкий порог. Можно заключить, что присутствие изотопа ¹¹C в составе вторичного пучка является незначительным. Вклад изотопа ¹⁰C в статистику табл. 1, для которого были бы характерны конфигурации, состоящие только из изотопов He и H, требует детальной идентификации в этой группе событий. Однако указаний на его заметную роль не имеется. Отметим, что при такой идентификации возможно получение новых физических выводов, поскольку могут обнаружиться случаи, соответствующие пересечению границы стабильности в направлении ядерных резонансных состояний во фрагментации ⁹C \rightarrow ⁸C.

Для сравнения на нижней строке табл. 1 приведена статистика событий $N_{\rm tf}$ с $\sum Z_{\rm fr} = 6$, сопровождаемых фрагментами мишени. Во всех каналах наблюдается примерная пропорциональность со статистикой $N_{\rm ws}$ за исключением случая явного снижения выхода $N_{\rm tf}$ 3He.

ПОИСК СОБЫТИЙ 3³Не

В табл. 1 отмечается образование 16 "белых звезд", имеющих конечные состояния 3He, что позволило приступить к идентификации событий ${}^{9}C \rightarrow 3^{3}$ He. Стоит отметить вероятность диссоциации по этому каналу, сравнимую с наиболее ожидавшимися конечными состояниями. Угловые измерения позволяют получить распределения по полярному углу фрагментов θ (рис. 6) и

по углу разлета в паре Θ_{2He} (рис. 7). Благодаря превосходному пространственному разрешению, уверенно наблюдаются восемь узких пар 2He с $\Theta_{2He} < 10^{-2}$ рад.

Этот канал мог бы идентифицироваться по тройке фрагментов Не. Однако реальная ситуация при облучении эмульсии во вторичном пучке оказывается более сложной. Примесь ядер ¹⁰С могла также вести к событиям глубокой перегруппировки нуклонов ¹⁰С $\rightarrow 2^3$ He + ⁴He. Поэтому для определения идентификации изотопов Не использовались измерения многократного рассеяния. Их удалось выполнить только для 22 следов (рис. 8). Получено среднее значение $\langle p\beta c \rangle = 4.9 \pm 0.3$ ГэВ при $\sigma = 0.9$ ГэВ, что соответствует результатам калибровки на ядрах пучка ³He. Доля фрагментов, которые можно было бы определить как ядра ⁴He, является незначительной по сравнению с ³He.

Определение рвс всех фрагментов в событиях ЗНе удалость выполнить только В трех ИЗ них (рис. 8). Полученные значения позволяют ядер ³Не. интерпретировать ЭТИ события как тройное образование Интерпретация этих событий как ${}^{10}C \rightarrow 3{}^{3}He + n$ маловероятна, так как в этом случае потребовалась бы модификация не одного, а пары кластеров ⁴Не с преодолением порога как минимум 37 МэВ при требовании периферического взаимодействия без образования фрагментов мишени. Микрофотография одного из идентифицированных событий ${}^{9}C \rightarrow 3^{3}He$ представлена на рис. 9.

Распределение по полному переданному импульсу для конфигурации 3He (рис. 10), как и в случае, представленном на рис. 5, имеет вид, характерный для ядерной дифракционной диссоциации [12]. Его параметры имеют несколько более высокие значения $\langle P_T(3^3\text{He}) \rangle = 335 \pm 79 \text{ МэB/}c$ при RMS 294 МэB/c. Значения в полностью идентифицированных событиях ${}^9\text{C} \rightarrow 3^3\text{He}$ не противоречат этим величинам, однако их точность заметно хуже.

ЗАКЛЮЧЕНИЕ

Методом ядерной исследованы особенности ЭМУЛЬСИИ впервые кластеризации нуклонов в когерентной диссоциации релятивистских ядер ⁹С. В целом, соответствуют наблюдениям соселних результаты ЛЛЯ нейтронодефицитных ядер, а динамика когерентной диссоциации ядер ⁹С определяется ядерным дифракционным взаимодействием.

Обращает на себя внимание значительный вес канала с высоким порогом ${}^{9}C \rightarrow 3^{3}He$, сравнимый с низкоэнергетичными каналами отделения одного или пары нуклонов. Возможно, это обстоятельство указывает на заметную примесь виртуальной компоненты $3^{3}He$ в структуре основного состояния ядра ${}^{9}C$. В таком случае эта компонента должна давать вклад магнитный момент ядра ${}^{9}C$, имеющий с позиций оболочечной модели аномальное значение [13].

