КАНАЛЫ ФРАГМЕНТАЦИИ РЕЛЯТИВИСТСКИХ ЯДЕР ⁷Ве В ПЕРИФЕРИЧЕСКИХ ВЗАИМОДЕЙСТВИЯХ

Н. Г. Пересадько¹⁾, Ю. А. Александров¹⁾, В. Браднова²⁾, С. Вокал²⁾, С. Г. Герасимов¹⁾, В. А. Дронов¹⁾, П. И. Зарубин²⁾, И. Г. Зарубина²⁾, А. Д. Коваленко²⁾, В. Г. Ларионова^{†1)}, А. И. Малахов²⁾, П. А. Рукояткин²⁾, В. В. Русакова²⁾, С. П. Харламов¹⁾, В. Н. Фетисов¹⁾

¹⁾Физический институт им. П.Н. Лебедева РАН, г. Москва, Россия ²⁾Объединенный институт ядерных исследований, г. Дубна, Россия, (ОИЯИ) ^{†)}скончалась

На нуклотроне ЛВЭ ОИЯИ (г. Дубна) ускорены ядра ⁷Li и, после их перезарядки на внешней мишени, сформирован вторичный пучок ядер ⁷Ве с энергией 1.23 ГэВ на нуклон. В пучке ядер ⁷Ве облучены камеры ядерной фотоэмульсии. Средний пробег для неупругих взаимодействий ядер ⁷Ве в фотоэмульсии $\lambda_{inel}(^{7}Be) = (14.0 \pm 0.8)$ см в пределах ошибок совпадает со средними пробегами для неупругих взаимодействий ядер ⁶Li и ⁷Li. Более 10% неупругих взаимодействий ядер ⁷Ве составляют периферические взаимодействия, в которых сумма зарядов релятивистских фрагментов равна заряду ядра ⁷Ве и где не образуются заряженные мезоны. В составе двухзарядных фрагментов ядер ⁷Ве наблюдается необычное для стабильных ядер соотношение изотопов гелия – содержание фрагментов ³Не вдвое превышает содержание фрагментов ⁴Не. В 50% периферических взаимодействий содержится по два двухзарядных фрагмента. В работе приводятся каналы фрагментации ядер ⁷Ве на заряженные фрагменты. В 50% фрагментация ядер ⁷Ве происходит только на заряженные фрагменты без испускания нейтронов. Среди них доминирует канал (⁴He+³He), по 10% составляют каналы $({}^{4}\text{He}+d+p)$ и $({}^{6}\text{Li}+p)$. Зарегистрировано два события без испускания нейтронов в трехчастичных каналах (³He+t+p) и (³He+d+d). Средний пробег для когерентной диссоциации релятивистских ядер ⁷Ве на ³He+⁴He равен 7 ± 1 м. Основные особенности фрагментации релятивистских ядер ⁷Ве в таких периферических взаимодействиях объясняются двухкластерной структурой ³He+⁴He ядра ⁷Be.

PACS: 21.45.+v – Few-body systems, 23.60+e – α Decay, 25.10.+s –Nuclear reactions involving few-body systems

ОБЛУЧЕНИЕ ЭМУЛЬСИЙ В ПУЧКЕ ЯДЕР ⁷Ве

Для формирования пучка ядер ⁷Ве на нуклотроне ЛВЭ ОИЯИ ускорялись ядра ⁷Li до энергии 2.87 Z ГэВ. Выведенный из ускорителя пучок ядер ⁷Li направлялся на мишень из оргстекла. Ядра ⁷Ве, образованные в мишени в процессе перезарядки ядер ⁷Li, с помощью магнитных элементов фокусировались и формировались во вторичный пучок. Заряды частиц в сформированном пучке определялись по потерям энергии частиц в сцинтилляционном мониторе. По этим измерениям примесь частиц с зарядом Z = 3 в пучке составляет 7% от числа частиц с зарядом Z = 4.

В пучке ядер ⁷Ве были облучены фотоэмульсионные камеры, собранные из слоев ядерной фотоэмульсии толщиной 550 мкм и размером 10 х 20 см [1]. При облучении слои фотоэмульсии располагались параллельно пучку ядер ⁷Ве длинной стороной вдоль направления пучка так, чтобы пучковые частицы входили в торец слоя фотоэмульсии. В работе использовалась стандартная фотоэмульсия БР-2, в которой визуально легко идентифицируются однозарядные и двухзарядные релятивистские частицы. Треки релятивистских частиц с зарядом больше двух определялись по плотности просветов в следах частиц, что достигалось компьютерным анализом оцифрованного изображения поля зрения на микроскопе с автоматическим слежением по следу. По результатам измерения зарядов частиц в фотоэмульсии доля трехзарядных частиц в пучке составляет примерно 15% от частиц с зарядом, равным четырем. Для поиска взаимодействий ядер ⁷Ве в фотоэмульсии на микроскопе визуально выбирались следы с наибольшей плотностью ионизации.

