Alpha-Clusters in Nuclear Systems

P. Schuck

Y. Funaki, H. Horiuchi, G. Röpke, A. Tohsaki , W. von Oertzen and T. Yamada

Contents:

- General Aspects of Nuclear Clustering
- α Particles and their Condensation
- ⁸Be and Hoyle State in ¹²C*
- Extensions to Heavier Nuclei: ¹⁶O
- α de excitation of Compound States
- α's in Compact Stars
- Conclusions, Outlook

Proposal :

Trapping of 4 different species of Fermionic atoms.

Ikeda

von Oertzen

H. G. Bohlen, M. Freer

P. Siemens

• α -Particle Condensation : G. Röpke, M. Beyer

 α -Condensation only at very low density !

Finite nuclei ? Exact ⁸Be : Density : $\frac{\rho_0}{3}$

3 rd α-particle

Fermi gas

collapse

V

compact ground state V_3

 ${}^{12}C$

Does a dilute $3\alpha \ ^{12}C^*$ state exist ? Similar to $^8Be + \alpha$?

At $T = 10^8 K$ helium burning thermal equilibrium

$$\alpha + \alpha + \alpha \rightarrow {}^{8}Be \rightarrow \alpha \rightarrow {}^{12}C^{*} O_{2}^{+}$$

 O_2^+ : dilute 3α state hypothesis !

it seems impossible to get Hoyle state from shell model calculation ! 45 MeV B. Barret

If O_2^+ in¹²C dilute α – state

then α -condensate

infinite matter $\rho_{\rm crit} \sim \frac{\rho_0}{3}$

Conjecture: all $n.\alpha$ nuclei possess exited $n\alpha$ condensed state

Analogy with atoms in traps $| \rho(r) = N |\phi_0(r)|^2$ $N = 10^6$

Theoretical Description

Ideal Bose condensate :

$$\left|0\right\rangle = b_{0}^{\dagger}b_{0}^{\dagger}\cdots b_{0}^{\dagger}\left|vac\right\rangle$$

 α -particle condensate :

$$\left| \Phi_{\alpha C} \right\rangle = C_{\alpha}^{\dagger} C_{\alpha}^{\dagger} \cdots C_{\alpha}^{\dagger} \left| vac \right\rangle$$

In *r*-space : $\langle \vec{r}_1, \vec{r}_2, \cdots, \vec{r}_{4n} | \Phi_{\alpha C} \rangle = \mathcal{A} \{ \Phi(\vec{r}_1, \vec{r}_2, \vec{r}_3, \vec{r}_4) \Phi(\vec{r}_5, \vec{r}_6, \vec{r}_7, \vec{r}_8) \cdots \Phi(\vec{r}_{4n-3}, \vec{r}_{4n-2}, \vec{r}_{4n-1}, \vec{r}_{4n}) \}$

In comparison with pairing :

$$\langle \vec{r}_1, \vec{r}_2, \cdots | \text{BCS} \rangle = \mathcal{A} \left\{ \Phi \left(\vec{r}_1, \vec{r}_2 \right) \Phi \left(\vec{r}_3, \vec{r}_4 \right) \cdots \right\}$$

Variational ansatz for $\Phi(\vec{r}_1, \vec{r}_2, \vec{r}_3, \vec{r}_4) : \Phi(\vec{r}_1, \vec{r}_2, \vec{r}_3, \vec{r}_4) = e^{-\frac{2}{B^2}\vec{R}^2} \phi_{\alpha}(\vec{r}_i - \vec{r}_j)$

Center of mass :
$$\vec{R} = \frac{1}{4} (\vec{r_1} + \vec{r_2} + \vec{r_3} + \vec{r_4})$$

Intrinsic α -wave function :

$$\phi_{\alpha}\left(\vec{r}_{i}-\vec{r}_{j}\right)=e^{-\frac{1}{8b^{2}}\left\{\left(\vec{r}_{4}-\vec{r}_{1}\right)^{2}+\left(\vec{r}_{4}-\vec{r}_{2}\right)^{2}+\left(\vec{r}_{4}-\vec{r}_{3}\right)^{2}+\cdots\right\}}$$