В нашем исследовании структуры $2\alpha + n$ ядра ⁹Ве [7] установлено, что фрагментация ⁹Ве $\rightarrow 2\alpha$ протекает через состояния 0⁺ и 2⁺ ядра ⁸Ве с близкими вероятностями. Эти вероятности демонстрируют соответствие весам состояний 0⁺ и 2⁺ ядра ⁸Ве, принятым в вычислениях магнитного момента ядра ⁹Ве на основе кластерных волновых функций [14,15]. Данные по релятивистской фрагментации ядра ⁹Ве [7] можно рассматривать как доказательство того, что в структуре основного состояния ядра ⁹Ве с высокой вероятностью имеется кор в виде двух состояний ядра ⁸Ве и внешнего нейтрона. Тем самым появляются новые основания расценивать данные по конечным состояниям релятивисткой фрагментации как отражение весов кластерных компонент основных состояний исследуемых ядер. Развитие этого вывода для ядра ⁹С заслуживает проверки в вычислениях магнитного момента на основе кластерных волновых функций, в духе анализа выполненного для ядра ⁹Ве [14,15].

Работа поддержана грантами № 96-1596423, 02-02-164-12а, 03-02-16134, 03-02-17079, 04-02-17151. 04-02-16593 и 09-02-9126 СТ-а РФФИ, грантом VEGA №1/2007/05 и №1/0080/08 Агентства науки Министерства образования

Словацкой республики и Словацкой академии наук, а также грантами Полномочных представителей в ОИЯИ Болгарии, Словацкой Республики, Чешкой Республики и Румынии в ОИЯИ в 2002–2009 гг. Авторы выражают сердечную благодарность сотруднице ОИЯИ А. М. Сосульниковой за большую и тщательную работу по визуальному сканированию эмульсии.

СПИСОК ЛИТЕРАТУРЫ

1. G. Baroni et al., Nucl. Phys. A 516, 673 (1990).

2. G. Baroni et al., Nucl. Phys. A 540, 646 (1992).

3. Н. П. Андреева и др., ЯФ **68**, 484 (2005) [N. P. Andreeva *et al.*, Phys. Atom. Nucl. **68**, 455 (2005)]; N. P. Andreeva *et al.*, nucl-ex/0605015.

4. В. В. Белага и др., ЯФ **58**, 2014 (1995) [V. V. Belaga *et al.*, Phys. Atom. Nucl. **58**, 1905 (1995)].

5. М. И. Адамович и др., ЯФ **62**, 1461 (1999) [М. І. Adamovich *et al.*, Phys. Atom. Nucl. **62**, 1378 (1999)].

6. Т. В. Щедрина и др., ЯФ **70**, 1271 (2007) [T. V. Shchedrina *et al.*, Phys. Atom. Nucl. **70**, 1230 (2007)]; nucl-ex/0605022.

7. Д. А. Артеменков и др., ЯФ **70**, 1222 (2007) [D. A. Artemenkov *et al.*, Phys. Atom. Nucl. **70**, 1226 (2007)]; nucl-ex/0605018.

8. Н. Г. Пересадько и др., ЯФ 70, 1226 (2007) [N. G. Peresadko *et al.*, Phys. Atom. Nucl. 70, 1266 (2007)]; nucl-ex/0605014.

9. Р. Станоева и др. ЯФ **72**, 731(2009) [R. Stanoeva *et al.*, Phys. of Atom. Nucl. **72**, 690 (2009)]; arXiv: 0906.4220.

10. http://becquerel.jinr.ru/; http://becquerel.lhe.jinr.ru.

11. P. A. Rukoyatkin, L. N. Komolov, R. I. Kukushkina, V. N. Ramzhin, P. I. Zarubin, EPJ ST **162**, 267 (2008).

12. Н. Г. Пересадько, В. Н. Фетисов и др., Письма в ЖЭТФ **88**, 83 (2008).

