

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Development of muon radiography system with nuclear emulsion

Kunihiro Morishima and collaborators

Flab, Department of Physics EcoTopia Science Institute Kobayashi-Masukawa Institute for the Origin of Particle and the Universe Nagoya University

Principle of cosmic ray muon radiography

Principle of cosmic ray muon radiography

Nuclear Emulsion

- 3 dimensional tracking detector
- High spatial resolution (< silver grain size)
- Solid state detector, No power supply
- flexible shape and size(1cm²-100m²), light weight (300g/m²)

These properties have advantage in field observation

Earth Science (volcano, fault) and resource exploration

Targets of muon radiography

Overview of Muon Radiography System

Development of technologies (Emulsion, Scanning, Analysis) and establish methodology

- A detector design suitable for observation target and its environment around the observation point
- Production of emulsion
- Pouring of emulsion
- Construction of the emulsion detector
- A methodology of installation and exposure in observation point.
- Chemical development
- Scanning
- Reconstruction of muon tracks
- Calculation of muon flux
- Calculation of matter density

Overview of Muon Radiography System

Development of technologies (Emulsion, Scanning, Analysis) and establish methodology

- A detector design suitable for observation target and its environment around the observation point
- Production of emulsion
- Pouring of emulsion
- Construction of the emulsion detector
- A methodology of installation and exposure in observation point.
- Chemical development
- Scanning
- Reconstruction of muon tracks
- Calculation of muon flux
- Calculation of matter density

Muon radiography of Reactor core

The present situation expected in Fukushima Daiichi nuclear power plant

High radioactivity → shielding material

Lack of power supply

Lack of free space

Advantages of nuclear emulsion as muon detector

- Compact, light weight
- No need of power supply
- High spatial resolution

Test experiment : Using experimental fast reactor Joyo

Angular distribution of muon tracks

Position A

(muons/cm2/sr)

1bin : 40mrad x 40mrad

Test experiment : Using experimental fast reactor Joyo

Results

Application: Examination to The Fukushima Daiichi Nuclear Power Plant Accident

Density distribution

Several 10 m² Films needed for this application

Overview of Muon Radiography System

Development of technologies (Emulsion, Scanning, Analysis) and establish methodology

- A detector design suitable for observation target and its environment around the observation point
- Production of emulsion
- Pouring of emulsion
- Construction of the emulsion detector

Development items

- •Emulsion gel production technology
- Emulsion gel pouring technology
 - Production speed
- A methodology of installation and exposure in observation point.
- Chemical development
- Scanning
- Reconstruction of muon tracks
- Calculation of muon flux
- Calculation of matter density

Gel Production Machine

$AgNO_3 + KBr \rightarrow AgBr \downarrow + KNO_3$

Emulsion Pouring Facility at Nagoya University

Drying shelf

Dark Room Temperature Control Humidity Control

Parallel production 10 OPERA size films

Production speed : $1m^2/4days$ We are planning to increase the speed of $1m^2/day$

Enlarging pouring stage (50cm x 50cm)

Nagoya Emulsion (OPERA film size)

- •Emulsion distortion
- Improvement of sensitivity and signal noise ratio

Thickness Distribution of Emulsion Layer

40 50 60

100

Track measurement accuracy in emulsion layer

New Emulsion distortion is equivalent value to OPERA film

40-50µm

Performance of discrimination of gamma ray tracks

Detection Efficiency by Track Selector

Cosmic ray muon angular distribution achieved by using one new emulsion plate

Measured on the rooftop of the building at Nagoya University

Future prospects of production speed

Emulsion gel production

Threefold scale emulsion gel production machine

design was fixed
operation test will be started December, 2013

Speed ~ 1m²/batch

Automated emulsion pouring machine

•under designing

Speed ~ 10m²/day

Conclusions

- Several 10m² nuclear emulsion area detector is needed for muon tomography
- We are proposing to measure the inner structure of Fukushima Daiichi Nuclear Power Plant. We have validated the methodology by measurement of JOYO plant.
- We are developing nuclear emulsion production techniques
 - Gel production
 - Gel Pouring
- We achieved enough performance (flatness, distortion) and higher performance (noise discrimination) for cosmic ray muon tomography at the production speed of 1m²/week
- We can start 1m² area detector experiment with high sensitive Nagoya Emulsion soon !
- We are planning to apply to ancient tomb, volcano, fault, concrete structure, ...