ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ =

ЭЛЕКТРОМАГНИТНАЯ ДИССОЦИАЦИЯ РЕЛЯТИВИСТСКИХ ЯДЕР ⁸В В ЯДЕРНОЙ ЭМУЛЬСИИ

© 2009 г. Р. Станоева^{1),2)}, Д. А. Артеменков¹⁾, В. Браднова¹⁾, С. Вокал^{1),3)}, Л. А. Гончарова⁴⁾, П. И. Зарубин^{1)*}, И. Г. Зарубина¹⁾, Н. А. Качалова¹⁾, А. Д. Коваленко¹⁾, Д. О. Кривенков¹⁾, А. И. Малахов¹⁾, Г. И. Орлова⁴⁾, Н. Г. Пересадько⁴⁾, Н. Г. Полухина⁴⁾, П. А. Рукояткин¹⁾, В. В. Русакова¹⁾, М. Хайдук⁵⁾, С. П. Харламов⁴⁾, М. М. Чернявский⁴⁾, Т. В. Щедрина¹⁾

Поступила в редакцию 21.03.2008 г.

Представлены экспериментальные данные о каналах фрагментации в периферических взаимодействиях релятивистских ядер ⁸В в ядерной эмульсии. Детальный анализ позволил обосновать отбор событий электромагнитной диссоциации ⁸В \rightarrow ⁷Ве + *p* и оценить их сечение. Описываются события периферической диссоциации ядер ¹⁰С, которые зарегистрированы в том же облучении.

PACS:21.45.+v, 23.60.+e, 25.10.+s

ВВЕДЕНИЕ

Как известно, создание пучков радиоактивных ядер открывает качественно новые возможности для изучения их структурных особенностей и возбужденных состояний (см. недавний обзор [1]). Особый интерес вызывают периферические взаимодействия при энергии ≈1 А ГэВ как оптимальные по условиям измерения и интерпретации. Настоящее исследование посвящено изучению фрагментации ядер ⁸В с энергией 1.2 А ГэВ в ядерной фотографической эмульсии. Исследование опирается на возможности нуклотрона ОИЯИ по формированию пучков легких релятивистских ядер, включая радиоактивные. Представляет интерес изучение свойств системы $^{7}\text{Be} + p$, близкой к основному состоянию ядра ⁸В, а также его сильновозбужденных состояний как трехцентровых систем нуклонных кластеров ^{1,2}H, ^{3,4}He и ⁶Li. Возможно, что изучение трехкластерных особенностей структуры ядра ⁸В даст основания дополнить сценарий нуклеосинтеза в быстрых процессах трехтельным слиянием ${}^{3}\text{He} + {}^{2}\text{H} + {}^{3}\text{He}$. Указанные кластерные конфигурации должны проявляться при эксклюзивном наблюдении каналов диссоциации при передаче возбуждений вблизи соответствующих порогов.

В целом периферические реакции сложны из-за действия различных механизмов, которые включают в себя электромагнитные и ядерные дифракционные взаимодействия, а также реакции срыва нуклонов (стриппинг). В наиболее периферических соударениях ядра взаимодействуют между собой через зависящие от времени электромагнитные поля (см. обзор теории в [2-5]), что позволяет изучать взаимодействия ядер с квазиреальными фотонами мишени или даже их когерентными группами (многофотонные процессы). Интенсивность спектров эквивалентных фотонов увеличивается с ростом энергии пучка. Кулоновским взаимодействием могут возбуждаться все более высоколежащие по энергии состояния, что ведет к новым каналам диссоциации ядер в добавление к возбуждениям с сохранением связи нуклонов. В случае радиоактивных ядер исследование их во вторичных пучках является единственно возможным.

Несмотря на интерес к полной картине релятивистской фрагментации, эксперименты в этой области прогрессируют медленно из-за ряда объективных сложностей. Нарастание степени диссоциации релятивистского ядра приводит в любом типе детектора к радикальному снижению сигнала ионизации фрагментов пропорционально квадрату их зарядов. Это обстоятельство затрудняет детектирование релятивистских фрагментов вплоть до изотопов гелия и водорода. Благодаря рекордно

¹⁾Объединенный институт ядерных исследований, Дубна, Россия (ОИЯИ).

²⁾Институт ядерных исследований БАН, София.

³⁾Университет имени П.Й. Шафарика, Кошице, Словацкая республика.

⁴⁾Физический институт имени П. Н. Лебедева РАН, Москва (ФИАН).

⁵⁾Институт космических исследований, Магурель-Бухарест, Румыния.

^{*}E-mail: zarubin@lhe.jinr.ru

Рис. 1. Схема электромагнитного процесса диссоциации релятивистского ядра ⁸В в поле ядра Ag: a – сближение ядер с прицельным параметром b, δ – поглощение ядром ⁸В квазиреального фотона, s – диссоциация на два фрагмента p и ⁷Ве.

малой энергии связи внешнего протона, ядро ⁸В является наиболее чувствительным индикатором электромагнитного взаимодействия с тяжелыми ядрами (рис. 1). Однако число работ, в которых регистрировалось не только ядро ⁷Ве, но и протон, весьма ограничено. Например, при энергии пучка до 250 A МэВ в электронном эксперименте в GSI [6] удалось изучить фоторасщепление ядра ⁸В по каналу ⁷Ве + p на ядре свинца. Более сложные каналы в таких экспериментах остаются недоступными из-за технических ограничений.