Two variational parameters : B, b

Two limits : B = b $|\Phi_{\alpha C}\rangle =$ Slater determinant $B \gg b$ $|\Phi_{\alpha C}\rangle =$ gas of independent α -particles

Two dimensional surface :
$$E(B,b) = \frac{\langle \Phi_{\alpha C} | H | \Phi_{\alpha C} \rangle}{\langle \Phi_{\alpha C} | \Phi_{\alpha C} \rangle}$$

Hamiltonian :

$$H = T + V_{N-N} + V_C + V_{N-N-N}$$

Kin. energy Gaussien Coulomb Gaussian

Quantization of energy surface E(B, b):

Force : A. Tohsaki ~ 1990 no adjustable parameters !

Hill-Wheeler :

$$|\psi\rangle = \sum_{B} f_{B} |\Phi_{\alpha C}(B)\rangle$$

Without adjustable parameters :

Radial behavior of S-wave α **orbit vs.** $R_{\rm rms}$

 $R_{\rm rms}$ =2.43 fm \rightarrow 4.84 fm (ρ/ρ_0 =1.1 \rightarrow 0.14)

Some more numbers :

		Theory	Exp.
	O_1^+	-89.52	-92.16
${}^{12}C:$	O_2^+	-81.79	-84.51
		7.73	7.65

Spectrum of ⁸**Be :**

 12 C : Second excited 2^+ : 2^+_2

It has been discovered recently by Itoh et~al. 2.6 MeV above 3 α rhreshold Width $\sim 1~{\rm MeV}$: resonance in continuum

Theory : We start with deformed α condensate state :

$$\Phi_{n\alpha} \propto \mathcal{A} \prod_{i=1}^{n} \exp\left\{-\frac{2X_{ix}^2}{B_x^2} - \frac{2X_{iy}^2}{B_y^2} - \frac{2X_{iz}^2}{B_z^2}\right\} \Phi_{\alpha_i}$$

Then projection on good angular momentum

Then Hill Wheeler or GCM For width : ACCC method

Internal structure :

Extremely dilute 3α state Suggests a pure Boson picture $|\phi_0\rangle = b_0^+ b_0^+ b_0^+ \dots |vac\rangle$ Hartree – Fock (Gross Pitaevsky eq) for ideal bosons (α ' s) :

$$\left[-\frac{\hbar}{2m_{\alpha}}\Delta + N\int d^3r' v(\vec{r} - \vec{r'})|\phi_0(\vec{r'})|^2\right]\phi_0(\vec{r}) = \epsilon_0\phi_0(\vec{r})$$

effective α – α + Coulomb T. Yamada

Estimate for maximum number

 $\mathsf{N}^{\alpha}_{limit} \simeq 10 \qquad \Rightarrow \qquad {}^{40}\mathsf{Ca}^{**}$

Boson occupancy :

 $\alpha\text{-particle}$ density matrix :

$$ho_{lpha}(ec{R},ec{R'}), \quad ec{R}\,:\, {
m c.m.}\,\, {
m of}\,\, lpha$$

Diagonalization :

 $^{12}C: O_2^+$ 70% S-wave occupancy

Energy levels, rms radii, monopole matrix elements and density distribution.

Expanding Many α – **Particle Coherent State:**

All α's can be detected in coincidence

Coherent State Established

For example, ${}^{40}Ca^* \rightarrow 10 \alpha$'s

Search at Orsay

Compound Nuclei with α – Gas:

Disintegration into 2 a's

Enhanced ->

Sign of α – Particle Condensate

(W. V. O.)

Conclusions, Outlook:

- Loosely Bound 3 α State in ¹²C^{*} Finally Established
- More α Particle Condensates Very Likely to Exist
- Nuclei Unique Fermi Systems for Cluster Effects. Eventually also in Future Cold Atom Experiments
- May be α Condensation Important in Proto – Neutron stars

Collaborators:

Y. Funaki, H. Horiuchi, G. Röpke, A. Tohsaki,

T. Yamada, W. von Oertzen

Figure 5.27: The α - α - α correlation function is shown. Resonances from the excited states of ¹²C are labelled with the first peak seen more clearly in the inner upright panel.