СРЕДНИЙ ПРОБЕГ ДЛЯ НЕУПРУГИХ ВЗАИМОДЕЙСТВИЙ ЯДЕР ⁷Ве В ФОТОЭМУЛЬСИИ

2

Поиск неупругих ядро-ядерных взаимодействий в слоях фотоэмульсии проводился прослеживанием на микроскопе при увеличении х900 следов пучковых частиц от входа частиц в фотоэмульсию. Для определения среднего свободного пробега неупругих взаимодействий ядер ⁷Ве в фотоэмульсии λ (⁷Be) использован массив из 294 неупругих взаимодействий, зарегистрированных на длине 41.222 м в одной эмульсионной камере. В табл. 1 вместе с результатом, полученным для ядра ⁷Ве, приведены значения средних свободных пробегов неупругих взаимодействий ядер ⁶Li и ⁷Li в фотоэмульсии, определенные в работах [2-7]. Измеренные значения для всех этих ядер в пределах ошибок практически совпадают. В табл. 1 приводятся также значения, вычисленные по геометрической модели с наборами параметров, использованных в работах [2-7] для описания средних свободных пробегов неупругих взаимодействи ядер с однородной плотностью. Меньшие значения экспериментальных значений пробегов относительно вычисленных для всех этих ядер объясняются дополнительным вкладом периферических неупругих взаимодействий ядер, имеющих слабосвязанную кластерную структуру.

ИЗОТОПНЫЙ СОСТАВ ФРАГМЕНТОВ И КАНАЛЫ ФРАГМЕНТАЦИИ ЯДЕР ⁷Ве В ПЕРИФЕРИЧЕСКИХ ВЗАИМОДЕЙСТВИЯХ В ЭМУЛЬСИИ

Среди 1400 зарегистрированных неупругих ядро-ядерных взаимодействий содержится более 200 периферических взаимодействий, в которых суммарный заряд Q релятивистских частиц с углами вылета внутри конуса 15° равен заряду первичного ядра ⁷Ве. Примерно в 150 периферических взаимодействиях не наблюдается образования заряженных мезонов. В таких взаимодействиях структурные особенности ядра наиболее сильно сказываются на характере фрагментации ядра, в первую очередь, на зарядовом и массовом составах фрагментов. В табл. 2 приведена зарядовая топология таких событий. Отмечены раздельно числа событий, не содержащих фрагментов мишени ($n_b = 0$), и событий, содержащих один или несколько фрагментов ядра мишени ($n_b > 0$). В половине взаимодействий содержится по два двухзарядных фрагмента, столько же событий содержат по одному гелиевому и по два однозарядных фрагмента. В 10% событий содержится релятивистское ядро Li в сопровождении однозарядного фрагмента. Большая доля событий, представляющих собой диссоциацию ядер ⁷Ве на два гелиевых фрагмента, указывает на высокую вероятность такого типа кластеризации в структуре ядра ⁷Ве.

Исследование изотопного состава фрагментов проводилось путем измерения многократного кулоновского рассеяния частиц в фотоэмульсии. Определялись значения *pβc*, где p – импульс, а *pβc* – скорость частицы. Были измерены импульсы однозарядных и двухзарядных частиц в 240 взаимодействиях ядер ⁷Ве с ядрами фотоэмульсии. Экспериментальное распределение релятивистских

двухзарядных частиц, в зависимости от *рβс* удовлетворительно описывается двумя функциями Гаусса с максимумами при значениях *рβс* 4.5 ГэВ и при 6.3 ГэВ. Относительное содержание ³Не и ⁴Не фрагментов, оцениваемое по площадям под аппроксимирующими кривыми, составляет 70% и 30%. При взаимодействиях всех других релятивистских ядер, ранее исследованных в фотоэмульсии, содержание ⁴Не превышает содержание ³Не фрагментов. Такое необычное соотношение содержания гелиевых изотопов, наблюдаемое во взаимодействиях ядер ⁷Ве, объясняется двухкластерной структурой ядра ⁷Ве, в которой не входящие в α-частичный остов ядра нуклоны образуют кластер ³Не. Распределение однозарядных релятивистских частиц по величине *рβс* в интервале до *рβс* =5 ГэВ удовлетворительно описывается двумя функциями Гаусса с максимумами при *рβс* =1.5 ГэВ и 3.2 ГэВ. Соотношение числа протонов к числу дейтронов оценивается равным 3:1. Число частиц с импульсами более 5 ГэВ/*с* составляет около 2% полного числа однозарядных фрагментов. По этим результатам измерений в каждом событии были определены массы фрагментов и идентифицированы каналы фрагментации ядра ⁷Ве.