Метод ядерной эмульсии является наиболее подходящим для изучения релятивистской фрагментации легких нейтронодефицитных ядер, так как обеспечивает наибольшую полноту наблюдения взаимодействий (см. примеры использования метода в [7–9]). Традиционная задача эмульсионного метода — на ограниченной статистике наметить основные контуры картины ядерных взаимодействий, что позволит лучше спланировать будущие эксперименты с высокой сложностью и разнообразием детекторов. Ограничение на анализируемую статистику в известной степени компенсируется недоступностью для полного наблюдения состава фрагментов в других методах.

Содержание в ядерной эмульсии в близких концентрациях достаточно тяжелых ядер Ag и Br, группы легких ядер C, N и O и водорода оказывается полезным при сравнении периферических взаимодействий различных типов. В одинаковых условиях можно наблюдать развал ядра как в электромагнитном поле тяжелого ядра-мишени, так и в столкновениях с протонами мишени. При фрагментации ядер эмульсии в событии присутствуют сильноионизирующие фрагменты мишени, включая α -частицы, протоны с энергией ниже 26 МэВ и легкие ядра отдачи — n_b (*b*-частицы), а также нерелятивистские протоны с энергией свыше 26 МэВ — n_g (g-частицы). Кроме того, реакции характеризуются множественностью рожденных мезонов — n_s (s-частицы). По этим параметрам можно сделать предварительные выводы о характере взаимодействия.

Ядро ⁸В впервые исследуется методом ядерной эмульсии, что позволяет получить информацию как о канале диссоциации ⁸В \rightarrow ⁷Be + p, так и о диссоциации на легчайшие ядра Не и Н. Микрофотографии таких событий представлены в [10]. Особый интерес представляют события, в которых отсутствуют фрагменты ядер мишени и заряженные мезоны ($n_b = 0, n_g = 0, n_s = 0$), — так называемые белые звезды. Они составляют наблюдательную основу для поиска событий электромагнитной диссоциации. Цель настоящей работы состоит в поиске "белых звезд", которые образуются с минимальной передачей импульса и могли бы быть связаны с электромагнитной диссоциацией ядер ⁸В.

Теоретический анализ вклада различных механизмов в сечение реакции ${}^{8}\text{B} \rightarrow {}^{7}\text{Be} + p$ отделения протона от ядра ⁸В был выполнен в работе [11], содержащей предсказания хода сечения в зависимости от энергии ядра ⁸В вплоть до $\approx 2 A$ ГэВ и соотношение кулоновской, ядерной диссоциации и реакции стриппинга для случая мишени Pb. Все эти механизмы имеют максимальную величину сечения при прицельном параметре $b \approx 10$ Фм, т. е. при предельном сближении ядер без перекрытия плотностей. Вклад стриппинга в сечение превышает примерно в 5 раз вклады кулоновской и ядерной дифракции, однако резко спадает с ростом b. С той же скоростью с ростом b спадает и ядерная дифракция. При прицельном параметре b = $= 12 - 15 \, \Phi$ м кулоновская диссоциация становится доминирующим процессом. Интегральные значения сечений при 1.2 А ГэВ равны примерно 210 (кулоновское взаимодействие), 190 (стриппинг) и

Рис. 2. Распределения по числу δ-электронов на 1 мм длины следов пучковых частиц, вызвавших изучаемые взаимодействия (440 событий, сплошная гистограмма), и релятивистских фрагментов с зарядами Z_{fr} > 2 (75 событий, штриховая гистограмма). Кривые — аппроксимация суммой функций Гаусса.

50 мбн (ядерная дифракция). В эмульсионном эксперименте реакции стриппинга наблюдаются с высокой эффективностью. Протоны из состава ядер ⁸В при взаимодействии с мишенью порождают вторичные фрагменты и мезоны или сильно отклоняются, что может быть использовано для исключения вклада стриппинга.

Используем приведенные данные для оценки сечений процесса электромагнитной и дифракционной диссоциации на ядрах эмульсии. В случае диссоциации на ядрах Ag и Br кулоновское сечение уменьшится до 70 и 40 мбн соответственно. В предположении зависимости $A_t^{1/3}$ сечение ядерной дифракции уменьшится только до 40 и 36 мбн. Эти механизмы взаимодействия на ядре серебра становятся конкурирующими. Однако использование ядер серебра в качестве электромагнитной мишени определяется свойствами фотоэмульсионной методики. Отделение вклада ядерной дифракции становится весьма важным. В случае кулоновской диссоциации развал происходит не на массивном ядре, а на почти безмассовом фотоне, и струя фрагментов должна получать минимальную отдачу. Существенным условием для выделения взаимодействий электромагнитной природы является предельно малая величина суммарного поперечного

ЯДЕРНАЯ ФИЗИКА том 72 № 4 2009

импульса, передаваемого фрагментируемой системе.

