

Статус проекта МРД

В.Кекелидзе

- Вступление
- Физические задачи
- MPD концептуальный проект

– магнит -Barrel Tracker (TPC, Straw)

- TOF
- BBC - ZDC

- Организационные аспекты
- Заключение

Introduction

> NICA / MPD project

to study hot & dense strongly interacting QCD matter & to search for possible manifestation of the mixed phase formation & critical endpoint in heavy ion collisions has started for preparation

NICA / MPD is a leading LHE project in both - research program & development of basic facility in 2008-2015

it is expected that this *flagship* project provides:

frontier researches in the relativistic heavy ion physics
 attraction of young physicists & worldwide cooperation
 development of new technologies (incl. nanotechnologies)
 attraction of extra funding

Preparation of the project of new JINR facility - Heavy Ion Collider NICA (Nuclotron-based Ion Collider fAcility) has started

> This project foresees the design & construction of

Injection complex including the new Krion source & linac

Booster & upgraded Nuclotron (Nuclotron-M)

Ion Storage Rings with two intersection points

& MultiPurpose Detector (MPD)

> The conceptual design - close to completion

11 октября 2007

Collider NICA complex allocation

В.И.Векслеру

Collider NICA characteristics

Ring circumference, m	251.2		
lon kinetic energy, E [GeV/u], min/max	1/3.5		
Particle number per bunch, N _{ion/bunch}	2.0·10 ⁹		
Bunch number, n _{bunch}	20		
Horizontal emittance, ϵ [π mm mrad]	0.7		
Momentum spread, ∆p/p	0.001		
IBS life time [sec]	≥ 100		
Beta function at interaction points, β^*	0.5		
RF voltage, U _{RF} [kV]	200		
Laslett tune shift, ∆Q	0.0044		
Beam-beam parameter	0.009		
Luminosity, L [cm ⁻² s ⁻¹], peak/average	2/ (1÷1.5) · 10 ²⁷		

Major milestones

upgrade of the **Nuclotron facility** wide program of R&D preparation of **T**echnical **D**esign **R**eport

> design & construction production lines for magnets & other parts & systems booster completion infrastructure development + assembling

> > commissioning

& putting in operation

paration of Technical Design Repor design & construction

Stage III (2010-2012)

> Stage IV (2013)

Stage 0

Stage I

Stage II

Jan 2008

(2007-2009)

(2008-2012)

11 октября 2007

the following effects will be studied (on energy & centrality scanning):

Event-by-event fluctuation in hadron productions (multiplicity, Pt etc.)

HBT correlations indicating the space-time size of the systems involving π, K, p, Λ (possible changes close to the de-confinement point)

> Directed & elliptic flows for various hadrons

Multi-strange hyperon production: yield & spectra (the probes of nuclear media phases)

Possible indication on phase transition

measurements of related yields for charged kaons & pions

Some enhancement is indicated in the energy region around $\sim E_{\pi\alpha\beta} = 30 \ A \ \Gamma \Im B$

Basic principles of experimental approach:

- > Technical solutions should be as simple as possible
- Detailed simulation of expected parameters
 & corresponding cross-checks by available data

The experiment should fulfill the major requirement: physical observables must be clearly (qualitatively) distinguished from possible apparatus effects

Basic principles of organization

At first approximation
- all sub-detectors could be designed & constructed at JINR
based on the existing expertise & infrastructure

some sub-detectors could have alternative designs in order to provide possibility for potential collaborators to substitute/accomplish corresponding groups in future

- The first realistic draft of the Letter of Intent should be ready by January 2008
- > The rough cost estimation should be done

by that time as well

11 октября 2007

First stage of simulation based on UrQMD & GEANT4 in the framework of MPD-Root shell:

- Au+Au collisions with total energy of 4.5 + 4.5 AGeV
- Central interaction within b: 0 3 fm
- Minimum bias within b: 0 15.8 fm
- Collision rate at L=10²⁷ cm⁻²s⁻¹: ~ 6 kHz

central collision $|\eta| < 1$, **p** >100 MeV/c

charged particle multiplicity (primary)

momentum spectrum

11 октября 2007

momentum spectra for various particles

Magnet:

- superconducting solenoidal magnet
- magnetic field 0.5 T
- cryostat inner radius (region available for the detector) ~ 1.5 m
- iron yoke is used to form a homogeneous magnetic field
- color step 5 Gauss (~1 pm)
 good homogeneity
 feasible for TPC