В табл. З приведены числа событий, зарегистрированных в различных каналах фрагментации ядер ⁷Ве. Примерно в 50% реакция происходит без испускания нейтральных частиц. Среди них заметно доминирует канал (⁴He+³He), по 10% составляют каналы (⁴He+*d*+*p*) и (⁶Li+*p*). Зарегистрировано два события без испускания нейтронов в трехчастичных каналах (³He+*t*+*p*) и (³He+*d*+*d*). Реакции перезарядки ядер ⁷Ве в ядра ⁷Li среди событий без сопровождения других вторичных заряженных частиц не было зарегистрировано.

События, содержащие только два гелиевых фрагмента, представлены на рис. 1 в виде точек, координатами которых служат измеренные значения $p\beta c$ фрагментов. За абсциссу принято большее значение $p\beta c_{max}$ в событии и за ординату принято меньшее значение $p\beta c_{min}$. Практически все события по оси ординат располагаются ниже значения 5 ГэВ. Это значение принято за нижнюю границу $p\beta c$ для ядер ⁴He. На рис. 1 события (³He+³He) располагаются слева от границы $p\beta c_{max} = 5$ ГэВ, а события (⁴He+³He) справа от границы. Доля канала (⁴He+³He) относительно всех событий диссоциации ядер ⁷Be, составляющая около 30%, может рассматриваться как оценка нижнего значения вероятности такой конфигурации в ядре ⁷Be. Средний пробег для когерентной диссоциации релятивистских ядер ⁷Be на (⁴He+³He) в ядерной фотоэмульсии равен 7±1 м. Средние пробеги ядер ⁶Li, ⁷Li и ⁷Be для двухчастичных каналов когерентной диссоциации без испускания нейтронов имеют близкие значения. Прямые оценки вероятности состояния ядра ⁶Li в виде α -частичного остова и квазисвободного дейтронного кластера путем зондирования π -мезонами с энергией около 1 ГэВ мишени из ядер ⁶Li в зависимости от величины E= 1.59+E_t, где E_t равно поперечной кинетической энергии фрагментов, а слагаемое 1,59 МэВ равно пороговой энергии канала. Более чем в 80% событий значения E не

превышают 10 МэВ. В этой же области энергий располагаются и уровни возбуждения ядра ⁷Ве, значение которых на рисунке указаны стрелками. Разделения отдельных уровней в экспериментальном распределении не наблюдается. Энергию системы фрагментов можно характеризовать также поперечными импульсами фрагментов в системе координат, связанной с фрагментирующим ядром. Различие в средних значениях импульсов фрагментов для зеркальных ядер может рассматриваться как проявление влияния кулоновского взаимодействия заряженных кластеров в ядрах и процессе фрагментации этих ядер. Среднее значение поперечных импульсов фрагментов в канале (${}^{4}\text{He}+{}^{3}\text{He}$) в системе их центра масс равно 147 ± 5 МэВ/с. Заметное превышение этого значения относительно среднего значения поперечных импульсов фрагментов в канале фрагментации ⁷Li- 4 He+ 3 H, равное 108±2 МэВ/с, можно рассматривать как влияние кулоновского взаимодействия кластеров в этих ядрах. На рис. 3 представлено распределение углов у между фрагментами ⁴He и ³He в азимутальной плоскости в событиях (${}^{4}\text{He} + {}^{3}\text{He}$). В распределении преобладают большие углы между фрагментами. Это распределение в значительной степени определяется переданными импульсами фрагментирующим ядрам. Углы у, близкие к 180°, имеют корреляцию с малыми значениями импульсов переданных ядру ⁷Ве. Относительно большое число событий с углами у в области 180° и имеющих малые значения импульсов, переданных ядру, может быть связано с вкладом кулоновской диссоциации ядер ⁷Ве на тяжелых ядрах фотоэмульсии.