ЗАРЯДОВЫЙ СОСТАВ РЕЛЯТИВИСТСКИХ ФРАГМЕНТОВ

Настоящая работа является продолжением исследования [12]. Новые результаты получены с определением зарядов пучковых ядер и их релятивистских фрагментов. Подробности облучения эмульсии во вторичном пучке релятивистских ядер $^8\mathrm{B}$ с импульсом $P_0=2.0~A$ Гэ B/c и первичный анализ зарядовой топологии релятивистских фрагментов при диссоциации ядер ⁸В обсуждаются в работах [12, 13]. Сложный зарядовый состав пучка не позволил в [12] однозначно идентифицировать заряды первичных ядер $Z_{\rm pr}$ только по сумме зарядов фрагментов $\sum Z_{\rm fr}$. Поэтому на всех следах пучковых ядер, вызывавших периферические взаимодействия с $\sum Z_{\rm fr} > 2$, были выполнены измерения зарядов $Z_{\rm pr}$ методом счета δ -электронов N_{δ} . Результаты определения зарядов на следах пучковых частиц, иллюстрирующие точность данного метода, приведены на рис. 2. Среднее значение $\langle N_{\delta} \rangle$ имеет линейную зависимость от квадрата заряда ядра $Z_{\rm pr}^2$. В распределении наблюдается достаточно отчетливое разделение ядер по зарядам, что позволяет получить соотношение в пучке ядер Li, Be,

Таблица 1. Распределение взаимодействий периферического типа $N_{\rm pf}$ по зарядовой топологии релятивистских фрагментов $\sum Z_{\rm fr}$ для первичных ядер с $Z_{\rm pr} = 5~(N_{\rm ws} -$ число "белых звезд", $N_{\rm tf}$ – число событий с фрагментами ядра-мишени)

$\sum Z_{i}$			Nuu	Nic			
$\sum \mathbf{z}_{\mathrm{tr}}$	5	4	3	2	1	1 V _{WS}	IVti
7	_	_	_	3	1	_	1
7	_	_	_	2	3	_	1
6	_	_	_	2	2	1	12
6	_	_	_	1	4	4	7
6	_	_	_	_	6	1	2
6	_	1	_	1	_	_	1
6	_	1	_	_	2	—	4
6	1	_	_		1	1	2
5	_	_	_	1	3	12	42
5	_	_	_	2	1	14	44
5	_	_	1	_	2	—	5
5	_	_	1	1	_	—	2
5	_	1	_	_	1	25	16
5	1	_	_	_	_	1	13
5	_	_	_	_	5	_	2
4	_	_	_	_	4	_	17
4	_	_	_	2	_	_	16
4	_	_	_	1	2	1	45
4	_	1	_	_	_	_	8
4	_	_	1	_	1	—	1
3	_	_	_	1	1	—	11
3	_	_	_	_	3	_	5

В и С, равное 0.01/0.19/0.76/0.04. Эти результаты совпадают с данными со сцинтилляционного монитора пучка. Тем же методом было получено распределение зарядов 75 вторичных фрагментов $Z_{\rm fr}$ (рис. 2). Наблюдается ожидаемое изменение распределения.

В эмульсии, облученной пучком описанного состава, было найдено 1070 взаимодействий ядер с зарядами $Z_{\rm pr} \geqslant 3$ на общей длине следов L = 144 м.

Таблица 2. Распределение событий диссоциации ⁸В по зарядовым конфигурациям с $\sum Z_{ir} = 5$ при различном сопровождении фрагментами мишени

$n_g \ n_b$	0 0	1 0	0 1	$\begin{array}{c} 0 \\ 2 \end{array}$	0 3	$\begin{array}{c} 0 \\ 4 \end{array}$	$\begin{array}{c} 0 \\ 5 \end{array}$
He + 3H	12	6	8	3	2	3	-
2He + H	14	3	8	2	4	_	1
Be + H	25	1	3	3	1	_	—
В	1	1	8	1	_	1	_

Средний пробег до взаимодействия составил $\lambda = 13.5 \pm 0.4$ см, что соответствует ожидаемому из данных для ближайших кластерных ядер. Затем были отобраны 434 звезды периферической фрагментации $N_{\rm pf}$, в которых суммарный заряд релятивистских фрагментов в конусе фрагментации до 8° удовлетворяет условию $\sum Z_{\rm fr} > 2$. Статистика $N_{\rm pf}$ была разделена на две группы: события, сопровождающиеся фрагментами ядра-мишени или(и) рожденными мезонами $N_{\rm tf}$, и "белые звезды" $N_{\rm ws}$. Сравнение этих групп позволяет отчетливее выявить особенности образования "белых звезд".

Среди событий периферической фрагментации 320 взаимодействий имеют заряд первичного ядра $Z_{\rm pr} = 5$ и суммарный заряд частиц, вылетающих внутри конуса 8°, $\sum Z_{\rm fr} > 2$. Для этих событий распределение по конфигурациям из числа фрагментов N_Z с зарядами $Z_{\rm fr}$ представлено в табл. 1. Основной вклад дают события с $\sum Z_{\rm fr} = 5$. Главное отличие в статистике событий $N_{\rm tf}$ и $N_{\rm ws}$ для этой группы проявляется в двухчастичном канале $\sum Z_{\rm fr} = 4 + 1$, который интерпретируется как ⁸В \rightarrow 7 Ве + p. Его доля резко возрастает при отборе "белых звезд" – с 13% для $N_{\rm tf}$ до 48% для $N_{\rm ws}$, что может быть связано с диссоциацией ядра ⁸В по каналу с наиболее низким порогом.

Среди событий с $\sum Z_{\rm fr} = 5$ наблюдаются каналы 2He + H и He + 3H, составляющие $\approx 70\%$ для $N_{\rm tf}$ и $\approx 50\%$ для $N_{\rm ws}$. Возможно, что среди прочих факторов это обстоятельство отражает и эффект пересечения границы протонной стабильности при фрагментации ядра $^8{\rm B} \rightarrow ^7{\rm B}$ в реакциях срыва нейтрона (с образованием или без образования фрагментов мишени и с распадом $^7{\rm B}$ на состояния $^4{\rm He} + 3p$ и $2^3{\rm He} + p$). В реакциях срыва нейтрона эти состояния могут формироваться со сравнимой интенсивностью.

