Т. 43 1962 . Вып. 3(9)

ИЗУЧЕНИЕ РОЖДЕНИЯ ПАР АК⁰ И К⁰К⁰ В π⁻ р-ВЗАИМОДЕЙСТВИЯХ ПРИ ИМПУЛЬСЕ π⁻-МЕЗОНА 7—8 BeV/c⁻

Ван Юн-чан, В. И. Векслер, Ду Юань-цай, Е. Н. Кладницкая, А. А. Кузнецов, А. Михул¹⁾, Нгуен Дин Ты, В. Н. Пенев, Е. С. Соколова, М. И. Соловьев,

В работе изучается рождение пар ΛK^0 и $K^0 \bar{K}^0$ в $\pi^- p$ -взаимодействиях при импульсе- π^- -мезонов 7—8 BeV/c. Приводятся угловые и импульсные характеристики Λ - и K^0 -частиц (в с.ц.м. $\pi^- p$) от пар ΛK^0 и $K^0 \bar{K}^0$, а также угловые и импульсные распределения π^{\pm} -мезонов, сопровождающих рождение пар ΛK^0 . Кроме того, приводятся данныепо величине Q для изучаемых пар.

1. Введение

В настоящей статье содержится часть результатов по изучению ΛK^{0} - и $K^{0}\overline{K}^{0}$ -пар, рожденных при $\pi^{-}p$ -взаимодействиях с импульсом π^{-} -мезона-7 \div 8 BeV/c.

Работа выполнена с помощью 24-литровой пропановой пузырьковой камеры [¹] и является продолжением предыдущих работ по изучению генерации странных частиц [²⁻⁴]. Постановка опыта, характеристика пучка, методы просмотра и обработки фотографий, введение различных поправок, а также отбор $\pi^- p$ -взаимодействий в пропане уже описывались [^{2, 5}].

При отыскании исследуемых событий было просмотрено 60 000 фотографий. После соответствующих измерений и идентификации было отобрано 52 события $\Lambda + K^0$, 37 событий $K^0 + \overline{K}^0$, 16 событий Λ или $\overline{K^0} + K^0$ и два события $\Lambda + K^0 + \overline{K}^0$. Те 16 случаев, которые по кинематике подходили и под Λ - и под K^0 -частицы, мы относили к Λ -частицам, так как по данным ряда оценок ²⁾, проведенных нами, ~90 % всех неразделенных случаев составляют- Λ -частицы.

2. Результаты эксперимента

А. Распределения Λ - и K^{0} -частиц из ΛK^{0} -пар по импульсам показаны на рис. 1, *а*, *б*. При построении спектров учтены поправки на вероятность регистрации Λ - и K^{0} -частиц в эффективной области камеры. Импульсный спектр Λ -гиперонов от ΛK^{0} -пар аналогичен спектру, полученному в предыдущей работе [³]. Сравнительно отчетливо выделяется группа Λ -частиц, обладающих в с. ц. м. большой величиной импульса. Среднее значение импульса K^{0} -мезонов от ΛK^{0} -пар оказывается равным 702 \pm 54 MeV/c, а от $K^{0}\overline{K}^{0}$ -пар (см. рис. 1, в) — равно 604 \pm 55 MeV/c.

Б. На рис. 2 представлены угловые распределения Λ - и K^{0} -частиц из ΛK^{0} -пар и $K^{0}(\overline{K^{0}})$ -частиц из $K^{0}\overline{K^{0}}$ -пар. Учитывались поправки на вероятность регистрации частиц в эффективном объеме камеры. Из этих распределений видно следующее:

¹⁾ Сотрудник Института атомной физики в Бухаресте.

²⁾ Этот вопрос будет подробно обсуждаться в дальнейшем в работе по изучению поляризации А-гиперонов.