выводы

Основные характеристики фрагментации релятивистских ядер ⁷Ве определяются двухгелиевой кластерной конфигурацией ядра ⁷Ве. Наблюдаемое превышение среднего значения поперечных импульсов фрагментов 147±5 МэВ/*c* в канале когерентной фрагментации ядер ⁷Ве на (⁴He+³He) над значением 108±2 МэВ/*c* для канала диссоциации ⁷Li на (⁴He+³H), возможно, связано с кулоновским взаимодействием фрагментов в этих процессах. Относительно большое число событий с углами Ψ в области 180° и имеющих малые значения переданных ядру импульсов может быть связано с вкладом кулоновской диссоциации ядер ⁷Ве на тяжелых ядрах фотоэмульсии.

Авторы благодарят коллектив нуклотрона ОИЯИ проведение сеанса облучения фотоэмульсий в пучке ядер ⁷Ве, и группу обработки ядерных фотоэмульсий ЛВЭ ОИЯИ за проявку фотоэмульсий, сотрудников ФИАН А. Б. Антипову, А.В. Писецкую и Л.Н. Шестеркину за поиск и измерения ядроядерных взаимодействий. Авторы благодарны Ф.Г. Лепехину (ПИЯФ РАН, г. Гатчина) и М.М.Чернявскому (ФИАН) за обсуждения работы. Работа поддержана гратами РФФИ 02-02-164-12а, 04-02-17151.

СПИСОК ЛИТЕРАТУРЫ

- 1. The BECQUEREL Project, Web-site http://becquerel.jinr.ru
- 2. S. El-Sharkawy et al., Phys. Scripta 47, 512(1993).

3. Ф.Г. Лепехин, Д.М. Селиверстов, Б.Б. Симонов, Письма в ЖЭТФ 59 312(1994).

4. F.G. Lepekhin, D.M. Seliverstov, B.B. Simonov, Eur. Phys. J. 1, 137(1998).

- 5. М.И. Адамович и др., ЯФ 62, 1461(1999)[М. І. Adamovich et al., Phys. At. Nucl. 62, 1378(1999)].
- 6. M.L-Nady et al., Nuovo Cimento111, 1243(1998).
- 7. M.I. Adamovich et al., J. of Phys. G 30, 1479(2004).
- 8. Б.М. Абрамов и др., ЯФ **68**, 503(2005).

ТАБЛИЦЫ

Таблица 1. Средние пробеги ядер ⁶ Li, ⁷ Li и ⁷ Ве
для неупругих взаимодействий в фотоэмульсии

Ядро	λ _{эксп} , см	λ _{расч} , см	Энергия ядра	Работа
			(ГэВ)	
⁶ Li	14.1±0.4	16.5-17.2	27	[2-6]
⁷ Li	14.3±0.4	16.0-16.3	21	[3-5]
⁷ Be	14.0±0.8	16.0-16.3	8.6	данная

Таблица 2. Зарядовый состав фрагментов в событиях с Q = 4

Релятивистские	Фрагменты	Число		
фрагменты	мишени	событий		
2110	$n_b = 0$	41		
2110	$n_{b} > 0$	18		
	$n_b = 0$	42		
He + 2H	$n_b > 0$	33		
4H	$n_b = 0$	2		
	$n_{b} = 1$	1		
Li + H	$n_b = 0$	9		
	$n_{b} > 1$	3		
Всего		149		

Каналы	21	He	He -	+ 2H	4	Н	Li	+ H	Сумма
фрагментации	n _b =0	n _b >0	n _b =0	n _b >0	n _b =0	n _b >0	nb=0	n _b >0	
$^{4}\text{He} + ^{3}\text{He}$	30	11							41
$^{3}\text{He} + ^{3}\text{He}$	11	7							18
4 He + 2p			13	9					22
$^{4}\text{He} + d + p$			10	5					15
${}^{3}\text{He} + 2p$			9	9					18
$^{3}\text{He} + d + p$			8	10					18
$^{3}\text{He} + 2d$			1						1
3 He + t + p			1						1
3p+d					2				2
2d + 2p						1			1
${}^{6}\text{Li} + p$							9	3	12
Сумма	41	18	42	33	2	1	9	3	149

Таблица 3. Каналы фрагментации ядер ⁷Ве

ПОДПИСИ К РИСУНКАМ

Рис. 1. Распределение событий 2He на плоскости импульсов фрагментов. Точки – координаты измеренных значений $p\beta c$ фрагментов. Абсцисса большее значение $p\beta c$ в событии, ордината - меньшее значение $p\beta c$.

Рис. 2. Распределение событий (⁴He+³He) по величине Е.Стрелками указаны значения уровней возбуждения ядра ⁷Be в МэВ.

Рис. 3. Распределение углов ψ между фрагментами ⁴Не и ³Не в азимутальной плоскости в событиях (⁴He+³He).

Рисунок 3.

Число событий