Статистика из 87 событий $N_{\rm tf}$ с $Z_{\rm pr} = 5$ и $\sum Z_{\rm fr} = 4$ (табл. 1) позволяет оценить соотношение

реакции срыва протона $^{8}\mathrm{B} \rightarrow ~^{7}\mathrm{Be}$ и каналов с большей множественностью. Данная реакция исследовалась при измерении импульсных спектров релятивистских фрагментов ⁷Ве [14, 15]. В настоящем анализе было найдено всего восемь таких событий. Можно отметить весьма незначительную долю, которую они составляют в статистике $Z_{\rm pr} =$ = 5 и $\sum Z_{\text{fr}} = 4$. События He + 2H составляют примерно половину статистики данного класса, за ними следуют 2Не и 4Н. Аналогичная ситуация проявляется и в статистике $Z_{\rm pr} = 5$ и $\sum Z_{\rm fr} = 3$. Из 16 наблюдавшихся событий нет ни одного события $^8\mathrm{B}$ ightarrow $^6\mathrm{Li.}$ Таким образом, фрагментация со срывом протона, как правило, ведет к образованию кластеров Не и Н, а не одиночных более тяжелых ядер.

В табл. 2 представлено распределение событий $N_{\rm pf}$ с $\sum Z_{\rm fr} = 5$ ядер ⁸В по числу сопровождающих фрагментов ядер мишени n_g и n_b . Доля событий ⁸В \rightarrow ⁷Ве + p при условиях $n_g = 1$ и $n_b = 0$, относимых к взаимодействиям на ядрах водорода, оказывается весьма малой. Наблюдаемое "рассыпание" статистики по каналам с множественностью фрагментов n_b подчеркивает значимость событий $N_{\rm ws}$ по сравнению с событиями с перекрытием плотностей сталкивающихся ядер $N_{\rm tf}$.

ИЗОТОПИЧЕСКИЙ СОСТАВ РЕЛЯТИВИСТСКИХ ФРАГМЕНТОВ Не и Н

Несомненный интерес представляла бы полная идентификация фрагментов Н и Не ядра ⁸В методом измерения многократного рассеяния их импульсов. Импульсы фрагментов *рβс* при использовании эмульсионного метода могут быть получены при измерении их многократного рассеяния, что является весьма трудоемкой процедурой. Разделение релятивистских изотопов водорода и гелия происходит на основе предположения, что фрагменты ядра-снаряда сохраняют первичный импульс на нуклон, т.е. массовое число фрагмента равно $A_{\rm fr} \approx p_{\rm fr} \beta c / (p_0 \beta_0 c)$. Тогда интерпретация события становится уникальной по детальности. Из-за технических проблем с использованными слоями эмульсий, а также ограничений, связанных с угловым разбросом следов фрагментов, такие измерения оказалось возможным осуществить только в ограниченном объеме.

Для 26 однозарядных фрагментов из событий ${}^{8}B \rightarrow Be + H$ и 2He + H результаты измерений величины $p\beta c_{\rm H}$ представлены на рис. 3. В этих событиях фрагмент H идентифицируется как протон. Распределение описывается одной функцией Гаусса со средним значением $\langle p\beta c \rangle_{\rm H} = 1.7 \pm 0.2$ ГэВ при $\sigma = 0.5$ ГэВ, что соответствует ожидаемым значениям.

Рис. 3. Распределение однозарядных фрагментов ядра ⁸В по измеренным значениям $p\beta c$ в каналах диссоциации Ве + Н (15 следов в "белых звездах", светлая гистограмма) и 2He + Н (11 следов, в том числе 5 следов в "белых звездах", заштрихованная гистограмма). Сплошная кривая — аппроксимация функцией Гаусса, максимум которой расположен при 1.7 ГэВ.

На рис. 4 приведено распределение измеренных величин *рβс*_{Не} для 24 случайно выбранных двухзарядных фрагментов (22 следа из событий 2He + H и 2 следа из событий He + 3H), удовлетворительно описываемых суммой двух нормальных распределений. Параметры аппроксимирующих функций соответствуют ожидаемым значениям для релятивистских изотопов ³Не и ⁴Не и равны: $\langle p\beta c \rangle_{^{3}\text{He}} =$ $=4.6\pm0.2$ Гэ
В при $\sigma=0.6$ Гэ
В и $\langle p\beta c\rangle_{^4{\rm He}}=7.1\pm$ ± 0.3 ГэВ при $\sigma = 0.9$ ГэВ. Распределение указывает на примерно равное соотношение числа ядер ³Не и 4 Не, что также ожидалось для ядра 8 В. Средние значения $\langle p\beta c \rangle$ для ¹H, ³He, ⁴He приблизительно пропорциональны кратности массового числа фрагмента $A_{\rm fr}$, а значения σ позволяют разделить указанные изотопы.

В четырех событиях 2He + H удалось измерить $p\beta c$ всех трех треков. Из них три события идентифицированы как ⁴He + ³He + ¹H (это события типа "белая звезда", события с фрагментами $n_b = 1$ и $n_g = 1$, а также $n_b = 5$), а одно — как ³He + ³He + + ¹H (с фрагментом $n_g = 1$). Очевидно, что все они соответствуют предположению о диссоциации именно ядра ⁸B.