Рис. 1. Импульсное распределение в с. ц. м. *п*-р: а — А-гиперонов, б — К⁰-мезочов из АК⁰-пар и в — К⁰-мезонов от К⁰К⁰-пар. Сплошная и пунктирная гистограммы спектры, полученные соответственно после и до введения поправки на вероягность регистрации А- и К⁰-частиц в эфрективной области камеры. Кривые представляют результат расчета по статистической модели 3)

Рис. 2. Угловые распределения в с. ц. м. π⁻р: а — Λ-гиперонов, б — К⁰-мезонов из ΛК⁰-пар и в — К⁰-мезонов от К⁰К⁰-пар. Сплошной линией обозначен спектр после введения поправки на вероятность регистрации Λ- и К⁰-частиц в эффективной области камеры

³⁾ Здесь и далее на рис. 2, 3, 4, 5, 7, 11 и 12 по оси ординат дано число случаев *N* вместо ошибочно указанных отношений.

1) Большая часть А-частиц летит назад в с. ц. м. п⁻р. В распределении образуется острый пик в области значений соз θ^A от —1 до —0,8; в этих случаях барион сохраняет направление своего первоначального движения. Другая группа А-частиц распределена изотропно.

2) В распределении К⁰-мезонов от ЛК⁰-пар, кроме изотропной части, имеется пик, соответствующий вылету вперед. Подобный характер угловых распределений отмечался ранее [^{2,6,7}] для одиночных Л⁰ - и К⁰-частиц.

Рис. 3. Распределение в с. ц. м. *п*-р: а — углов между Л- и К⁰-частицами, б — углов между К⁰- и К⁰-мезонами от парных событий

3) В угловом распределении K^{0} -мезонов от $K^{0}\overline{K}^{0}$ -пар также достаточно отчетливо выделяется максимум в области косинусов углов $+0,6 \div +1$.

В. На рис. З показано распределение числа парных событий по углам между Λ - и K^{0} -частицами, а также между K^{0} - и \overline{K}^{0} -частицами. Заметим, что Λ и K^{0} разлетаются преимущественно в разные стороны, а для $K^{0}\overline{K^{0}}$ -пар распределение изотропно.

Г. Нами приводятся (также в с. ц. м.) импульсные и угловые распределения π^{\pm} -мезонов, сопровождающих рождение ΛK^{0} -пар (см. рис. 4, 5). Характерным отличием импульсных распределений π^{-} -мезонов, рождающихся вместе со странными частицами, от π^{-} -мезонов обычного множественного рождения (без странных частиц) [⁸] является отсутствие быстрых π^{-} -мезонов в с. ц. м.

Импульсные спектры л⁻- и л⁺-мезонов, рожденных вместе с ЛК⁰-парами, идентичны. Их сравнение по методу Смирнова — Колмогорова [⁹] дает вероятность совпадения 0,95.

Угловые распределения π[±]-мезонов, сопровождающих рождение ΛK^{0} -пар, имеют анизотропный и почти симметричный характер. По-видимому, π-мезоны в данном случае реже вылетают вперед, чем при обычном множественном рождении π-мезонов.

Д. Для исследуемых пар было построено распределение величины

 $Q = \left[2 \left(E_{\Lambda(K)} E_K - P_{\Lambda(K)} P_K \cos \vartheta_{\Lambda(K), K}\right) + m_{\Lambda(K)}^2 + m_K^2\right]^{\frac{1}{2}} - m_{\Lambda(K)} - m_K (1)$

(где $m_{\Delta(K)}, m_K$ — массы Λ (K^0)- и K^0 -частиц; $\vartheta_{\Lambda(K), K}$ — угол между Λ (K^0)и K^0 -частицами; $P_{\Lambda(K)}, P_K$ — соответственно импульсы и $E_{\Lambda(K)}, E$ — энергии этих частиц), приведенное на рис. 6—8.

Полученные результаты сравниваются с расчетами, проведенными по методу Монте-Карло (рис. 6, 8). При расчете использовались эксперименталь-6 жэтф. № 9 ные импульсные спектры Л- и K⁰- частиц и распределение по углам между ними (учитывался также закон сохранения энергии).

Рис. 6 указывает на наличие отклонения экспериментального распределения по Q для ΛK^{0} -пар от кривой, рассчитанной по методу Монте-Карло, в области значений Q от 100 до 200 MeV. В распределении по Q для $K^{0}\overline{K}^{0}$ -пар имеется максимум в интервале значений Q от 50 до 150 MeV.

Рис. 4. Импульсные распределения: $a - \pi^-$ -мезонов, $\delta - \pi^+$ -мезонов, сопровождающих рождение пар ΛK^0 . Плавная кривая представляет результат расчета по статистической модели (с учетом изобар)

Рис. 5. Угловые распределения: $a - \pi^-$ -мезонов, $\delta - \pi^+$ -мезонов от ΛK^0 -пар

3. Обсуждение результатов

Путем изучения ΛK^{0-} и $K^{0}\overline{K}^{0}$ -пар, сравнения характеристик их рождения с характеристиками «одиночных» ⁴) Λ - и K^{0-} частиц (экспериментальные данные для «одиночных» Λ - и K^{0-} частиц статистически обеспечены лучше) можно получить более детальное представление о механизме рождения странных частиц.

Угловое и импульсное распределения Λ -гиперонов из ΛK^0 -пар сходны с угловым (ср. рис. 2 и 9) и импульсным [⁸] распределениями «одиночных» Λ -частиц.

Из всех ΛK^{0} -пар имеется (55 ± 9) % случаев, когда Λ -гипероны летят назад, а K^{0} -мезоны — вперед; (33 ± 7) % случаев, когда обе частицы летят назад; остальные (12 ± 4) % являются случаями, в которых Λ и K^{0} летят вперед или Λ -гипероны летят вперед, а K^{0} -мезоны назад. Такой характер углового распределения Λ - и K^{0} -частиц из ΛK^{0} -пар (в с. ц. м.), по-видимому, указывает на возможность существенного вклада диаграмм, описывающих периферические взаимодействия (рис. 10).

Можно ожидать, что K^0 -мезоны, рождающиеся в верхней вершине диаграммы a рис. 10, будут лететь преимущественно вперед в с. ц. м., а Λ -гипероны — назад; по диаграмме $\delta \Lambda$ и K^0 будут лететь назад ⁵.

⁴⁾ «Одиночные» Λ-гипероны состоят из Λ-частиц от ΛК⁰-пар, где K⁰-частица не зарегистрирована в камере, и из Λ-частиц от ΛК⁺-пар. «Одиночные» K⁰-мезоны представляют собой K⁰-мезоны от К⁰Λ- и K⁰K̄⁰-пар (вторая частица не зарегистрирована в эффективном объеме камеры), а также из K⁰-мезонов от K⁰K⁻ и K⁰K⁺-пар.

⁵⁾ Мы не обсуждаем ряда других возможных диаграмм, в частности таких, когда л-мезоны рождаются не только в верхней вершине, но и в нижней.

с. 6. Идиограмма значений Q для ЛК⁰-пар. Кривая представляет резул расчета по методу Монте-Карло. (На оси ординат указаны произвольные единицы) Рис. б. Идиограмма результат Рис. 7. Гистограмма значений Q для ЛК⁰-пар. Теоретическая кривая, полученная на

основании расчета для периферического процесса, нормирована к той же площади

Рис. 8. Идиограмма значений Q для К[®]К[®]-пар. Кривая представляет результат расчета по методу Монте-Карло. (На оси ординат указаны произвольные единицы)

Рис. 9. Угловое распределение (в с. ц. м.) одиночных А-гиперонов, рожденных в π^-p -взаимодействиях. При построении учтены поправки на вероятность регистрации в эффективной области камеры (сплошная линия)

Указанием на наличие вклада от диаграммы б является хорошее согласие с экспериментальными данными кривой значений Q (система ЛКо), полученной на основании расчета диаграммы б (см. рис. 7). При проведении расчета ⁶⁾ для взаимодействия л-мезона с протоном в нижней вершине

⁶⁾ Этот расчет был сделан И. Патера, которому мы приносим свою глубокую благодарность.

использовался экспериментальный ход сечения с энергией [10] в области максимума этого сечения для виртуальной реакции

$$\pi^- + p \to \Lambda + K^{\circ}. \tag{2}$$

На рис. 11 сравниваются угловые распределения K^0 -мезонов от $K^0\overline{K^0}$ -пар и одиночных» K^0 -мезонов. Как видно, в пределах статистических ошибок опыта они совпадают.

Половина всех обнаруженных пар $K^0 K^0$ мезенов ((47 ± 12)%) такая, что частицы летят в разные стороны. В других случаях

либо оба К-мезона летят назад ((25 ± 7) %), либо оба вперед ((28 ± 8) %). Такое угловое распределение не позволяет предпочесть какую-нибудь диаграмму из ряда возможных (см. рис. 12).

Очень важным для полного анализа процесса рождения $K^0\overline{K^0}$ -пар является рассмотрение поведения нуклонов из π^-p -взаимодействий с рождением $\overline{K^0}\overline{K^0}$ пар. Было проанализировано 34 «звезды», рождающих $K^0\overline{K^0}$ -пару, и установлено, что только в шести из них имеются

Рис. 11. Сравнение угловых распределений в с. ц. м. *π*-р для одиночных К⁰-мезонов (сплошная линия), К⁰-мезонов от К⁰К⁰-пар (пунктирная линия) и К⁰-мезонов от АК⁰-пар (штрих-пунктирная линия). Все распределения нормированы на одну и ту же площадь

медленные протоны, которые хорошо идентифицируются. Если предположить, что медленных нейтронов столько же, то оказывается, что в большей части случаев (~65%) парного рождения $K^0\overline{K^0}$ -частиц рождается еще и быстрый (в лабораторной системе) нуклон. Это, по-видимому, говорит о том, что процесс рождения $K^0\overline{K^0}$ -пар в большинстве случаев не периферический.

Сопоставление полученных нами угловых распределений К⁰-мезонов от К⁰К⁰-пар с данными группы ЦЕРН'а, работающей с однометровой пропановой пузырьковой камерой [¹¹], показывает (рис. 13), что эти распределения в пределах статистических ошибок опыта совпадают.

На рис. 14 представлено угловое распределение Ко(Ко)-мезонов от

820

 $K^{0}\overline{K^{0}}$ -пар в системе покоя $K^{0}\overline{K^{0}}$. Это распределение, по-видимому, указывает на то, что при рождении $K^{0}\overline{K^{0}}$ -пар, кроме *S*-волны, присутствуют состояния с более, высокими орбитальными моментами *l*. Поскольку мы регистрируем только K_{1}^{0} -частицы, то могут возникать состояния только с четными *l* [¹⁹]. В распределении по *Q* для $K^{0}\overline{K^{0}}$ -пар (см. рис. 8) выделяется максимум в области 50—150 MeV/*c*. Угловое распределение в системе $K^{0}\overline{K^{0}}$ для случаев из этой области, теперь уже имеющих одну определенную пол-

Рис. 13. Сравнение угловых распределений (в с. ц. м. п⁻р) К⁰-мезонов от К⁰К⁰- пар. Сплошной линией представлены экспериментальные данные, полученные нами (энергия п⁻-мезонов 7 — 8 BeV/c); пунктирная линия — данные ЦЕРН'а (6 BeV/c)

Рис. 14. Угловое распределение $K^{0}(\overline{K}^{0})$ -мезонов от $K^{0}\overline{K}^{0}$ -пар в системе покоя $K^{0}\overline{K}^{0}$

ную энергию, также анизотропно. Если с увеличением статистики наблюдаемая анизотропия сохранится, то это будет свидетельствовать о существовании резонансного состояния $K^{0}\overline{K^{0}}$ -системы со значением углового момента, равным двус ⁷⁾. На возможность существования такого резонанса указано в работе Фраутчи, Гелл-Манна и Захариазена [¹³].

В заключение мы выражаем глубокую благодарность за помощь в работе при проведении эксперимента и за полезные обсуждения А. В. Никитину, Н. М. Вирясову, Ким Хи Ину, В. А. Белякову, И. Врана, Т. Хофмоклю, Чен Лин-янь и группе лаборантов и техников за помощь в проведении эксперимента и измерения.

Мы благодарим также сотрудников Теоретической лаборатории Объединенного института ядерных исследований В. И. Огиевецкого, И. Патера, Б. А. Арбузова, Р. Н. Фаустова за многочисленные дискуссии и обсуждения экспериментального материала и сотрудников расчетного бюро К. Данилову Е. П. Жидкова, Г. Н. Тентюкову, В. Хлапонину, Л. Шустрову и др. за проведение вычислений. Один из нас (А. Михул) выражает благодарность акад. Х. Хулубей за ценные дискуссии.