13. Y. Utsuno, Phys. Rev. C 70, 011303(R) (2004)

14. Y. L. Parfenova and Ch. Leclercq-Willain, Phys. Rev. C 72, 054304 (2005).

15. Y. L. Parfenova and Ch. Leclercq-Willain, , Phys. Rev. C 72, 024312 (2005).

Таблица 1. Распределение числа "белых звезд" $N_{\rm ws}$ и событий с образованием фрагментов мишени $N_{\rm tf}$ по каналам с $\sum Z_{\rm fr} = 6$

Канал	B +	Be +		Be +	Li+	Li+			
	Н	2H	3He	Не	He + H	3Н	2He + 2H	He + 4H	6Н
$N_{ m ws}$	15	16	16	4	2	2	24	28	6
$N_{ m tf}$	51	47	9	7	11	8	54	80	16

Таблица 2. Распределение числа "белых звезд", образованных ядрами ⁷Ве, ⁸В и С, и их относительных долей по конфигурациям Н и Не

Канал	⁷ Be	%	⁸ B (+H)	%	${}^{9}C(+2H)$	%
2He	41	43	13	40	24	42
He + 2H	42	45	19	47	28	44
<i>4H</i>	2	2	2	13	6	10
Li + H	9	10	3	0	2	4

РИСУНКИ

Рис. 1. Зарядовый спектр ядер от фрагментации ${}^{12}C \rightarrow {}^{9}C$ при настройке вторичного пучка на кратность $Z_{\rm pr}/A_{\rm pr} = 2/3$.

Рис. 2. Распределение измеренных величин $p\beta c$ для следов ядер ³Не из состава пучка (сплошная гистограмма) и однозарядных фрагментов из "белых звезд" $\sum Z_{\rm fr} = 5 + 1$ и 4 + 1 + 1.

Рис. 3. Распределения числа событий по среднему числу δ -электронов N_{δ} на 1 мм длины для пучковых частиц (сплошная гистограмма) и релятивистских фрагментов с зарядами $Z_{\rm fr} > 2$ (штриховая гистограмма) в "белых звездах" $\sum Z_{\rm fr} = 5 + 1$ и 4 + 1 + 1.

Рис. 4. Распределения по полярному углу θ релятивистских фрагментов в "белых звездах" $\sum Z_{\rm fr} = 5 + 1$ и 4 + 1 + 1.

Рис. 5. Распределение по полному поперечному импульсу $P_{\rm T}$ событий когерентной диссоциации ${}^{9}{\rm C} \rightarrow {}^{8}{\rm B} + p$ (a) и ${}^{9}{\rm C} \rightarrow {}^{7}{\rm Be} + 2p$ (b).

Рис. 6. Распределение по полярному углу θ для двухзарядных фрагментов в "белых звездах" С → 3He.

Рис. 7. Распределение по парному углу Θ_{2He} , между фрагментами в "белых звездах" С \rightarrow 3He.

Рис. 8. Распределение измеренных величин *р*β*c* для двухзарядных фрагментов из "белых звезд" 3He (штриховая гистограмма) и из полностью идентифицированных события 3³He; точками условно представлено ожидаемое распределение для ⁴He.

Рис. 9. Микрофотография "белой" звезды ${}^{9}C \rightarrow 3^{3}$ Не при энергии 1.2А ГэВ. На верхней фотографии видна вершина диссоциации и струя фрагментов в узком конусе; при продвижении вдоль струи различаются три релятивистских фрагмента Не (нижняя фотография)

Рис. 10. Распределение по полному поперечному импульсу P_T событий когерентной диссоциации ${}^9\text{C} \rightarrow 3{}^3\text{He}$

COHERENT DISSOCIATION OF RELATIVISTIC ⁹C NUCLEI

D. O. Krivenkov, D. A. Artemenkov, V. Bradnova, S. Vokal, P. I. Zarubin, I. G. Zarubina, N. V. Kondratieva, A. I. Malakhov, A. A. Moiseenko, G. I. Orlova, N. G. Peresadko, N. G. Polukhina, P. A. Rukoyatkin, V. V. Rusakova, V. R. Sarkisyan, R. Stanoeva, M. Haiduc, S. P. Kharlamov

The results for coherent dissociation of relativistic ⁹C nuclei are described including the charge topology and kinematical features of the final states. Events of coherent dissociation ${}^{9}C \rightarrow 3{}^{3}He$ associated with the rearrangement of the nucleons outside the α -clustering are identified.