Таким образом, представленные результаты измерения импульсов $p\beta c$ подтверждают идентификацию первичного изотопа как ядра ⁸В, а также

Рис. 4. Распределение двухзарядных фрагментов ядра ⁸В по измеренным значениям *р*β*c*_{He}. Сплошная кривая – аппроксимация суммой двух функций Гаусса.

Рис. 5. Распределения по полярному углу вылета θ релятивистских фрагментов с зарядами: $a - Z_{ir} = 1$ (479 следов), $\delta - Z_{ir} = 2$ (224 следа) и $b - Z_{ir} > 2$ (72 следа). Заштрихованная часть гистограммы — вклад "белых звезд".

демонстрируют возможности метода для полной идентификации систем фрагментов Н и Не, зарегистрированных в условиях, приемлемых для измерений.

АНАЛИЗ УГЛОВЫХ РАСПРЕДЕЛЕНИЙ

На рис. 5 для событий $N_{\rm pf}$ приведены распределения измеренных полярных углов вылета θ

Рис. 6. Распределение по полярному углу вылета θ во взаимодействиях ⁸B \rightarrow ⁷Be + p (40 событий) фрагментов ядраснаряда: a – для фрагментов с $Z_{\rm fr} = 1$, δ – для фрагментов с $Z_{\rm fr} = 4$. Заштрихованная часть гистограммы – вклад "белых звезд" (25 событий).

релятивистских фрагментов с зарядами $Z_{\rm fr} = 1, 2$ и $Z_{\rm fr} > 2$. Для частиц с $Z_{\rm fr} = 1$ (рис. 5a) углы вылета измерены вплоть до $\theta \leq 15^{\circ}$. Максимальный угол анализируемых фрагментов с $Z_{\rm fr} = 1$ выбран 8° , чтобы исключить вклад протонов-участников. Углы фрагментов с $Z_{\rm fr} = 2$ ограничены условием $\theta \leq 6^{\circ}$ (рис. 5b), а фрагментов с $Z_{\rm fr} > 2$ – условием $\theta \leq 3^{\circ}$ (рис. 5b). Благодаря отсутствию ограничений, связанных с аксептансом, эти измерения могут быть полезными при планировании последующих экспериментов.

На рис. 6 для канала ⁷Ве + *p* представлены распределения по углу вылета θ фрагментов ядра-снаряда с зарядами $Z_{\rm fr} = 1$ (рис. 6*a*) и $Z_{\rm fr} = 4$ (рис. 6*b*), в основном сосредоточенные в области малых значений. Среднее значение $\langle \theta \rangle$ фрагментов с $Z_{\rm fr} = 1$ в событиях "белая звезда" равно $\langle \theta_p \rangle = (33 \pm 6) \times 10^{-3}$ рад, RMS = 29 × $\times 10^{-3}$ рад (RMS – среднеквадратичное отклонение). Для фрагментов с $Z_{\rm fr} = 4$ среднее значение $\langle \theta_{\rm Be} \rangle = (6.9 \pm 1.0) \times 10^{-3}$ рад, RMS = 4.5 × $\times 10^{-3}$ рад. Различие в значениях $\langle \theta \rangle$ отражает разницу масс фрагментов.

Измерения угла θ позволяют вычислить значения поперечных импульсов P_T релятивистских фрагментов с массовым числом $A_{\rm fr}$ согласно приближению $P_T \approx A_{\rm fr} P_0 \sin \theta$. Переход в с.ц.м. ⁷Ве + p позволяет компенсировать поперечный импульс, переданный релятивистскому ядру, что ведет к распределению P_T со средним значением $\langle P_T \rangle = 62 \pm 11 \text{ МэB/}c$ (RMS = 54 МэB/c). Таким образом, в распределении P_T слабая связь протона

и ядра-основы проявляется в наиболее полных условиях наблюдения.

В табл. З представлены средние значения обсуждаемых поперечных импульсов для событий с различной топологией фрагментации ядер мишени. Даже на небольшой статистике в событиях с возбуждением ядра-мишени можно заметить увеличение значения $\langle P_T(^8B^*) \rangle$ по сравнению со случаем "белых звезд". Оно происходит за счет нарастания среднего импульса $\langle P_{TBe} \rangle$ ядра ⁷Ве при приблизительно постоянном среднем импульсе протона $\langle P_{Tp} \rangle$. Этот результат служит указанием на рассеяние кора ⁷Ве с рождением фрагментов ядра-мишени и независимую фрагментацию

Таблица 3. Средние значения поперечных импульсов (в МэВ/с) фрагментов $\langle P_T \rangle$ и их векторной суммы $\langle P_T(^8B^*) \rangle$ во взаимодействиях $^8B \rightarrow {}^7Be + p$ при различном сопровождении фрагментами мишени и без образования заряженных мезонов ($n_s = 0$)

n_g	0	1	0	0	0
n_b	0	0	1	2	3
Число событий					
$^{7}\mathrm{Be} + p$	25	1	3	3	1
$\langle P_{Tp} \rangle$	66 ± 12	38	52 ± 11	64 ± 12	65
$\langle P_{T\mathrm{Be}} \rangle$	97 ± 13	130	301 ± 36	129 ± 60	298
$\langle P_T(^8\mathrm{B}^*)\rangle$	95 ± 15	152	324 ± 45	170 ± 78	350

Рис. 7. Распределение по суммарному поперечному импульсу $P_T(^8B^*)$ пар ⁷Be + p, рожденных во взаимодействиях $^8B \rightarrow {}^7Be + p$. Сплошная гистограмма соответствует "белым звездам" (25 событий), штриховая гистограмма — взаимодействиям, которые сопровождаются фрагментами мишени и рожденными частицами ($n_s + n_g + n_b \neq 0$; 15 событий).