Объединенный институт ядерных исследований Поступила в редакцию 11 апреля 1962 г.

7) На это обратил наше внимание В. И. Огиевецкий.

Литература

[1] Ван Ган-чан, М. И. Соловьев, Ю. Н. Шкобин. ПТЭ, 1, 41, 1959.

- [2] Ван Ган-чан, Ван Цу-цзен, В. И. Векслер, И. Врана, Дин Да-цао, В. Г. Иванов, Е. Н. Кладницкая, А. А. Кузнецов, Нгуен Дин Ты, А. В. Никитин, М. И. Соловьев, Чен Линянь. ЖЭТФ, 40, 464, 1961.
 - [3] В. И. Векслер, И. Врана, Е. Н. Кладницкая, А. А. Кузнецов, А. К. Михул, Э. К. Михул, Нгуен Дин Ты, В. Н. Пенев, М. И. Соловьев, Т. Хофмокль, Чен Лин-янь. Препринт ОИЯИ, Д-806.
 - [4] Ван Ган-чан, Ван Цу-цзен, Н. М. Вирясов, Дин Да-цао, Ким Хи Ин, Е. Н. Кладницкая, А. А. Кузнецов, А. Михул, Нгуен Дин Ты, А. В. Никитин, М. И. Соловьев. ЖЭТФ, 40, 732, 1961.
 - [5] Ван Ган-чан, Ван Цу-цзен, Дин Да-цао, В. Г. Иванов, Ю. В. Катышев, Е. Н. Кладницкая, Л. А. Кулюкина, Нгуен Дин Ты, А. В. Никитин, С. З. Отвиновский, М. И. Соловьев, Р. Сосновский, М. Д. Шафранов. ЖЭТФ, 38, 426, 1960.
 - [6] M. I. Soloviev. Proc. of the 1960 Ann. Intern. Conf. in High Energy Physics at Rochester, Intersc. Publ., 1960, crp. 388.
 - [7] Ch. Peyrou. Proc. of the 1960 Ann. Intern. Conf. on High Energy Physics at Rochester, Intersc. Publ., 1960, crp. 402.
 - [8] Н. Г. Биргер, Ван Ган-чан, Ван Цу-цзен, Дин Да-цао, Ю. В. Катышев, Е. Н. Кладницкая, Д. К. Копылова, В. Б. Любимов, Нгуен Дин Ты, А. В. Никитин, М. И. Подгорецкий, Ю. А. Смородин, М. И. Соловьев, З. Трка. ЖЭТФ, 41, 1461, 1961.
 - [9] М. В. Дунин Барковский, Н. В. Смирнов. Теория вероятности и математическая статистика в технике, Гостехиздат, 1955.
- [10] J. Steinberger. Proc. of the 1958 Ann. Intern. Conf. on High Energy Physics at CERN.
- [11] Ch. Peyrou. The Aix en Provence Intern. Conf. on Elementary Particles, 1961, crp. 103.
- [12] В. И. Огиевецкий, М. И. Подгорецкий, Э. О. Оконов. Препринт ОИЯИ, Р-960.
- [13] S. C. Frautschi, M. Gell-Mann, F. Zachariasen. Preprint.

A STUDY OF ΛK° AND $K^{\circ}\overline{K^{\circ}}$ PAIR PRODUCTION IN THE INTERACTION BETWEEN 7—8 BeV/c π^- -MESONS AND PROTONS

Wang Yun-chang, V. I. Veksler, Du Yuan-chai, E. N. Kladnitskaya, A. A. Kuznetsov, A. Mihul, Nguyen Dinh Tu, V. N. Penev, E. S. Sokolova, M. I. Soloviev,

 ΛK^0 and $K^0 \overline{K}^0$ pair production in $\pi^- p$ -interactions is studied for π -meson momenta of 7-8 BeV/c. The angular and momentum characteristics of the Λ - and K^0 -particles (in the $\pi^- p$ c. m. s.) from the ΛK^0 and $K^0 \overline{K}^0$ pairs and also the angular and momentum distributions of π^{\pm} -mesons accompanying ΛK^0 pair production are presented. Data on the magnitude of Q for the investigated pairs are also presented.