MPD major sub-detectors

Zero Degree Calorimeter (ZDC)

11 октября 2007

В.Кекелидзеб 100 лет В.И.Векслеру for centrality definition

Inner Tracker:

Complementary detector for track precise reconstruction in the region close to the interaction piont

- Cylindrical geometry (4 layers) covering the interaction region ~ 50 cm along the beam axis
- Possible contribution to dE/dx measurements for charged particles

TPC option for the Tracker

specification (preliminary) ~ 110 cm > Outer radius 20 cm >Inner radius Drift length ~135 cm Number of sections (each side) 12 24 (12 - each side) > Total number of readout chambers ~ 20-30 µs Drift time > Multiplicity for charged particles (central collision) ~ 500 > Total pad/channels number ~ 70000 Two track resolution 2cm > Special resolution ($\sigma_{o} \times \sigma_{R} \times \sigma_{z}$) 3 x 0,4 x 3 mm 6 kHz > Maximal rate

TPC design & readout

FEE and Readout electronics from ALICE TPC (ALTROs and PASAs) could be used

TPC: charged particle identification

В.Кекелидзеб 100 лет В.И.Векслеру

Gas mixture - Ar/CH4 (90/10)

6% of dE/dX
 resolution is expected

 π /K separation to 0,7 GeV/c (π +K)/p to p = 1,2 GeV/c

Time of Flight

> RPC - the major detector for particle identification

separation should be provided for pion / kaon in the momentum range 0-1,5 GeV/c for proton / kaon in the momentum range 0-2,5 GeV/c

> 2 stations of scintillation counters (BBC) situated symmetrically from the interaction region near the beam pipe give the start signal

 \succ RPC detectors on the radius 1,3 m provides the TOF measurement

> RPS provides additional targeting for track reconstruction in BT

11 октября 2007

ToF specification

the RPC TOF system looks like barrel with the length 4 m and radius of 1,3 m. the barrel surface is about 33 m2 the dimensions of one RPC counter is 7 cm x 100 cm it has 150 pads with size 2,3cm x 2 cm. the full barrel is covered by 160 counters the total number of readout channels is 24000 Time resolution ~ 100 ps

ToF features

P

Ρ

1.2

Mass (GeV/c²)

1.4

23

ToF features

BBC design

Tech. details

Centrality definition (trigger level)

MinBias trigger

Au+Au @ 9 GeV

Small tile can be inscribed in circle with **12 cm** diameter, large tiles are four times bigger. Exact inner radius: **5.2 cm** Exact outer radius: **104.0 cm**

• The BBC scintillators are from 1-cm thick Kuraray SCSN-81.

• Scintillation light produced within a tile was collected by four 0.83-mm diameter Y-11 doped optical fibers.

Support

ex.: STAR BBC support frame

11 октября 2007

measurement of centrality: b ~ A - Nspect selection of centrality at trigger level

- measurement of event-by-event fluctuations to exclude the fluctuation of participants
- monitor of beam intensity by detecting the neutrons from electromagnetic dissociation
- E e / E h = 1 compensated calorimeter
- Lead / Scintillator sandwich

> The work on the MPD project is well progressing

> Many experts are involved

- Many new ideas & suggestions have been considered
- > The major milestones are fixed

the Letter of Intent should be ready by January 2008

Thanks to the MPD working group

NICA center group:

Afanasiev S.V. Nikitin V.A. Borisov V.V. Peshekhonov V.D. Pavlyuk A.V. Golovatyuk V.M. Kurepin A.B.

+ volunteers

.

Shabunov A.V. Potrebenikov Yu.K. Zanevskij Yu.V. Kiryushin Yu.T. Murin Yu.A. Tyapkin I.A. Arkhipkin D. Abramyan H. Avdejchikov V.V.

Spare

11 октября 2007

Organization - center NICA

is organized in the Laboratory of High Energy for the project preparation: Director - A.S.Sorin

Four groups started active works in:

Theory development

MPD project preparation

Software development

(led by - V.D. Toneev)

Accelerator complex design (- A.D.Kovalenko, I.N.Meshkov)

(- V.D.Kekelidze)

(- O.V.Rogachevsky)

Physics motivation

In-medium properties of hadrons & nuclear matter equation of state will be studied including a search for

possible manifestation of de-confinement and/or chiral symmetry restoration, phase transition, mixed phase & critical end-point

in collisions of **heavy ion** (over atomic mass range A = 1-238) by scanning of the energy region $\sqrt{S_{NN}} = 3-9 \text{ GeV}$

These investigations are relevant for understanding of the physics of heavy ion collisions, the evolution of the Early Universe & formation of the neutron stars

11 октября 2007

Physics motivation

В.И.Векслеру

34

Longitudinal view of MPD SVT

11 октября 2007

Transverse view of MPD SVT

Number of modules 357.