Рис. 8. Распределение по углу Θ_{pBe} между фрагментами в канале ⁷ Ве + p (40 событий). Заштрихованная часть гистограммы — вклад "белых звезд" (25 событий).

слабосвязанного протона. Можно предположить, что происходит двухступенчатый процесс — диссоциация ⁸В и последующее рассеяние. Заметный эффект от ядра ⁷Ве определяется его большим размером. На наш взгляд, это наблюдение полезно для понимания механизма реакции.

Распределение векторной суммы поперечных

импульсов фрагментов $P_T(^8\text{B}^*)$ системы $^7\text{Be} + p$ может отражать механизмы ее генерации. На рис. 7 представлены распределения по $P_T(^8\text{B*})$ для событий, сопровождаемых фрагментами ядер мишени и без них. Распределение, соответствующее "белым звездам", имеет среднее значение $\langle P_T(^8\mathrm{B}^*)\rangle =$ $= 95 \pm 15 \text{ МэB}/c$ при RMS = 73 МэB/c, а для событий с фрагментами ядра-мишени и рожденными мезонами $\langle P_T(^8B^*) \rangle = 251 \pm 29 \, M_{\Im}B/c$ при RMS = = 112 МэВ/с. Из сравнения этих распределений можно сделать вывод, что условие $P_T({}^8\mathrm{B}^*) <$ < 150 МэB/c позволяет достаточно эффективно выделить кинематическую область, характерную для образования "белых звезд" ⁷Be + p. С появлением в событиях фрагментов мишени заметно возрастают соответствующие значения $\langle P_T(^8B^*) \rangle$.

На рис. 8 представлены распределения углов Θ_{pBe} между фрагментами в канале ⁷Be + p. Для "белых звезд" среднее значение распределения равно $\langle \Theta_{pBe} \rangle = (36 \pm 6) \times 10^{-3}$ рад (RMS = 31×10^{-3} рад). Эти распределения позволяют оценить инвариантную массу пары фрагментов M^* в предположении сохранения первичных импульсов на нуклон P_0 .

На рис. 9а для оценки энергии возбуждения ядра ⁸В рассмотрено распределение разности инвариантной массы M^* системы ⁷Ве + p и суммы масс ⁷Ве и протона M. Его среднее значение равно $\langle Q_{p\rm Be} \rangle = 4.3 \pm 1.5 \text{ МэВ}$ (RMS = 7.6 МэВ). В интервале $Q_{p\rm Be} < 2$ МэВ наблюдается группировка

Рис. 9. Распределение по энергии возбуждения для канала ⁸В → ⁷Ве + *p*: *a* − в интервале 0–35 МэВ (40 событий), *б* − в интервале 0–2 МэВ (25 событий). Заштрихованная часть гистограмм – вклад "белых звезд".

Рис. 10. Распределение "белых звезд" ⁷ Ве + p (14 событий): a – по суммарному поперечному импульсу P_T (⁸ В^{*}), δ – по углу θ_{8B^*} . Условия отбора: $Q_{pBe} < 5$ МэВ и $\varepsilon_{pBe} > \pi/2$.

большинства событий. Более детально распределение в этом интервале представлено на рис. 96. К нему относится 64% "белых звезд" (или 16 событий) со средним значением $\langle Q_{p\rm Be} \rangle = 0.9 \pm 0.1$ МэВ (RMS = 0.5 МэВ). Это значение не противоре-

чит предположению о распаде ядра ⁸В через первое возбужденное состояние над порогом распада ⁷Ве + p при 0.8 МэВ и ширине 35 кэВ. Следующее возбужденное состояние находится уже при 2.3 МэВ.

Таблица 4. Распределение по зарядовым конфигурациям числа взаимодействий периферического типа $N_{\rm pf}$ с $Z_{\rm pr} = 6$, наблюдавшихся в эмульсии, облученной во вторичном пучке ядер ⁸В

$\sum Z_{ m fr}$	N_Z					N	$N_{\rm eff}$
	5	4	3	2	1	1 VWS	1 • ti
7	_	_	_	1	5	_	1
7	_	_	_	2	3	1	_
6	_	_	_	2	2	3	5
6	_	_	_	1	4	_	10
6	_	_	_	_	6	_	2
5	_	_	_	2	1	_	5

ОЦЕНКА СЕЧЕНИЯ ЭЛЕКТРО-МАГНИТНОЙ ДИССОЦИАЦИИ

Продукты развала ⁸В \rightarrow ⁷Ве + *p* под действием виртуального фотона ядра-мишени должны приобретать наименьшие значения суммарного поперечного импульса. Поэтому в таких событиях должна проявляться корреляция по азимутальному углу ε_{pBe} между ними, уже отмеченная в работе [12]. Поэтому при отборе событий электромагнитной природы дополнительно может быть принят мягкий критерий $\varepsilon_{pBe} > \pi/2$.

На рис. 10*а* приведено распределение по суммарному поперечному импульсу для "белых звезд" ⁷Ве + *p*, которые удовлетворяют условиям $Q_{pBe} < 5$ МэВ и $\varepsilon_{pBe} > \pi/2$. Оно содержит 14 событий со средним значением $\langle P_T(^8B^*) \rangle = 50 \pm 8$ МэВ/*c* при RMS = 30 МэВ/*c*. Этим событиям соответствует узкое угловое распределение (рис. 10*б*) с параметрами $\langle \theta_{8B^*} \rangle = (3.1 \pm 0.5) \times 10^{-3}$ рад и RMS = 1.9×10^{-3} рад. Именно эти события отвечают предполагаемым критериям электромагнитного характера их образования и используются для оценки сечения электромагнитной диссоциации по каналу ⁷Ве + *p*.

Из-за весьма сильной зависимости электромагнитного сечения от заряда ядра-мишени вида Z^2 можно предположить пропорциональный вклад ядер Ag и Br из состава эмульсии и пренебречь вкладом легких ядер. Тогда девять событий ⁷Be + + p можно приписать диссоциации на ядрах Ag, а примерно пять — диссоциации на ядрах Br. В этом предположении сечение их образования оценивается по формуле

$$\sigma_Z = N_{\rm ev}/(N_Z L),$$

где $N_{\rm ev}$ — число событий в данном канале; N_Z число атомов данного типа (в см⁻³), а L — полная длина следов, на которых найдено $N_{\rm ev}$. Плотность атомов Ag, как и Br, равна $N_Z = 1.03 \times 10^{22}$ см⁻³. Просмотренная длина следов, соответствующая вкладу ядер ⁸B в составе пучка, равна L = 109.5 м, что приводит к значениям $\sigma_{\rm Ag} = 81 \pm 21$ мбн и $\sigma_{\rm Br} = 44 \pm 12$ мбн.

Для электромагнитной диссоциации на ядре Pb экстраполяция σ_{Ag} ведет к значению $\sigma_{Pb} = 230 \pm \pm 60$ мбн, которое близко к теоретическому значению ≈ 210 мбн [10] и не противоречит предположению об электромагнитной природе отобранных событий. Можно констатировать эффективность использованного подхода к поиску и отбору электромагнитных событий ⁷Be + *p*. Одиннадцать "белых звезд" ⁷Be + *p*, которые остались вне критериев отбора, можно отнести к вкладу дифракционной диссоциации, обсуждавшемуся в [10]. Для оценки сечений с большей точностью необходимо провести дальнейшие измерения с существенно большей статистикой.

Для канала ⁴He + ³He + p число событий, удовлетворяющих принятым критериям электромагнитной диссоциации, а значит и величина парциального сечения, примерно в 3 раза меньше, чем для ⁷Be + p. Можно констатировать только факт их генерации. Они могут служить основой для планирования будущих экспериментов с ускоренным поиском событий 2He + H по площади эмульсионных слоев, в том числе с идентификацией наиболее интересных из них – 2^{3} He + ²H.

СОБЫТИЯ ДИССОЦИАЦИИ ЯДЕР 10С

Образование некоторых звезд с $\sum Z_{
m fr} > 5$ (табл. 1) могло быть связано с примесью ядер ¹⁰С в составе использованного пучка. Ядра ¹⁰С могли рождаться путем перезарядки ¹⁰В → ¹⁰С в мишени, предназначенной для генерации ⁸В, и захватываться во вторичный пучок из-за малой разницы по магнитной жесткости с ⁸В (около 4%) и разброса ядер по их импульсу. Идентификация зарядов первичных следов позволила выделить события с Z_{pr} = 6. Их зарядовая топология представлена в табл. 4. "Белые звезды" с $\sum Z_{\rm fr} = 6$ не содержат фрагментов с $Z_{\rm fr} > 2$. Их топология соответствует диссоциации ядра ¹⁰С, имеющего основу в виде ⁸Ве, по наиболее вероятному каналу ${}^{10}\text{C} \rightarrow {}^{8}\text{Be} + 2p$. В событиях с наличием фрагментов мишени наблюдается более сильная дезинтеграция изотопа углерода.

Поскольку это первые столь полные наблюдения событий диссоциации ¹⁰С, представим характеристики одного из них. Угол между следами

ядер-фрагментов Не равен $\Theta_{2\text{He}} = 0.36^\circ$, что в предположении их тождественности ⁴Не ведет к разности эффективной массы и удвоенной массы 4 Не $Q_{2\text{He}} = 0.17$ МэВ. Эта величина удовлетворяет условию распада несвязанного ядра ⁸Ве. Вблизи пары Не присутствует однозарядный трек, который соответствует протону. Парные углы между первой α -частицей и протоном, а также между второй α -частицей и протоном равны $\Theta_{\mathrm{HeH}} = 0.82^{\circ}$ и $\Theta_{\text{He2H}} = 0.52^{\circ}$ соответственно. Тогда разность эффективной массы и суммы масс покоя системы 2^{4} He + 2*p* равняется $Q_{2\text{HeH}} = 0.44$ МэВ. Таким образом, эта группа треков может соответствовать распаду несвязанного ядра ${}^{9}\text{B} \rightarrow {}^{8}\text{Be} + p$, образовавшегося при выбивании из ядра ¹⁰С протона под большим углом, с возникновением пары фрагментов мишени. Для всей системы энергия возбуждения составляет значительную величину $Q_{2\text{He2H}} \approx 13 \text{ MэB}$ и $P_T(^{10}\text{C}^*) = 214 \text{ MэB}/c.$

ЗАКЛЮЧЕНИЕ

Совокупность данных по измерению зарядов пучковых следов, зарядовой топологии периферических столкновений, по угловым характеристикам, а также по идентификации релятивистских фрагментов p, ³Не и ⁴Не указывает на то, что в использованной эмульсии доминируют пучковые следы именно ядер ⁸В. Таким образом, получено подтверждение, что на нуклотроне ОИЯИ впервые успешно решена задача облучения эмульсии ядрами ⁸В.

Получена систематическая картина распределения по зарядовым комбинациям фрагментов в периферических взаимодействиях ядер ⁸В в ядерной эмульсии. Главный вывод состоит в том, что в событиях без образования фрагментов ядер мишени и мезонов вклад канала диссоциации ⁸В $\rightarrow 7$ Ве + *p* является лидирующим.

Анализ угловых корреляций в событиях с фрагментами мишени и без них позволил обосновать отбор событий электромагнитной диссоциации ⁸В \rightarrow \rightarrow ⁷Be + p по суммарному поперечному импульсу фрагментов $P_T(^8B^*) < 150 \text{ МэB}/c$, парной энергии возбуждения $Q_{pBe} < 5 \text{ МэB}$ и азимутальному углу $\varepsilon_{pBe} > \pi/2$ разлета фрагментов ⁷Be и p. Для событий ⁷Be + p без образования фрагментов ядер мишени и рожденных мезонов впервые получена оценка сечения электромагнитной диссоциации на ядрах из состава эмульсии. Экстраполяция этого значения на ядро свинца указывает на согласие с теоретическими расчетами.

Впервые наблюдались события периферической диссоциации ядра ¹⁰С. Получено указание

ЯДЕРНАЯ ФИЗИКА том 72 № 4 2009

на то, что канал диссоциации ${}^{10}\text{C} \rightarrow 2\text{He} + 2\text{H}$ преобладает в событиях без образования фрагментов ядер мишени и заряженных мезонов. Идентификация изотопа ${}^{10}\text{C}$ указывает на перспективность формирования пучка ${}^{10}\text{C}$ в реакции перезарядки ${}^{10}\text{B} \rightarrow {}^{10}\text{C}$ в условиях, удобных для исследований в эмульсии.

Выводы работы представляют ценность для сравнительного анализа результатов по облучениям эмульсии ядрами ⁹С и ¹²N, выполненным недавно во вторичных пучках нуклотрона ОИЯИ.

Авторы приносят благодарность за большую работу по накоплению статистики сотрудницам ОИЯИ И. И. Сосульниковой, А. М. Сосульниковой и Г. В. Стельмах.

Эта работа была поддержана грантами РФФИ № 96-1596423, 02-02-164-12а, 03-02-16134, 03-02-17079, 04-02-17151 и 04-02-16593, грантами VEGA № 1/2007/05 и 1/0080/08 Агентства науки Министерства образования Словацкой республики и Словацкой академии наук, а также грантами Полномочных представителей в ОИЯИ Болгарии, Словакии, Чехии и Румынии в ОИЯИ в 2002-2007 гг.

СПИСОК ЛИТЕРАТУРЫ

- 1. T. Aumann, Eur. Phys. J. A 26, 441 (2005).
- 2. C. A. Bertulani and G. Baur, Phys. Rep. 163, 299 (1988).
- 3. G. Baur and H. Rebel, Annu. Rev. Nucl. Part. Sci. 46, 321 (1996).
- 4. G. Baur, S. Typel, and H. H. Wolter, nucl-th/9710060.
- 5. G. Baur, K. Hencken, and D. Trautmann, Prog. Part. Nucl. Phys. **51**, 487 (2003); nucl-th/0304041.
- 6. N. Iwasa et al., Phys. Rev. Lett. 83, 2910 (1999).
- 7. The BECQUEREL Project, http://becquerel.jinr.ru/
- 8. М. И. Адамович и др., ЯФ **62**, 1461 (1999).
- Н. П. Андреева и др., ЯФ 68, 484 (2005); N. P. Andreeva *et al.*, nucl-ex/0605015.
- 10. D. A. Artemenkov *et al.*, *Π*Φ **71**, 1595 (2008).
- 11. H. Esbensen and K. Hencken, Phys. Rev. C 61, 054606 (2000).
- 12. Р. Станоева и др., ЯФ **70**, 1255 (2007); R. Stanoeva *et al.*, nucl-ex/0605013.
- P. A. Rukoyatkin, L. N. Komolov, R. I. Kukushkina, and V. N. Ramzhin, Czech. J. Phys. Suppl. C 56, C379 (2006).
- 14. M. H. Smedberg et al., Phys. Lett. B 452, 1 (1999).
- 15. D. Cordina-Gil et al., Nucl. Phys. A 720, 3 (2003).

ELECTROMAGNETIC DISSOCIATION OF RELATIVISTIC ⁸B NUCLEI IN NUCLEAR TRACK EMULSION

R. Stanoeva, D. A. Artemenkov, V. Bradnova, S. Vokál, L. A. Goncharova, P. I. Zarubin, I. G. Zarubina, N. A. Kachalova, A. D. Kovalenko, D. O. Krivenkov, A. I. Malakhov, G. I. Orlova, N. G. Peresadko, N. G. Polukhina, P. A. Rukoyatkin, V. V. Rusakova, M. Haiduc, S. P. Kharlamov, M. M. Chernyavsky, T. V. Shchedrina

Experimental data are presented on fragmentation channels in peripheral interactions of ⁸B in nuclear track emulsions. Detailed analysis allowed one to justify selection of electromagnetic dissociation events ${}^{8}B \rightarrow {}^{7}Be + p$ and estimate their cross section. Events of peripheral dissociation of ${}^{10}C$ nuclei observed in the same exposure are described.