Number of detectors 714.

Number of electronic channels 215 500

11 октября 2007

Proposed parameters

- Radius from the beam line 1,3 m
- Time resolution -100 ps
- > Max momentum of π/K system separated
 - better than 2,5 σ at 1,3GeV/c
- > Efficiency (acceptance) for π/K better than 97%

Momentum, MeV/c

Separation primary particles for Central events

TOF RPC design

Beam Beam Counter at Hiroshima university

Run No.	Type of PMT	Type of radiator	Time resolution, ps
3	Hamamatsu R3432–01	Quartz	53
3	Hamamatsu R3432–01	Lucite	50
7	Hamamatsu R3432–01	Lucite	54
8	Hamamatsu R3432–01	Lucite	56
9	Hamamatsu R5506	Quartz	59
10	Hamamatsu R5506	Lucite	75
11	FEU-187	Quartz	55
12	FEU-187	Quartz	58
13	FEU-187	Quartz	52
14	FEU-187	Quartz	42

11 октября 2007

В.Кекелидзеб В.И.Вексл

Figure 2.1: Photography of the prototype of T0-C.

Barrel Straw Tracker

Modulo	R _m , cm	$\Delta \mathbf{R}, \mathbf{cm}$	Rate _{max} , n/cm ²	L straw, cm	Number per straw		0,	L _{ins} ,	L _{ins} , Number	
wiodule					spacers	segments	%	%	straws	channels
1Μ (φ)	30	20÷33	0,047	110	8	18	6,6	12,6	L#1 – 454 L#2 – 460	16452
2M	40	34÷42	0,027	130	8	18	6,6	11	L#1 – 608 L#2 – 614	21996
3Μ(φ)	45	43÷49	0,021	140	8	18	6,7	10,2	L#1 – 684 L#2 – 690	24732
4M	53	50÷56	0,016	156	8	18	6,6	9,2	L#1 – 808 L#2 – 814	29196
5Μ(φ)	60	58÷65	0,012	170	8	18	6,8	8,4	L#1 – 914 L#2 – 920	33012
6M	70	66÷74	0,009	190	8	18	6,7	7,5	L#1 – 1068 L#2 – 1074	38556
7Μ(φ)	85	78÷88	0,006	220	8	18	6,9	6,5	L#1 – 1294 L#2 – 1300	46692
8M-1 8M-2	100	90÷108	0,004	2×150	2×4	2×10	7,1	5,1	L#1 – 1526 L#2 – 1532	61160
9M-1(φ) 9M-2(φ)	114	110÷120	0,003	2×160	2×4	2×10	7	4,7	L#1 – 1800 L#2 – 1800	72000

Table 1. BARREL STRAW-TRACKER. Diameter of straws – 4 mm.

Total length of straws: ~41 km

Total: ~ 36 000

~ 343 796

EC Straw Tracker

Table 2. Modules of End-Cap Straw Tracker (φ). Diameter of straws – 4

mm.

Туре	N of layers	L straw, mm	N straws per layer	N straws per 2 modules	Number of channels
2 x M1	6	884	302	3624	14496
2 x M2	6	801	274	3288	13152
2 x M3	6	719	246	2952	11808
2 x M4	6	636	217	2604	10416
			Total:	12 470	49 900

Total length of the straws \approx 9,7 km

Occupancy in the straw segments

at various radiuses

Tracker (Barrel Straw Tracker)

preliminary

5 Modules: 1-st, 3-th, 5-th – ϕ (2; 2; 4 layers); 2-d, 4-th – ± 7° (3; 3 layers)

L -2,4 m; R - from 20 cm to 120 cm

4 mm in diameter straws – 12 610;

11 октября 2007

Tracker (Barrel Straw Tracker) continuation

4 mm in diameter segmented straws, L -2,4 m: - 12 610 pc

Segmentation of 1-st and 2-d modules:

Total: 61860 channels

Segmentation of 3-th, 4-th and 5-th modules:

